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ABSTRACT

An analytical shear lag model has been. developed for the progressive damage and final
failure of glass-epoxy composites under biaxial loading. The amount of damage is determined for
each layer at increasing static loads by comparing the strain energy released by the laminate assuming
a crack occurs with the critical strain energy release rate found in the literature. When a layer
cracks, the other layers must take additional load. Final failure occurs when the primary load
carrying plies reach their ultimate strength. This model incorporates an algorithm for the effect of
microdelamination on matrix cracking. The model has been experimentally verified by statically
loading uniaxial glass-epoxy tension specimens and measuring damage accumulation in terms of crack
density and the decrease of Young’s modulus. The present study shows that the model developed

can be used for predictions of damage and failure of glass-epoxy composites.
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CHAPTER 1

INTRODUCTION

Fiber-reinforced composite materials have found widespread use in the aerospace and
automotive industries, among others. They are used in such applications as solid rocket motor cases,
aircraft fuselages and wing structures, boats, and automotive leaf springs. In none of these structures
are they under uniaxial tension loading only. Since composites are generally used in the form of
plates or shells, they typically see biaxial loading. Unfortunately, little analytical modeling has been
performed for failure under biaxial loading.

The failure of composite materials is usually preceded by a substantial amount of damage.
The first event is transverse matrix cracking in the 90° or low angle plies. As the transverse matrix
cracks reach the interface between the 90° layer and the neighboring 0° or low angle layer, small
delaminations tend to form. The thickness of the 90° layer determines whether delamination occurs.
At first, these delaminations grow only a very small amount. Matrix cracks continue to form in the
90° ply layer until the "characteristic damage state” is reached. At this point, substantial
delamination may occur. While delamination is occurring, the load carrying plies reach their
ultimate strength and failure ensues.

Modeling the damage in composites enables industry to make more accurate decisions
regarding the margins of safety of damaged hardware. Predictions can be made of the change in
properties as a result of damage, and of the loading states which lead to unacceptable damage. For
example, if a pressure vessel is overpressurized, the stress in the vessel can be determined. An
estimation of the amount of damage and the probable degradation of properties can be made using

models such as those proposed in this work.
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While a number of models have been developed for predicting progressive damage in
composites, very few are written for biaxial loading. None are written for transverse matrix
cracking in composites with more than three layers. Finally, few make any attempt to incorporate
the effects of delamination.

The models developed in this work incorporate transverse matrix cracking of fiber-reinforced
composites under biaxial tension. The initial model is for composites of the type [+6/90n]s under
general biaxial tension. Transverse matrix cracking is modeled in the 90° plies and an algorithm for
the effect of local delamination is included. In the final model, laminates of the type [90n/0m/90p]s
are studied. Transverse matrix cracking is modeled in all five layers. In-plane biaxial loading,
except for in-plane shear, is modeled. In addition, the delamination algorithm is included.

Both models predict the stress and strain at the onset of matrix cracking, the progression of
cracking, the effect of local delamination on transverse matrix cracking, and the change in Young’s

modulus as damage occurs. They are compared with experimental data.



CHAPTER 2

REVIEW OF LITERATURE

Microstructural Failure Mechanisms

In order to truly understand fracture of composite materials, one must begin by looking at
the microstructural aspects.  This section examines matrix microcracking, fiber breakage,
matrix-fiber debonding, fiber pull-out, and the microstructural aspects of delamination. The
microstructure of composites greatly affects their macroscopic behavior. The observations

summarized in this section have led to the development of damage propagation models.

The Pseudoplastic Zone
For stable crack growth, the crack critical energy release rate, Gc’ is equal to the fracture
toughness or resistance to crack growth, R. Gc is defined as:

G =3P, [g—f] @1
where Pc is a critical force, C is the compliance and da is the crack extension [1]. Visconti [2] used
G], the mode I elastic energy release rate, to describe composite fracture. Since the composites
examined here are brittle, linear elastic fracture mechanics provides a reasonable measure of fracture
toughness. Visconti used a stress intensity factor given by:

K =% (2.2)
where 2a is the length of the crack perpendicular to the direction of stress, ¢. The propagation of
the crack initiates when KI reaches a critical value, ch, which depends on a critical stress, o
Visconti proposes that the ability to withstand load in the presence of notches is due to the presence

of a "pseudoplastic” zone ahead of the crack tip. In this zone, microcracking and microdelamination

(really debonding) dissipate energy. His model is shown in Figure 2.1. Once the zone grows to a
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certain size, given by ao, cracking proceeds. Thus, KIC can be defined for the case of no initial

defects, or the case of initial defects:

ch=¢rc\/ (a+ao)7 or ch=a*1/ ao7 2.3)

where o* is the strength of the unnotched specimen, o, is critical stress, and ao refers to a critical
size of unavoidable defects present in the material. Finally, Visconti solves these equations for ao
and states that ao is a characteristic constant of the material.

0= (2.4)

MATRIX

/)

T R NS

Figure 2.1. Model of the Mechanism Involved in Crack Propagation in a Composite [2]

For maximum fracture toughness, one must maximize the resistance to crack growth, R or

Gc’ since they are equal. Visconti realized that contributions to GC arise from a number of physical

processes, including matrix microcracking, fiber breakage, debonding, and fiber pull-out [1,2].



Matrix

The glass transition temperatures of epoxy matrices range from 300°F to 470°F, which
means that they are glassy at their use temperatures [3]. In addition, since they are highly
crosslinked, they cannot develop any significant degree of crystallinity [2]. They are, thus, brittle
and linearly elastic. It is well known that glassy polymer fracture begins with the formation of
low-density regions called crazes [4]. Crazes may initiate at interfaces or voids. They may be
caused by post-cure shrinkage [5], straining, or development of pressure pockets due to moisture
entering internal voids [3]. They can also be caused by chemical attack. Epoxy matrices, however,
are generally quite resistant to chemicals and exhibit low shrinkage during curing [6]. Crazes absorb
a certain amount of fracture emergy, which helps the composite to fail incrementally rather than
catastrophically. On the other band, crazing reduces the strength of the matrix as shown by Pavan

[7], who found the tensile craze yield strength, oyc, of a glassy polymer marix/particulate composite

511!
0‘yc=C{2[l+\/l+4—2|} (2.5)
C

Note that oyc depends on the material properties of the matrix, given by C and D, so this equation is

to be:

true regardless of composite type. It also means that matrix cracking is governed by matrix strength,
and that matrix properties strongly affect axial and transverse cracking and delamination resistance.
In addition, as will be seen later, matrix microcracking usually precedes the other failure

mechanisms. Before discussing the other failure modes, one must look at the fibers.

Fibers

Fibers, like graphite, are highly crystalline and oriented, giving them much higher strength
and stiffness than epoxy matrices [4]. This is especially true at high rates of strain. Due to their
high stiffness, Fibers typically strain less than do matrices, especially at high strain rates. In
addition, fiber failure is generally defined at the fracture strain. Some fibers, however, like Kevlar

(aramid), actually have a higher creep rate than epoxy at low stresses [5], which may contribute to
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Kevlar-epoxy’s relatively high fracture toughness. Graphite and glass fibers do not fall into this
category. Individual fibers may break at less than 50% of the ultimate tensile load of the composite
[8]. This is a random process due to randomly distributed defects in the fibers. Some researchers
have modeled fiber failure due to such defects using a Weibull distribution. This idea is explained
more fully in Chapter Two.
Agarwal and Broutman [8] discuss a rule of mixtures approach to define the energy required
per unit area of the composite for fracture of fibers in tension, Wb, as well as energy release rate
caused by fiber breakage during fracture, G:

2
Vfaf 1

Wb=G= (2.6)

6E ¢
where Vf is the volume fraction of fibers, af is the fiber ultimate strength, 1 is the fiber length, and
Ef is the fiber Young’s modulus. When a fiber fails, other fibers must take up the load, leading to

additional fiber failures [6]. This may be an incremental process; however, if it occurs abruptly, it

may result in catastrophic failure.

Fiber-Matrix Debonding

Matrix microcracking generally does not lead to catastrophic failure, but rather, dissipates
energy. Matrix microcracks are, however, nuclei for further damage. When matrix microcracks
reach fibers, debonding between the fiber and the matrix usually occurs. The purpose of the matrix
is to transfer load to the fibers and it does this by a shear mechanism. Since the fibers are stiffer
than the matrix, they prevent the matrix from elongating near the fiber. This results in a local strain
at the fiber, which is higher than that in the bulk of the matrix [9]. If the corresponding local stress
is greater than the local interfacial strength, debonding will occur. Although the matrix-fiber
interface is often assumed to be perfect in analytical models, it actually has rough surfaces with
corners, which act as stress concentrators. Thus the local stress is even higher than is usually

predicted, resulting in premature debonding.
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Cracking in a fiber-matrix composite can be modeled using a bimaterial plate, in which one

pbase is more brittle than the other. The crack propagates in the more ductile portion at, we

assume, some constant velocity. As it approaches the second phase, it slows down and stops at the

interface in what Theocaris [9] calls the crack-arrest phenomena. The crack then propagates along

the interface until the strain energy necessary for it to propagate in phase two is reached. Now there

are two independently propagating cracks. While this is a very interesting model, Theocaris,

unfortunately, does not develop an equation for the energy of debonding. Kelly [1] does develop

such a relation by equating the work of debonding with the strain energy appearing in the filament as
a result of debonding. He finds that the work or energy of debonding is:

mlo’x

W =—o"F @n

d
6Ef

where r is the fiber radius, Ef is the fiber modulus, o . is the fiber breaking strength, and x is the
length of the debond. Debonding contributes less to the fracture toughness than does fiber pull-out,

as shall be shown.

Fiber Pull-Out

Fiber pull-out generally occurs after a fiber has broken near, but not in the plane of, a
matrix crack. The fiber will debond from the matrix and, since it can no longer carry a load, will
pull away from the rest of the fiber, leaving a fiber-shaped hole in the matrix. This phenomen is
shown in Figure 2.2, where the central fiber has broken at a distance, L, from the crack face. Fiber
pull-out increases fracture toughness and is enabled by a low interfacial shear strength. Pull-out is
most likely to occur when the fiber length is less than the critical fiber length, which is the fiber
length needed for the in situ fiber stress to reach its maximum value at the fiber midpoint.
However, Piggott [10] has shown that fiber pull-out can occur in continuous fiber composites
provided that it is preceded by fiber breakage and/or debonding between fiber and matrix. In a

continuous fiber composite, it is usually fiber breakage that precedes pull-out, since it is unlikely that
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debonding will occur along the entire length of a fiber without fiber breakage occurring, as has been
explained by Theocaris [9]. In addition, the fiber will probably break at the point of an inherent

flaw.

Figure 2.2. Fibers Bridging a Crack [10]

Kelly [1] defines the critical spacing of flaws as Y,

Iaf-uf*lr Aaf
y = =]— 2.8)

c c )
T. o
i f

Here, o is the fiber strength, af* is the strength at the flaws, Aaf is af-af"‘, r is the fiber radius, 7,
1
is the interfacial shear strength, and lc is the critical fiber length, such that the in situ fiber strength

reaches of in the middle. If the actual spacing of flaws is y where y<yc, then all fibers will break

at flaws lying within a distance % Y, from the crack. The average pull-out work per fiber is then:

1r1-1'iy2
W= (2.9)
P12
or for the composite per unit area,
2
vfriy
W=———— (2.10)



y
If, on the other hand, y>yc, a fraction of fibers equal to yc— will break at flaws and pull

y
out, while a fraction of fibers equal to l-yc— will not pull out but will break in the plane of the

matrix crack. Then the work of fracture for the composite is:

Vf‘r,y3
wW=—2=° (2.11)

P 12ry
By setting y=yc, the dependence of wP on T, and o can be seen.

Ify=yc,
1 Ao 2
2 c f
Vfr,y Vfr_ af
W = 1 e _ ! 2.12)
P 12r 12r
Now,
afr
lc=—-; (2.13)
1
so,
VfrAcrf_
W = 2.14)
P 121'i

Since Aaf is proportional to o e Wp increases with increasing o . and decreasing T In
addition, to increase fracture toughness, the fiber/matrix interfacial shear strength should be reduced
relative to the fiber longitudinal tensile strength. In fact, Piggott [10] has shown experimentally that,
when the residual interfacial cure shrinkage stress is decreased, the work of fracture increases. In
addition, work of fracture decreases as fiber modulus increases. The fiber stress is small near the
break and this loss of stress upon fracture causes the fiber to shrink longitudinally and expand
radially. Thus, the fiber wants to pull out and does work during pull-out. If the fiber is brittle, it
will exhibit less shrinkage and less expansion, lowering the work of fracture. Piggott also points out
that, in order for fiber pull-out to occur, the crack must be very large. This means that even though

fiber pull-out is a useful mechanism for increasing fracture toughness, the crack required is often so
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large that the material is already in danger of certain failure. Fiber pull-out simply works to slow
the failure process.

It can now be shown that the contribution of pull-out energy to fracture toughness is greater
than that of debonding. Combining equations 2.8 and 2.10, we see that for a single fiber, the ratio
of the pull-out work to the work of debonding, Wp/Wd, is proportional to E/o o which is equal to the
reciprocal of the maximum breaking strain. As stated earlier, fibers are very stiff, so the maximum
breaking strain is always very small, on the order of a few percent. Therefore, Kelly states that E/ o,
is never less than 50 [1]. Hence, Wp, the energy associated with fiber pull-out, is substantially
greater than Wd, the energy associated with debonding. In addition, since a small interfacial bond
strength is required for both debonding and pull-out, a small interfacial shear strength will produce

debonding followed by fiber pull-out. Therefore, it is worthwhile to look more closely at the

interfacial bond strength.

The Interfacial Bond

The relationship between interfacial bond strength and fracture toughness can be illustrated
by comparing graphite-epoxy and aramid-epoxy laminates. The interfacial bond strength in
graphite-epoxy laminates is twice as high as the bond strength in aramid-epoxy composites, and this
is likely the main reason that aramid-epoxy composites have a higher fracture toughness than
graphite-epoxy materials. Penn, et al., [11] investigated the reasons for this phenomena by
performing single filament pull-out tests. They suggest three possible reasons for the difference,
namely, intermolecular interactions, chemical bonding, and mechanical interference.

Intermolecular interactions and chemical bonding were quickly ruled out, since graphite and
aramid have similar forces acting at their surfaces, and they have nearly identical surface
functionalities. The difference in modulus was also considered and was ruled out. Penn, et al., [11]

found that the most likely cause for the difference in fracture toughness is the radial compression or
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tension exerted by the matrix on the fiber because of thermal mismatch between matrix and fiber
during cool-down after cure.

The coefficients of thermal expansion for fibers increase as temperature is raised, thus,
fibers shrink in length aad expand in diameter as the temperature is raised, and the opposite occurs
upon cooling. Since graphite’s transverse thermal expansion coefficient is less than that of a typical
epoxy, the graphite fiber will not shrink upon cooling as much as will the annulus of matrix around
it will decrease. Therefore, a high compressive stress will be exerted on the fiber by the matrix.
Aramid’s diameter decrases more upon cooling than does the diameter of graphite, giving a looser fit
between matrix and fiber for Aramid. The difference in fit leads to a difference in interfacial shear
strength. In fact, the interfacial shear strength between graphite fibers and epoxy is about three

times greater than the shear strength between Aramid fibers and epoxy.

Delamination

Delamination is a result of failure of the matrix and of the fiber-matrix interface.
Saghizadeh and Dharan [13] have made some interesting observations regarding delamination and the
relative contributions of matrix cracking and fiber-matrix debonding to delamination fracture
toughness. Since the delamination crack must work its way around fibers as it propagates, the local
fracture mode is a mixture of Mode I and Mode III, even if the macroscopic fracture mode is Mode
I delamination. This is shown in Figure 2.3. They found that delamination fracture toughness
depends strongly on the fiber volume fraction; therefore, interfacial fracture toughness is more
important than neat resin fracture toughness. Since fiber-matrix debonding, fiber pull-out, and fiber
breakage energies also depend on fiber volume fraction and matrix failure does not, one may
conclude that debonding, pull-out, and fiber breakage are greater contributors to delamination
fracture toughness than is matrix fracture. Specifically, Saghizadeh and Dharan found that for
graphite composites, the crack energy release rate decreases with fiber volume fraction. This is

because increased fiber volume fraction increases the interfacial surface area, which lowers the crack
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energy release rate, in effect, toughening the composite. Therefore, a fiber-reinforced epoxy

laminate with a high fiber volume fraction should have a high resistance to delamination.

Interfacial
failure

Fiber

Figure 2.3. Crack Path Around Fibers During Delamination [13]

Relationship between Microstrucure and Fracture Toughness

We have seen that fracture toughness depends on matrix, fiber, and interface properties. In
addition, it is evident that fiber pull-out is the greatest contributor to fracture toughness, but it cannot
occur without being preceded by matrix microcracking, matrix-fiber debonding and fiber breakage.
Often, as is shown in Figure 2.2, fibers will bridge a crack. Fiber bridging is another factor in
preventing catastrophic failure, but it leads to complications in analyzing composite fracture. All of
the mechanisms discussed are important to the development of fracture toughness in continuous fiber
composites.

The fiber-matrix interface has beea examined to see the effects of intermolecular and
chemical bonds, as well as mechanical interactions between fibers and matrix [11,12]. For graphite-
and aramid-epoxy composites, thermal mismatch between fibers and matrix is probably the most
important factor in determining the strength of the interfacial bond. Penn, et al. [11] and Piggott
[10] looked at aspects of this post-cure phenomenon. A tight fit increases interfacial shear strength

and decreases fracture toughness, while a loose fit decreases shear strength and increases fracture
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toughness. This helps explain the fact that aramid-epoxy has a higher fracture toughness than
graphite-epoxy.

The ideas developed herein show relationships between various microscopic material
characteristics and fracture toughness. Fracture toughness depends strongly on fiber pull-out energy,
which in turn depends on the interfacial bond strength. Interfacial bond strengths have not been
tabulated for many systems, making micromechanical models somewhat impractical at present.
Although the models to be described in the next section are not micromechanical in nature, the

behaviors they phenomenologically describe are micromechanical.

Progressive Failure Mode

Progressive failure of a fiber reinforced composite usually begins with matrix microcracking
transverse to the load. As a result of the matrix cracking in transverse or near transverse plies, there
is a greater mismatch in local average strains between adjacent plies; therefore, delamination occurs.
Final failure is usually preceded by or coincides with fiber failure in the 0° or nearly 0° plies. A
critical literature survey is given of theories for transverse matrix cracking, edge and local

delamination, and fiber failure.

Summary of Methods Used to Study Composite Fracture

Kanninen and Popelar [14] do an excellent job of summarizing composite fracture mechanics
research and laying groundrules for such work. Two major types of analysis are those that take a
continuum approach and those that use micromechanics. In addition, some researchers have used
models that combine the two, using a continuum approach where possible, and integrating it with a
micromechanics approach where it is needed to accurately describe the material behavior.
Complications arise in any method, because crack growth is not likely to always be self-similar and
ch depends on the crack path in composites. Obviously, the simple rule of mixtures is not adequate

to describe composite fracture. Anisotropic fracture mechanics is a better macromechanical



14
approach, which becomes fairly straightforward, if the cracks are assumed to be aligned with the

planes of material symmetry. In that case,

1

a a a 2a_+a_ |2
G=K2| 12 |£+ 1266 2.15)
1
2 a 2a

11 11

1
a a 2a_+a_ |2

2 11 2 12 66
G=K—i+——

-~ K (2.16)

a 2a
1

11 1

where the a. are elements of the compliance matrix, and Kl=a a sina and Kn=a\/7r_a sina cosa
for an infinite sheet, 2a is the crack length and a is the angle between the stress direction and the
crack plane. Sih and Liebowitz [14] have developed a relation for mixed-mode cracking in plane
strain conditions:

1
a 2a_+a_ |2 a a a a a
G= ‘_23+ 12667 2 ”22+K2A+K23Z 44 55 @17
a

: 20 W, ] B mo
Kanninen and Popelar [14] have performed an in-depth review of a number of damage models.
Their analysis was used to eliminate several models from consideration, as described here.
Waddoups’ model is semi-empirical with ch and 1, a dimension of a characteristic intense energy
region at the crack tip, to be found from experiment. Whitney and Nuismer’s point stress criterion,
which was written for laminates with holes, has been generalized to laminates with cracks, but is a
poor predictor of cracking behavior [8]. Harrison’s model allows for non-self similar crack growth
by assigning two different strain energy release rates for growth in the plane of or normal to the
crack, but it is only applicable to unidirectional composites. In addition G is hard to calculate for
non-self similar crack growth. Poe’s critical strain model is valid only for through-wall crack

growth, and not delamination or splitting. Potter examines failure only in terms of fiber failure. As

fibers fail in the loading direction for uniaxial tension, a damage zone develops. Potter’s model is
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useful because it differentiates between a large, blunt notch, which causes brittle failure governed by
his initiation criterion and a small defect, which causes propagation of damage between fibers.

Kanninen and coworkers [14] have developed a hybrid model, in which a local
heterogeneous region around the crack tip is embedded in an anisotropic elastic continuum. The
heterogeneous region contains the fiber, the matrix, and the fiber/matrix interface region; therefore,
the constitutive relations of each of these elements must be known up to the point of failure. The
model is useful in that it can show the occurrence of fiber breakage, matrix microcracking, crack
bridging, matrix/fiber debonding and axial splitting. In addition, it can be used to model any crack
orientation. However, it is limited in that it cannot be accurately used for a real material, and, in
fact, Kanninen has obtained qualitative results only. This is because the fiber/matrix interface is
very difficult to study, so it’s properties are unknown for most materials. The properties of an
individual ply can be obtained readily and are available for many materials; therefore, a better
approach is to use a mechanics model of a lamina in transverse tension and experiencing matrix
cracking followed by delamination. This idea will be explored later.

Other models have been eliminated from consideration based on the advice of Reddy [15].
He compares several analytical and numerical methods for studying anisotropic materials with cracks,
including classical, classical variational, such as Ritz and Galerkin, finite difference, finite element,
and boundary element formulations. He recommends use of the finite element method. Some very
useful work has been done using the finite element method; for example, Lee [16] has developed a
three dimensional damage accumulation model, which vividly shows transverse matrix cracking
followed by fiber breakage in the load-carrying plies. Failure of an element occurs in a certain
mode when the stress appropriate for that failure mode reaches a critical value. Appropriate
elements of the stiffness matrix for the failed finite element are then set to zero. Lee’s model also
accounts for delamination, but no delamination results are shown. Other finite element models
include those of Sandhu, et al. {17], and Murray [18], which do not model delamination. The

boundary element method, which is used by Tan and Bigelow [19] gives an approximation only on
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the boundary of the domain, ignoring the interior of the material. Since damage in a composite
often begins with transverse matrix cracking in the interior of the laminate, this method is not useful
for development of a general damage propagation model. S. S. Wang’s [20] edge delamination
model is also not easily applied to interior cracking, although elements of it are useful as will be
seen later.

The most interesting and useful models for transverse matrix cracking, edge delamination
and local delamination are discussed in the following sections. Nonme of the models are
three-dimensional, but it will become clear that a three-dimensional or pseudo-three-dimensional
model can be developed from them. In addition, it should be noted that none of these models have
been used to predict biaxial behavior. Indeed, most of them are incapable of predicting it in their

present form.

Shear Lag Theary and Transverse Matrix Cracking

The shear lag type of model was first proposed by Bailey and coworkers and expanded upon
by Flaggs, Nuismer and coworkers, Lee and Daniel, Daniel and Tsai, and Laws and Dvorak [21-29].
In essence, a shear lag model states that the interlaminar shear stress is proportional to the difference
in the average displacements of the two laminae under an applied load. One type uses an energy
criterion for matrix cracking, while the other relies on a strength criterion. The constant of
proportionality is called the shear lag parameter. Flaggs' paper, which will be discussed in more
detail later, shows that, at least in some instances, 2-D shear lag theory predicts experimental
behavior better than the finite element method [23]. Thus, the shear lag model is the type to be
developed herein for transverse matrix cracking. There are essentially two kinds of shear lag
models, those which use critical strain energy release rate as a criterion for cracking, and those
which rely on laminate failure theories to determine the onset of cracking. They are typified by Lee

and Daniel [25] and Laws and Dvorak [26]. Both are discussed in this section.
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Laws and Dvorak [26] assume that a transverse crack propagates when it is energetically
favorable to do so and use a probability density function to define the locations of cracks. Laws and
Dvorak’s model only considers a [0n/90m]s laminate (Figure 2.6). The model includes residual

stresses after cure, which are defined as al: and rrlll for the residual stresses in the transverse or 90°

|
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Figure 2.4. Symmetric Cross-Ply Laminate Under Axial Load [25]

plies and longitudinal or 0° plies, respectively. It assumes uniform displacements, u(x) and v(x), for
the 0° and 90° laminae, respectively.

The fundamental relationship in shear lag theory is:

T=K(v-u or£=K[

dv du
dx

dx " dx

where 7 is the interlaminar shear stress and the constant, K, is one form of the shear lag parameter.

(2.18)

Thus, the differential equations for shear lag theory are:

e & &, E e & &, E

t R t 1 R 1
— 3% —2[0 +—0 ] and T—2-01=—2[al +—0 ] 2.19

S R oL S x” d° ' 4 E °
[+] [+]
where { is the non-dimensional form of the shear lag parameter.
Kd(bEl +dEl)
f—-=1 C (2.20)
bE | E‘

Solving the differential equations for o and A with the boundary condition, at=0 for x=%h at each

crack, gives:
R E coshE—S
a=[o‘+—‘¢r] 1-—a (2.21)
t Eo . cosh—d
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El dE cosh% R cosh%
o==0 [1+— &t = (2.22)
Eo . bEI cosh—d cosh—d

These are the stress distributions in each ply between two cracks a distance 2h apart. Neglecting the
strain due to residual stress, one can calculate the average strain, ea, in the uncracked portion of the

laminate in terms of o, the applied stress. This leads to:

o B dE &1
—=E=E |1 +-—"tanh- (2.23)
€ ° (bE B

where ﬂ=g and is the crack density parameter. As 8= 0, E = Eo and as f - o, E o bEl /(b+d),
which is the same as ply discount theory.
The change in strain energy when a third crack is introduced between the first two is given
by:
AW={(b+d)aa+bal:}[u2-ul]i+dal:{[v2-vl]i+[v2-vl]:} (2.24)
where oa is the applied stress and the subscripts, 1 and 2, refer to the states before and after the
introduction of the next crack. Incidentally, Laws and Dvorak postulate three probability density

functions to predict the site of the next crack. The work done by the applied loads is:

applied=2(b+d)da[u2-ul]i 2.25)

Knowing that G=§&/2d, since G is the energy released per unit area of the 90° ply, and using

=W -AW to get the energy released per unit width of composite, G can be found.

applied
d(b.*-d)Eo R El 2 fhl fh2 ¢h
G=———0 +—0 )" | tanh—+tanh—= - tanh— (2.26)
GE E E 2d 2d d

-

First ply failure (fpf) occurs when G=Gc and aa=o:p forr C\ic and a:r:pf are known, { can
be found; however, GC is difficult to measure accurately in composites, and the above equation
requires an iterative solution. Laws and Dvorak circumvent the latter problem by assuming that the
distances between cracks are still large at first ply failure, which causes the term containing tanh’s to
go to 1. Note that, under this definition, first ply failure in and of itself has a small effect on the

stiffness of the laminate. After first ply failure, increasing crack density causes the laminate stiffness



19
to decrease rather rapidly, as will be shown in the chapter on results. Since GC is difficult to
measure in composites and has not been documented for many composite materials, many researchers
believe it would be wise to develop a theory which does not require determination of GC
experimentally.

Lee and Daniel [25] have developed a theory without using Gc' It is almost identical to
that of Laws and Dvorak with some important exceptions. Assuming a linear variation of the shear
stress in the z direction, Lee and Daniel use general parabolic equations to determine the
displacements in each layer as a function of z. Daniel corrected this problem in a more recent paper

[27]. The shear stresses in each layer are given by:

du
T =G _—=G_(2C.z+C)
xzl 12dz 1271 2 @.27)
dv
T = Cnaz = Op2C2*+Cy

where the subscript notation is the same as that of Laws and Dvorak [26]. The Ci are integration
constants. Actually, T A is proportional to Gl3. Lee and Daniel ignore the transverse deformation
and assume Gl3=Glz’ but this author thinks this assumption, which amounts to saying the material is
transversely isotropic with respect to the 2-3 plane, is poor, because the fibers are mot necessarily
uniformly distributed throughout the cross-section of a lamina. With these relations in mind, Lee
and Daniel apply their boundary conditions of zero transverse stress at the crack faces, zero out of
plane shear and z direction normal stress at z=0 and z=d+b, and equality of out of plane shear and
z direction normal stress in the two plies at z=d. The displacements u and v are also assumed equal
at z=d, which is a good assumption if bonding is perfect between the layers. Once delamination has

occurred, this is not true. The resulting average displacements give:

r
u-v= ;G—.[bc73+d612] (228)
12 23
Using the shear lag equation, 7=K(v-u), with equation (2.28), one finds:

3G G
K = ._l.ii (2.29)

bG23 +dG12
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where K is the shear lag parameter. Since the shear stress distribution is assumed to be linear, T

and 7 are related to 7 by:
xzt

b+d-z
T~ B d{z{b+d and T =T a, z<$d (2.30)
b o7
Using (2.33) and equilibrium, —2+—2=0, Lee and Daniel get the following through thickness

6z bx

normal stresses:

fZEt (b+d-z)2 cosh {E—d]

Uzl
dE _@
° d
(2.31)
szl b d2-22 cosh f_:
o =—— |-+ o
7t a

dEo Z A cosh %

These are, of course, found using the appropriate boundary conditions. These two relations (2.34)
are a significant contribution on the part of Lee and Daniel, since they can be used to define the
onset of delamination. In addition, the o and o distributions are similar to those predicted by the
three-dimensional elasticity results of Pagano and coworkers [30,31]. However, there is a
discrepancy between Lee and Daniel’s results for Ten and those of Pagano. Because of the stress
free condition at the crack face in the 90° layer, T should go to zero there for all z<d, as
predicted by Pagano. In Lee and Daniel’s model, sz is only zero at z=0. In addition, the correct
value for § in Lee and Daniel’s model is open to question due to the use of Gl 5 rather than Gla

Lee and Daniel use Case I of Laws and Dvorak [26], which is that the mext crack must
occur exactly between the originally existing cracks. Rather than using emergy conmsiderations
involving Gc’ Lee and Daniel assume that a new crack forms when A reaches the transverse tensile
strength, F’n' While this assumption works adequately in Lee and Daniel’s model, it is quite
controversial. In fact, A.S.D. Wang [32] noted that: "It is the total strain energy trapped in the 90°
layer that determines the onset of matrix cracking, not the in-situ tensile stress.” The relationship

between applied stress and crack density is found by substituting F’n for o and O for x in equation
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(2.22) to get:

(2.32)

This equation is much simpler than Laws and Dvorak’s Case I equation for 7, which involves Gc in
the expression for a:pf. Lee and Daniel’s expression for decremented axial modulus is identical to
that of Laws and Dvorak given in equation (2.24). The two methods thus give essentially the same
result for the decremented stiffness due to cracking.

Nuismer and Tan [24] have developed a more general relationship between laminate
properties and crack density. They used the orthotropic constitutive equations for each lamina, so

they could model any laminate of type [+ 9/90n]s, where ply group 1 refers to the inner 90° plies and

ply group 2 refers to the outer %0 plies. They also assumed general in-plane loading. Out of plane

) —(1

* -

T o= Fﬂ u )] (2.33)
55 E

T(1) -~
3hC55 Css

shear is given by:

where

A =
55

M~ 2, DD

h C55 +h CSS

(2.34)

and C;;) is from the ith lamina’s stiffness matrix, hG) is the thickness of the ith Jamina, and h =
b +1®. Note that this expression for A s is similar to that given for the shear lag parameter, K.
The notation used in this section and throughout this work is the standard notation used for laminates
as defined by Tones [31]. The effective damaged laminate compliance relations are given by:

88, gD (g

.6.(1)__: 1+ 11722 12 12 s(l)E(')+s(”?(')+e“) (2.35)
x 5 NORT 1 12 N
1 12
7O _ghz(M L Mz (D (2.36)
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(2.37)

where Si(;) are elements of the compliance matrix for ply group 1, €N and eyN are nonmechanical

strains, € and o are averaged strains and stresses, and

tanh (a L) h“’Qf:)tanh(alL)
fl— -1+
al @2
1 8%Q%a L
tanh(a_L) 2QP tanh(a L)
2 66 2
B=1—>=  g=1+
al @@
2 h Q66 azL

(2.38)

Now Qij are elements of the lamina stiffness matrix, 2L is the distance between matrix cracks, and

W@ (WD, @) 4O
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In addition, Nuismer and Tan [27] use strain, rather than stress, to define first ply failure.

(2.39)

Flaggs [23] uses a two dimensional shear lag model, similar to the one dimensional models

described above to study laminates of the type [+ 9,90n]s where 8 refers to a relatively low angle ply,

and [02,* ¢]s, where ¢ refers to a high angle ply. Instead of applying the shear lag idea to L

s only, Flaggs has applied it to T)y 85 well. This greatly complicates the model, but it may

enhance its accuracy. In addition, Flaggs’ model incorporates in-plane shear loading. The derivation

is not given here, since it follows a similar line of reasoning to Laws and Dvorak’s model [26].

Figure 5 shows a comparison of Flaggs’ shear lag model with finite element predictions and

experimental data.
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Figure 2.5. Comparison of Laminate Load at Onset of Matrix Cracking to Finite Element and 2-D
Shear Lag Predictions for [£25/90n]s T300/934 Laminate Family [23]

Daniel and Tsai [28] have also written a model for transverse matrix cracking in the 90°
plies of laminates of the type [0n/90m]s. It can accomodate general in-plane biaxial loading but is
otherwise quite similar to Lee and Daniel’s model. Of course, strain energy release rate is not used.
Results were shown for 10° off-axis loading only.

Longitudinal splitting is another form of matrix cracking, which is due to the Poisson effect.
The strains produced by differential Poisson contractions of the laminae are increased when
transverse cracking occurs. Interestingly, Bailey and coworkers [21, 22], did not see longitudinal
splitting in carbon/epoxy, but only in glass/epoxy, even though the IMoisson’s ratio mismatch is much
greater in carbon/epoxy. They believe that the reason for this is that the particular CFRP studied
had small ultimate failure strains. Bader, et al. [21] have developed an expression for the minimum
composite strain at which longitudinal splitting is energetically favored for a crossply laminate.

* L
elc(min)=u1 —Ec ¢ -% ey [}—6(601)2+ —7t Elﬁ ]2 +

%
i El d (b+d)EcEt

ve (2.40)
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where E:' is the Young’s modulus in the transverse direction, b, d, El, and E! are the same as
defined by Laws and Dvorak [26], el is the tensile thermal strain in the transverse ply, € is the
strain at the first transverse crack, Y and v are the Poisson’s ratio of the longitudinal and transverse
plies, respectively, A is the fracture surface energy per unit area of the inner ply, and ¢ is given by

EG (b+d)
c t

5 (2.41)
EIE‘ bd

According to Swanson [33], matrix cracking reduces strength, and this reduction is more
pronounced in tough matrices than in brittle matrices. This is because longitudinal splitting along the
fiber/matrix interface in the more brittle matrices is a toughening mechanism. As was seen in
Chapter One, debonding between the fiber and matrix contributes to fracture toughness. The
contribution of debonding to fracture toughness is greater in brittle matrices, because the matrix has
little intrinsic toughness. In composites with tough matrices, however, the loss of toughness due to
matrix cracking probably overshadows any toughening effect due to debonding. This toughening
effect should ideally be accounted for in a model of transverse cracking in fiber-reinforced epoxy
composites.

Tsai, Daniel, and Lee [29] account for longitudinal cracking in their shear lag model. This
model encompasses [Om/90n]s laminates under biaxial loading; however, like Daniel’s previous
models, it depends on transverse strength and not on strain energy release rate. It is important to
note that shear loading is not included in this model. Tsai, et al., showed that it is impossible under
shear lag theory, to incorporate cracking in both directions and shear loading effects. Finally, while

the model was written for biaxial loading, it is compared with experimental results for loading in one

direction only.

Delamination
Delaminations tend to start at free edges, like holes and cutouts, internal flaws, ply
drop-offs, or joints. In fiber-reinforced epoxy systems, delamination follows matrix cracking. In a

ply with 90° laminae, matrix cracking begins in the 90° plies, followed by delamination at the
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interfaces bounded by at least one 90° ply. A complete model must include both edge and local
delamination. With biaxial testing, local delamination is significantly more important than edge

delamination.

Models for Transverse Cracking and Edge Delamination

Two edge delamination models will be examined, but first the observations of A.S.D. Wang
[32,34] will be discussed. In composite fracture, the properties of the composite are, of course, very
important. Less obvious is the influence of ply thickness on cracking. From a statistical point of
view, one assumes that a thicker lamina contains more defects than a thin lamina, so it is likely to
fail at a lower stress or strain level. The laminate’s stress field and the distribution of defects are
then very important in determining cracking of the material. On the other hand, one may employ a
fracture mechanics approach, which uses the strain energy release rate.

A. S. D. Wang [32, 34] used a fracture mechanics approach. Wang assumes that the strain
energy trapped in the laminae depends on thickness. He uses finite element calculations to find the
strain energy release rate, G(a), for transverse cracking and edge delamination under thermal and
transverse uniaxial mechanical loading, and compares his predictions with uniaxial test results on
each layup examined. Assumptions made in his Monte Carlo simulation include self-similar
cracking, mode I transverse cracking, and mixed mode edge delamination. He finds that the strain
energy release rate for delamination increases as the number of 90° plies increases in a [£25/90n]s
laminate, where n=1/2,1,2,3,and 4. Transverse cracking in the 90° plies occurs at a very high
strain for small n (n=1/2 and n=1), and it is preceded by edge delamination between the 90° plies.

Wang’s results also show that final failure occurs after delaminations from both sides of the
specimen grow until 70-80% of the width is delaminated. On the other hand, if n is greater than 1,
transverse cracking precedes edge delamination and occurs at a much smaller strain. In fact, the
transverse cracking onset strain in [#25/90n]s laminates with 1<nf4 is less than that for a [908]

laminate, which proves Wang’s assertion that the strain energy in the 90° layer must be used to
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determine the onset of transverse matrix cracking. The results are somewhat different for crossply
laminates [32]. For example, while edge delamination does occur in the [+25/902)s laminates,
[02/902]s laminates exhibit no edge delamination after matrix cracking. Edge delaminations occur
between the central 90° plies for n=1/2, 1 and 2, while for n=3 and 4, local and edge
delaminations are predicted to occur between the -25° and 90° plies. For n=3, the prediction is
correct: delamination is mixed mode and the onset strain is close to the predicted value.

Failure occurs very rapidly after the onset of edge delamination. For n=4, on the other
hand, delamination is predicted to be mostly mode II, but in experiments, no noticeable delamination
occurs before final failure [32]. In a later paper [34], however, Wang shows that the predicted
delamination does occur, and, in addition, finds that the same failure modes occur for n=6 and 8, as
well. As n increases above 4, the onset loads for delamination decrease to approach those for
transverse matrix cracking, and for n=8, they are approximately equal to each other and to the
failure load.

Wang uses a simple discount method to account for multiple transverse cracks. He assumes
that the properties of the 90° layers are decreased by 10% when transverse cracking occurs prior to
delamination. In addition, his method does not account for delamination occurring at the tips of
transverse cracks. He does, however, note that delamination between the 90° plies is due primarily
to normal stress, delamination between +25° and -25° plies is dominated by shear (Mode II), and
delamination between 90° and 25° plies is mixed mode. These observations are useful for
prediction of delamination at matrix crack tips.

Poursartip [35] studied transverse cracking and delamination under static and cyclic tensile
loading. He showed that the crack density in the 90° plies of an unnotched [45/0/-45/90]s graphite
epoxy laminate was 0.9 cracks/mm. Delamination then occurred first at either the 90/90 interface or
the 90/-45 interfaces. These delaminations progressed rapidly in the axial direction and more slowly
in the transverse direction, jogging between interfaces by means of matrix cracks in the 90° layers.

During delamination, transverse crack density grew to 1.8 cracks/mm as the size of the
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delaminations grew. Transverse cracking occurred to a lesser extent in the -45° plies, where it was
initiated at the laminate free edge and was densest in the delaminated region. On the other hand,
transverse cracks in the 90° plies extended to the area in front of the delamination. Cracks appeared
later and crack density was much less in the 45° plies than in the -45° plies; however, 45° cracks
were also found mostly in the delaminated area.

Poursartip {34] has proposed that the matrix cracking required less energy than delamination;
therefore, transverse matrix cracking helped to prevent delamination. In other words, as energy is
made available for the formation of new surfaces, it is used for additional matrix cracking, rather
than for delamination. He has found that the delamination crack resistance, GR, increases as
delamination progresses, partly due to the diminishing supply of weaker crack paths, but also due to
an increasing use of energy for matrix cracking. This is supported by the observation of a great deal
of matrix cracking during delamination. Poursartip’s observations are very useful, and he has
achieved good results with a rather simple model.

Poursartip used O’Brien’s [36,37] stiffness reduction equation for edge delamination:

. (2.42)

A
E=(E*E _)—+E
LAM A L
where EL is the laminate longitudinal tangent modulus before delamination, A/A* is the ratio of

delaminated area to total interfacial area, and E* is the modulus of the laminate completely

delaminated along one or more interfaces. This delaminated modulus can be found from:

i=11ii

Er=——11 (2.43)
t

where ti and Ei are the thickness and modulus of the i sublaminate and m is the total number of
sublaminates. O’Brien has verified these relations by experiments using graphite-epoxy laminates.

Transverse matrix cracking combined with edge delamination has been studied for [0/90]s
and [+45/0/90)s glass/epoxy laminates by Caslini, Zanotti and O’Brien [38], who used shear lag
analysis and fracture mechanics to characterize damage in a manner similar to that of Laws and

Dvorak [26]. They extended the cross ply results to laminates where the 90° ply is constrained by
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0° plies, but may have other plies surrounding the 0/90 combination. They did not, however, study
cracking in the outer off-angle plies. They base their model on the experimental observations of
glass/epoxy under fatigue loading. The number of matrix cracks reaches a saturation value, which is
a function of laminate characteristics, and matrix cracking in the 90° plies precedes all other
damage. They also mention that damage accumulation behavior depends on test and load levels.
The fact that matrix crack density reaches a saturation value is somewhat problematical in their
model, since the closed form solution gives G as a function of dE/dA, which continually increases as
stress increases, and never goes to zero as it should.

Caslini et al., like Poursartip, used O’Brien’s [36] sublaminate method for modeling free
edge delamination. (See equations 2.42 and 2.43 above). The strain energy release rate for a body

of volume, V, under a constant strain, €, is:

62 dE ezt
G=-V—— =—(ELAM-E*) (2.49)
2dA 2

O’Brien used edge delamination experiments to find the strain at which delamination was first
detected. He then used equation (2.44) to determine GC, which was subsequently used to predict
delamination in other laminates.

O'Brien’s approach for edge delamination works well for graphite-epoxy, but not for
glass-epoxy, because glass epoxy is more likely to experience extensive matrix cracking before the
onset of delamination, and because edge delaminations grow only a small amount in quasi-static
conditions before final failure due to a lower Poisson’s ratio mismatch in glass-epoxy. Thus,
Caslini, et al., are forced to use a linear regression analysis of experimental data to mode! stiffness
loss due to cracking in glass/epoxy laminates.

Valisetty and Rehfield [39] also used a sublaminate method to model edge delamination, but,
unlike Caslini, et al., they found the interlaminar stresses. They used homogeneous plate theory to
solve the finite-width free edge delamination problem. They applied the theory on a ply-by-ply basis
and were able to satisfy equilibrium and compatibility. They did this for uniaxial tension only and

compared their results with a finite element analysis and not with experimental data.
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Although some elements of S. S. Wang’s [20] approach are not useful in the type of model

proposed here, one useful concept is his evaluation of G using Irwin’s virtual crack extension
concept.

G=G +G_ +G_ (2.45)
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where polar coordinates (r,y) are used, 88 is the length of the virtual crack extension; 05T s and
'ryz are the interlaminar stresses; and u, v, and w are the displacements of the kth lamina in the x, y,
and z directions. Notice that Gl is proportional to o, Gn is proportional to ‘ryz, and GIII is
proportional to T in Wang’s formulation, which is solved for a general symmetric laminate
subjected to a uniform axial strain, € Note that this author has rotated Wang’s axes to make this

equation correspond to the other equations given here.

Models of Transverse Matrix Cracking and Local Delamination

Armanios [40] has developed a model similar to that of Caslini, et al., but Armanios’ model
is for local delamination rather than edge delamination. Talreja [41] has proposed a very different
model, in which he describes interlaminar and intralaminar failure modes according to associated
damage vectors. In addition, O’Brien [37] has developed a sublaminate approach to local
delamination.

Armanios [40] has developed a shear deformation model with the sublaminate approach
similar to that described above, along with fracture mechanics, to predict local delamination at
transverse crack tips. Transverse cracks terminate where the ply orientation changes, and, at the

crack tips, local or transverse crack tip delaminations grow in a direction normal to that of the
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transverse crack. For the purpose of modeling local delaminations, Armanios treats the transverse
cracks as free edges. He assumes plane strain conditions in the x-z plane, neglecting through
thickness strain, €. This assumption means that, with his method, one cannot correctly estimate the
interlaminar normal stress. Thus, Armanios calculates GIl as

_lim 1

§
G =503z T x-HAu(x)dx (2.46)

where Tl is the interlaminar shear along sublaminate 1 (Figure 2.6), Au is the relative sliding

displacement, and taking the limit as =0 gives Gn at the delamination crack tip. Note the similarity

between this equation and equation (2.45). In fact, S.S. Wang’s equation can be adapted for

transverse crack tip delamination by showing that- GH is proportional to T and Gm is proportional
tot .
yz

In Armanios’ model, taking §=0 in equation (2.46) gives a trivial result, so the limit is

actually calculated as é approaches an appropriate decay length, or length within which the presence

of the crack significantly alters the response of the material in comparison with the corresponding far
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Figure 2.6. Modeled Region and Sublaminate Scheme [39]

field response. Armanios estimates the total strain energy release rate from the equation,

2 2
1
T_gb gf . 2 ) 1 +11’Iz (2.47)
2b |A A +A
1 a1

where P is the uniform axial force applied to the specimen, b is the specimen width, and dC/da is

G
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the change in compliance with crack growth. A11 is the classical laminate theory axial stiffness in
the 11 direction, (i) refers to the sublaminate, and I] and I , are associated with delamination length.

Armanios has fully predicted critical delamination growth stresses for [*25/90n]s laminates
with some success and his results are reasonably correlated with experimental values of critical strain
for large numbers of 90° plies (n24).

O’Brien [37] has developed a sublaminate approach for local delamination, as well as for
edge delamination. The difference between the two is that in local delamination, the 90° ply
becomes totally isolated. O’Brien assumes that the delamination starts at the matrix crack tips and
progresses down the length of the laminate. Thus, the equation for the modulus of a locally

*
delaminated laminate, ELb is:

X7 _E t
i=11 1

=1 (2.48)
t

*
LD

where i refers to plies with 6490 only and the other variables have the same meaning as given

above. Now the modulus of the locally delaminated cross-section, ELD’ is simply the modulus of the
remaining plies, and is given by:

E =E |} 2.49

LD LD|t _ (2.49)

where tLD is the thickness of the laminate less the thickness of the 90° plies that have been isolated.

Finally, the strain at which local delamination occurs is:

1 c
l 1 1 J (2.50)
t -
LAM ELDtLD ELAMt

€=
E

where ELAM is the modulus of the laminate before delamination and GC is the critical strain energy
release rate of the laminate. Equations 2.50 and 2.47 are essentially the same, except for the term
Il-I2 in Armanios’ equation. This term indicates that the applied load for additional delamination
depends on delamination size, but it is not highly significant. Armanios compares his model with

O’Brien’s and the predicted delamination onset strains are the same.
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Talreja [41] takes a different, albeit no less interesting, approach to the study of transverse
matrix cracking and local delamination growth. He looks at a general orientation of matrix cracks in
an initially orthotropic laminate of the type [0/:6n]s. Specifically, he studies laminates with §=90°
and n=1/2 and 3 and laminates with #=45° and n=1. A major difference between Talreja’s model
and the others is that he assumes a general crack orientation and shows that, after cracking, the
laminate loses its orthotropy if the crack is not oriented along the material axes. He groups what he
calls "failure entities” into two damage modes, according to their orientation and growth
characteristics. The first is the intralaminar damage mode, which is matrix cracking, and the second
is the interlaminar damage mode, which is local delamination. His model, based on experimental
observations, begins with matrix cracking in plies not oriented along the principal tensile loading
direction. These cracks increase monotonically in number until a saturation level is reached,
whereupon cracks initiate in adjacent plies transverse to these primary matrix cracks. Obviously, this
scenario is correct for a laminate with §=45°, but if §=90, the transverse cracks will simply extend
through the 90° plies with the same orientation in all of them. Talreja asserts that these intralaminar
cracks initiate interlaminar cracks, which appear initially as isolated delamination regions, but grow
and merge into strip-like delamination zones. Eventually, crack interactions increase to a point
where fiber failures begin, followed rapidly by final failure of the material.

By assuming that damage modes do not interact substantially, which only holds until
delamination begins, Talreja used a form of superposition of damage modes to develop his
polynomial expression for the elastic potential which must be invariant to transformations expressing
the orthotropic symmetry initially present in the laminate. Unfortunately, the polynomial expression
for the elastic potential also contains phenomenological constants, which must be determined
experimentally. Talreja has obtained a good comparison of his model with the results of fatigue
testing.

Yang and Boehler [42] developed a model for matrix cracking and local delamination, which

describes in detail the interaction between the two damage modes. Their observations echo those of
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Talreja. They observed that a small amount of local delamiatnion occurs as soon as transverse
matrix cracks reach the bounding region. Theoretically, this is due to a singularity in the
interlaminar shear stress at the transverse crack tip. This initial delamination soon arests due to its
stable nature. The size of the initial delamination depends on material properties and ply thickness.
A greater 90° ply thickness implies a larger initial delamination. In addition, the likelihood of such
initial delaminations decreases as crack spacing decreases. As the crack spacing approaches the shear
lag distance, which is related to the thickness of the 90° layer, no further delamination occurs until
the characteristic damage state is reached. This characteristic damage state refers to the final matrix
crack density. After the characteristic damage state is reached, delamination begins again, because
no further energy can be dissipated by the formation of matrix cracks.
Models for transverse matrix cracking, edge delamination, and local delamination have been
examined. Before final failure can occur, one additional fracture process must occur. That process

is fiber failure in the primary load-carrying plies.

Fiber Failure

Fiber failure in load carrying plies precedes or coincides with final failure, but random fiber
breaks can also lead to matrix cracks transverse to and along the direction of the fibers [18]. The
rule of mixtures has been used to define the strength of the plies with fibers oriented in the direction
of the load, but it overestimates the strength of composites with poor fiber/matrix interface strength
[14]. On the other hand, statistical methods have been used, which say that longer fibers have more
flaws than shorter fibers, so they tend to break at lower stresses. A commonly used statistical model
is the Weibull distribution, which will be discussed in more detail.

Once a fiber breaks, the load is transferred by shear in the matrix back to the fiber a short
distance along its length from the break. The distance between the fiber break and the location
where load can again be transferred from matrix to fiber is termed the ineffective length, since the

fiber does not carry the applied load over that distance. Fiber failure propagates through a ply as
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fibers must take additional load due to previous fiber failures. In addition, ineffective or debonded
fibers aligned at the boundary of voids have a strong effect on transverse tensile strength.

Since the rule of mixtures approach is inaccurate and the statistical approach is difficult to
use, many researchers use the experimentally determined failure stress or strain of a unidirectional
lamina as the criterion for failure in the fiber direction. For example, fiber failure has been defined
by Lee [16] and by Murray [18] to occur at the unidirectional lamina tensile strength in the fiber
direction. Approaches of this nature rely on experimental measurement of the unidirectional tensile
strength, but the value obtained will include all fiber-related failure micromechanisms, fiber-matrix
debonding, pull-out, and breakage, since all of these contribute to unidirectional tensile failure. Poe
[14] used an interesting approach based on fiber failure strain. While his model was written for the

laminate as a whole, it may be useful for examination of the fiber-dominated failure modes only. He

found that
E flC 27x
K = Y 1 1 (2.51)
Elz 2 |5]7.2
1-v | ==|“cos a+|=2| “sin"a
Xy Ey Ex

where €c is the critical fiber strain, x is the distance from the crack tip, Ex, Ey, and uxy are the
elastic constants of the ply containing the crack with x parallel to the crack and y normal to the
crack, and « is the fiber orientation angle of the load-carrying ply with respect to the y-axis. The
problem with this theory is that it will not hold if extensive delamination or longitudinal splitting
occurs. It remains to be seen if it will hold if it is used only for fiber failure, rather than laminate
failure.

Other interesting approaches are those of Rosen [43] and Phoenix and Wu [44]. Rosen uses
the idea of fiber ineffective length to represent the stress field in a unidirectional fiber composite
with distributed fractures. By neglecting the stress concentrations at the fiber breaks, the tensile

strength can be expressed as a statistical function of ineffective length. Phoenix and Wu use a
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Weibull distribution function,

2.52
7® 2.52)

s 1P@+D
F(o)=1-exp -[ ]

where S(p+1) is the shape parameter and a](R) is the scale parameter with R equal to the rate of

stress increase. Rosen’s distribution is probably a Weibull distribution, but his equation is unclear.

It turns out that use of the unidirectional tensile strength or critical fiber strain is adequate for a shear
lag model [25, 28].

The approximate analytical models discussed have primarily been developed for and

compared with uniaxial tension data only. Obviously, there is a need for a model capable of

predicting damage and failure under biaxial loading conditions, since few actual structures see

uniaxial loading only.

Failure Theories

The only methods commonly used to predict failure are failure theories and curve fits
[45-51] including maximum strain, maximum stress, Tsai-Wu, and curve fits in the form of
Tsai-Wu.

Maximum strain is the most commonly used failure criterion and is useful, because the
mode of failure is predicted. This criterion says that failure occurs when the strain component in
any one of the principal material directions of the lamina exceeds its corresponding ultimate strain.
This is similar to the maximum stress criterion, which also can predict failure mode. Both criteria
take the following form, which is the explicit form of the maximum stress criterion [45].

b >
a“_XT for o l>O 022‘YT for 022>0

1
|a“|2XC for o <0 |a22| 2Y_ for 0 <0 (2.53)
Ianl 2S for all 7,

where XT and Xc are the tensile and compressive strengths, respectively, in the longitudinal fiber

direction, YT and Yc are the tensile and compressive strengths, respectively, in the transverse fiber

direction, and S is the in-plane shear strength.
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The Tsai-Wu and Tsai-Hill theories are similar, but Tsai-Wu predicts fiber-reinforced
composite failure more accurately than does Tsai-Hill [30]. The Tsai-Wu {46] criterion is:

Fiai+Fijcriaj2 1 (2.59)

or, for specially orthotropic materials in two dimensions,

2 2

F o +F2¢722+F”¢722+F22 - 2F12”11”22+F66012 21 (2.55)
where:
1 1 1 1
F=—-o F = F =—+
1 X'r XC 11 X_rXC 66 'rSc
1 1 1
FZ_Y_ 2 F22_Y Y (2.56)
T C T C
1 1 1 1 1 21 1 1
F =—|1-Plo-—+ 5 -5|-P +
12 zpzl [XT Xc Y’r YC] [X XC YTY H

where ST and S c e positive and negative shear strengths, respectively, and P is the strength

determined from a biaxial test with al=02=P and 012=0.

Hashin’s [18] failure theory is three-dimensional in nature, and takes the form:

A I +B I +A I +B I +C121112+A I +A I 21 2.57)

where Ii are the stress invariants,

2
= l=0_-0_o .
I1 Ull 3 22 22 33 (2 58)
2 2
= =0 _+o0
I2 ¢’22-*-”33 14 12+ 13

Hashin correctly argues that failure is due to normal and shear stresses acting on the failure plane.
He points out that o, does not contribute to fiber failure and o does not contribute to matrix
failure. Additionally, he stated that o and e, acting on the 2-3 plane are responsible for fiber
failure, while %, and 7, acting on the 1-3 plane cause matrix failure.

Chang’s [18] model is simply a modified form of the Hashin model, incorporating nonlinear
shear behavior, and it will not be reproduced here.

Feng’s [47] model is also very similar to that of Hashin, but he allows large deformations to
occur by using Cauchy strain invariants. The Feng criterion, decoupled for fiber and matrix

dominated failure is:
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Al(Il-3)+A“(Il-3)2+A2(Iz-3)-l=0 (2.59)
for matrix dominated failure and

A S(I 5-3) +A ’ 5(1 5-3)2 + A4(I4-3)-1 =0 (2.60)
for fiber dominated failure, where the Ii are the Cauchy strain invariants and the Ai are constants
determined empirically for a given material.

Many people have tried to develop failure theories for composites, however simple curve
fitting of biaxial test data is still used to create failure surfaces, because the data do not correlate
well with any common failure theories [48]. Methods for predicting failure include Tsai-Wu failure
theory, linear laminated plate theory with maximum strain criteria, and progessive failure modelling
with a maximum strain criterion. These theories have been used to try to predict failure of tubular

and cruciform specimens made of several different composite materials.

Modeling of Biaxial Failure

Swanson and Christoforou [49] used tubular specimens to test AS4/3501-6 carbon epoxy
quasi-isotropic [90/+45/0]s laminates. Their stress-strain data shows good agreement with linear
laminated plate theory (LPT) until the stress reaches about 90 ksi, when the stiffness of the samples
decreases. This is due partly to a nonlinear shear response in the 45 degree plies and partly to
matrix microcracking. The reduction in slope would be greater were it not for the increased stiffness
at strains greater than 1% noticed in tests of uniaxial tensile coupons. These effects seem to cancel
one another to some extent, giving a small net reduction in slope. The data were compared with
three failure models. They used both LPT and a progressive failure model with a maximum fiber
strain failure criterion and Tsai-Wu. The progressive failure model includes a criterion for matrix
cracking, a model of stiffness changes with further straining after matrix cracking, a criterion for
ultimate fiber failure, and a nonlinear matrix shear response. The two maximum fiber strain criteria
compare well with the experimental data, but the Tsai-Wu method does not correlate well at all,

presumably because it predicts failure in laminates in which matrix failure coincides with or leads to
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laminate failure. Fiber dominated failure, in which the matrix simply redistributes stresses as the
fibers fail, is not well modelled by the quadratic Tsai-Wu equation [43].

Zimmerman and Adams [50], have used cruciform specimens for biaxial testing and a least
squares curve fit of the data to plot an elliptical failure surface for Rynite, which is an injection
molded glass reinforced polyethylene terephthalate. The failure surface curve fit is similar in form to
the Tsai-Wu equation, as described by Owen [51]. The Tsai-Wu equation is:

Fxxa:+2nyaxay+Fyya:+Fuof+anx+Fy¢7y=l (2.61)
and the curve fit is
Aa:+Caxay+B0'3+Dax+an=l (2.62)
Although the curve fit equation does not contain an Fua: term, the values given for A, B, D, and E
are approximately equal to their corresponding Tsai-Wu parameters, Fxx, Fyy, Fx, and Fy, as
calculated from the curve fit data. The value for C is of the same order of magnitude as, but is not
equal to ny.

Zimmerman, Walrath and Adams [52] have also studied unidirectional, continuous fiber
graphite/aluminum composites. Again, they used cruciform biaxial specimens to study the failure
modes of the composite and calculated the elliptical failure surface using a least squares fit. The
curve fit parameters corresponded with the Tsai-Wu equation in the same way as the Rynite
parameters did. Of course, since one term is missing, neither comparison of curve-fits with Tsai-Wu
theory tells us anything more than that there is some similarity. It is hard to tell whether Tsai-Wu
would be too conservative, as it was for the tubular samples discussed above. However, failure is
more matrix-dependent in the materials used by Adams’ group, than it is in epoxy matrix
composites.

Failure models are useful predictors of failure, and onme can use them to ascertain some
information about material behavior. However, the present failure theories cannot, in and of
themselves, predict progressive cracking or the change in stiffness that accompanies such cracking.

They do not account for delamination. Therefore, it is important to use a progressive failure model
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like those already described. This researcher feels that the shear lag model is the best candidate for

further exploration, since it is relatively straightforward and has_“‘given good results as shown above.




CHAPTER 3

DEVELOPMENT OF MODEL

Initial Model

The initial model incorporates transverse matrix cracking in the 90° plies of fiber reinforced
composites of the type [+0/90n]s under biaxial tension. It also includes an estimation of local
delamination effects. Transverse matrix cracking typically occurs first in the more constrained or
thicker 90° plies when a load is applied transverse to the ply fiber direction. The matrix cracking in
the 90° plies is modeled using a two-dimensional shear lag theory along with the Griffith energy
criterion for crack propagation. By changing Flaggs’ [23] boundary conditions to allow for more
than one crack, progressive cracking can be modeled more generally than has previously been done.
Before describing the progressive failure model, the governing equation must be solved for the
appropriate boundary conditions. The expressions obtained from the solution of the governing
equation allow the formation of an algorithm to predict transverse matrix cracking as static loading is

increased.

Explanation and Solution of the Governing Equation

The governing equation is developed using linear laminated plate theory constitutive
equations for each lamina group (+6 and 90°), equilibrium relations which incorporate transverse
shear stress continuity, and shear lag theory. It is assumed that ply group 1 (x0) takes the entire
applied load at the points of 90° ply cracking. See Figure 3.1. The details are given by Flaggs
[23]. The coordinate system is defined by the material coordinate system of ply group 2; that is,
direction 1 is in the direction of the 90° ply fibers. The governing equation for cracking in ply

group 2, the 90° ply group, is from Flaggs [23]). It is derived for half of the laminate, since the
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Ply
Group 1
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Figure 3.1. The Onset of Transverse Matrix Cracking

laminate is symmetric. The governing equation is given by:

d2Ags) (D (n
mnz La2 Lag| |Ang 0

) = 3.1)
d?a (
mnﬁ Lea Lgg| |Ang 0

where Anj and Ang are the changes in the integrated transverse tensile and in-plane shear loads in
ply group 1 due to the presence of cracks in ply group 2, and the L matrix is adopted from Flaggs

[23] and modified slightly. It is defined by:
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where the Aij are elements of the laminated plate theory ABD matrix for ply group (1) or (2) as
shown, the Fij terms are elements of the inverse A matrix, Hj is half of the thickness of the 90° ply
group and the t and a terms are taken directly from Flaggs [23]. The reader should note that this
governing equation is defined for ply group 1 symmetric or nonsymmetric. Flaggs [23] solved this
equation for a single crack; thus, his boundary conditions were defined at x9 = 0 and x93 = . The
boundary conditions used in the present solution are for cracks at x5 = *c/2, where c is the distance
between two adjacent cracks and the origin of the x2 axis is exactly between the two cracks. See

Figure 3.2. At the cracks, the change in ply group 1 loads are Anj° and Ang®, which are the

Figure 3.2. Transverse Matrix Cracking

loads in ply group 2 at the crack locations before cracking. The solution to the governing equation

is:

[%(Lss-Lzzﬂsz-Mz)Anz"-LzsAns"] [cosh(hxz) ]
Ang=

(A 32~A 12) cosh(Ac/2)
%(Lzz-Lss +232-21%)Any" +L26Ang" | [cosh(A3x2)
+ %) 52 12) cosh(A3c/2) (-3)
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%(Lzz-LeHlaz-hz)Ane" -LszAn2°} [cosh(A 1X2) ]

Ang= [ cosh(A1c/2)

(A32-21%
%(Lss-Lzz +23%-21)Ang° +Lg24ny° cosh(A3x2)
+ cosh(r3c/2)

(3.9
(2322

where the Ai are the roots of the auxiliary equation, and are:

1 1
Ap3= Jz(L22+Lse) x 9 \/(L22‘L66)2+4L26L62 (3.5

(2)
Now, the Ani® are initially given by the ni  and:
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nz =|Ai2 A O e -iog (3.6)
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where the n! are the residual integrated thermal loads due to curing. Likewise,

m] ™ A A Agg] (Y [eg) Y nlt(”
ng = [A12 A2 Agzs €2 - 102, 3.7

ng Alg Az Asgg €6 ng

and the ¢i are equal for ply groups 1 and 2. The change in load in the 1 direction is proportional to

the change in the 2 direction load, and the proportion is (A12/A22).

Progressive Cracking Model

The Griffith energy criterion for cracking is d(AWext-AWint)/da > Gc where AWest is the
external work done on the laminate and AWint is the change in strain energy of the laminate. In the
current state there are two cracks, as discussed above. In the new damage state, there will be an
additional crack located somewhere between the first two. If probability density based on the stress

distribution between the two cracks is used, one finds that the expected average location of the third
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crack is halfway between the first two. However, flaws in the material are randomly distributed,
and the probability density function for the location of the new crack should ideally take that into
account. Therefore, the location of the new crack is unknown at present.

In order to get from crack state one to crack state two, one assumes that the applied load
must be increased. This is because crack state one is assumed to be the equilibrium crack state for
the applied loads which caused it. The strain energy density for state j is, including both in-plane

and transverse shear terms:

> bk {eli (k) (K
dWimj=z omn demn dz dxg 3.8)
k:l hk-l {E}
“ T n T
= %Z{An} j [[F]{An}j + 2 {e) - 2[F]{n‘}] dxg + %z [ff—“z] {:f:}, [Fs] ®) {:?:}jdxz
k=1 k= 1

where T refers to transpose, k indicates the ply group, and Fs is the inverse shear matrix. Both
matrix cracking states are referred to the initial strain at the onset of cracking. Integrating this
equation between x3=-c /2 and x= c /2 gives AWin for state j. Then, AWint is AWintg- AWint;.
The work done on the total laminate by external loads during crack formation is found from the
applied loads and the ply group 1 mechanical strains. The quantity dWext is integrated from -c /2 to

c /2, and is given by:

(1 (1) (1) (1)
dWext=2Nyj (A€gzj -Aegj-dxa + 2Ngi(Aegj - Aegj-1dxa (3.9)

where the one direction term is zero due to the assumption that strain in the one direction does not
change, and the coefficient of 2 is used because N and Ng are defined as the loads applied to half

of the laminate only.
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For a laminate in which ply group one is symmetric, the resulting equation for total energy

released by the introduction of the first two cracks is:
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When this energy term is divided by a characteristic crack size, the result can be compared with Gec
and the applied load required to cause cracking can be iteratively determined. The characteristic
crack size used is 2H2 for H2 less than 2 1/2 times the ply thickness, and it is equal to 2 1/2 times
the ply thickness if Hg is greater than that amount [23]. This is the appropriate size for edge notch
flaws, which are more likely than internal flaws in tensile test coupons. Such tensile coupons were
used in the experiments, which were done for verification of the current work. In addition, this
author has chosen to use the same method as Flaggs [23] for estimating Gc under biaxial loading
conditions. Both Mode I and Mode III cracking are present under combined in-plane tension and
shear; therefore, Ge for each mode must be combined. The equations are not reproduced here. For
the laminate and test modeled in this paper, the inclusion of mode III cracking in the evaluation of
Ge had little effect on the results.

At this point, the loads at which subsequent cracks are formed can be determined. The
current model assumes incremental increases in load at constant crack density, then checks for

cracking at the next crack density by comparing G with Ge. The increase of load in each ply must
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be determined in the present model, because Any" and Ang® change as the load changes. As a first
approximation for the initial model, these quantities are based on the fraction of the load carried by
each ply group after the previous cracks have formed. These average ply group loads are multiplied
by the total load increment to get the load increment in each ply group. The location of the next
crack must also be determined and is not straightforward. As mentioned in Chapter 2, Wang [32]
assumes the randomly located flaws follow a normal distribution, Laws and Dvorak [26] assume a
probability density function based on the stress in ply group 2, and Lee and Daniel [25] and Tsai,
Daniel, and Lee [29] assume that the next crack must occur exactly half-way between the previous
two cracks. The last assumption is used in the present model for simplicity, since both Wang’s [32]
and Laws and Dvorak’s [26] probability functions predict that, on the average, the next crack will

indeed occur halfway between the previous two.

Effect of Local Delamination

Local delamination occurs as a result of transverse matrix cracking. When the transverse
matrix cracks reach the boundary between the layers, the interlaminar shear stress at the crack tip
becomes singular, and delamination occurs. See Figure 3.3. In this model, the Ai terms fill the
function of the shear lag parameter defined in similar models [21-28]. Since the shear lag parameter
is used to describe the interaction between the ply groups, and this interaction will change should
damage develop between plies, the shear lag parameter must be sensitive to this change [25,26].

When local delamination occurs, the through thickness shear stiffness change, Ga3, can be
approximated, using the rule of mixtures, by Gg3(1-48H2) where Ga3 is the value of the through
thickness shear modulus before delamination, £ is the crack density and is equal to 1/c, and c is the
distance between two adjacent cracks. This expression is obtained by assuming that the average
shear modulus varies linearly down the length of the specimen. In addition, it is assumed that the
shear lag distance, the distance from the transverse crack over which the transverse shear stress

decays to zero, is the distance over which the transverse shear stiffness is zero or very small. The
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distance between the cracks is divided into segments equal in length to the shear lag distance, which
is assumed to be approximately one-half the thickness of the cracked ply group, and the shear

stiffness returns to its original value at the midpoint between the two cracks.

Figure 3.3. Local Transverse Crack Tip Delamination

The expression developed in this work is similar to the one proposed by Yang and Boehler
*
[42] for the reduced through-thickness shear modulus, Ga3 :

Gas = Ga3 [1 - h(3,Ha)] 3.12)

where h is a function of crack density and delamination size and is equal to 26Hj plus an additional
term involving § and Hy. The notation used in the equation has been changed to be consistent with
that used in this work. When the distance between two cracks approaches a value of a little over
four times the shear lag distance, the modification factor approaches a limiting value. This distance

is approximately the same as the distance developed rigorously by Yang and Boehler.
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The reason behind the limit on the modification factor has been explained by Yang and
Boehler [42]. For the first several transverse matrix cracks, the strain energy release rate for local
delamination is greater than G for the next matrix crack, but, as the local delamination grows, the
resistance to crack growth increases; that is, G becomes smaller. (Refer to equation 2.1). Thus, the
delamination only grows a short distance from the matrix crack tip, which, according to Yang and
Boehler’s [42] analysis, is approximately equal to the shear lag distance. Once the delamination has
been arrested, additional matrix cracks may form, since the strain energy release rate for matrix
cracking would now be larger than that for continued delamination.
As the distance between matrix cracks approaches the shear lag distance, delamination no
longer occurs at each matrix crack. Yang and Boehler [42] show that 74 is proportional to h, so 74
is proportional to h(1-h), and, using equation 2.1, it can then be shown that the strain energy release
rate for delaminations of constant size increases and then decreases as Ga3 decreases. Thus, after the
first few matrix cracks, local delamination is no longer energetically favorable and matrix cracking
occurs without associated local delaminations. At this point, the decrease in modulus for local
delamination has reached its limiting value.
The point at which the modulus decrease reaches the limiting value can be estimated using

O’Brien’s [37] equation for local delamination. A more general form of equation (2.50) is:

P=J [ - DJ [ 1 J (3.13)
E t T E
LD L LAM

where P is the applied load, G is the strain energy release rate for delamination, ELD and tLD are the

modulus and thickness, respectively, of the delaminated cross-section, and ELAM and t are the
modulus and thickness, respectively, of the laminate before delamination. At the transition between
matrix cracking plus delamination and matrix cracking only, the strain emergy release rate for
delamination must be equal to that of matrix cracking. By using the strain energy release rate for

matrix cracking in O’Brien’s [37] equation, the load at which the transition occurs can be
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determined, and this prediction correlates very well with the point at which the shear lag distance
between cracks is reached. O’Brien’s equation is used as a rule, then, for the limit on the decrease
in shear modulus as small delaminations occur.

As a first approximation, this author has hypothesized that, since the shear lag parameter
given in equation (3.5) is proportional to the square root of the transverse shear modulus, that it

should be modified as follows:

P Hriarmanialf o
A1,3=42(L22+Lgg) %= 2 \/(Lzz-Lsa) +4L26L g2 w/ 1-46H, (3.19)

This shear lag modification term is similar to the interlaminar damage vector developed by Talreja
[41]. Under biaxial loading, the change in transverse stiffness will be greater due to the presence of
forces in both in-plane directions, ca_using the delamination to propagate rapidly in both directions.
Thus, the modification term is now defined for two dimensions, rather than just one. Thus, for

biaxial loading, the following approximation has been found to produce good results:

1 1 1
J\1.:~:=J 2(L22+Leg)t2 \/ (La2-Lgg)2+4LagLg2 [2(1-4/3112)] (3.15)

Note that these equations are only for delamination between ply groups 1 and 2. Edge delamination

between the 90° plies cannot be modeled in this manner.

Final Model

The major difference between the initial model and the final model is that the final model
incorporates an additional 90° layer. The eventual goal of this researcher is to develop a model for
laminates of the type [£6/90g]s. The system of equations for this laminate type cannot be solved

directly using the method outlined here; therefore, this researcher has decided to model laminates of
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the type [90n/0m/90p]s as a first step toward the final goal. This seemingly small step actually

complicates the model significantly. The laminate type is shown in Figure 3.4.

Explanation and Solution of the Governing Equations

The approach to modeling progressive cracking is essentially the same as was shown in the
initial model section with some exceptions. The outermost 90° layer will be designated the top
layer, the 0° layer is the middle, and the innermost 90° layer will be called the bottom layer. This

makes sense, since only half of the laminate is modeled due to the inherent laminate symmetry.

Figure 3.4. Laminate Type Used in the Final Model

Since there are three layers to consider, the load lost at the point of cracking of one layer must now
be taken by the two layers, which are not cracked at that point. The development of the governing
equations is discussed in detail in Appendix A. Figure 3.5 shows the coordinate system and some of
the parameters used in the derivation.

The solution of the governing equations with the appropriate boundary conditions is shown
in Appendix B. Using the solutions for ply group loads from the initial model, the forms for the

changes in ply group loads due to cracking can be assumed for the final model. These loads are
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Figure 3.5. Transverse Matrix Cracking in the Final Model

substituted into the governing equations to solve for the constant terms. The boundary conditions of
zero stress at the crack locations are then applied. Thus, there are twelve governing equations, three
boundary condition equations, six total load equilibrium equations and twenty-one unknowns. In
order to solve the equations more efficiently, the Maple symbolic processor in Mathcad 4.0 by
Mathsoft was used.

The form of the change in ply group load terms does not allow for the boundary conditions
to be satisfied everywhere, so they are satisfied by an averaging scheme. This is similar to the
method used by Tsai, Daniel, and Lee [29]. In addition, the coordinate systems of the top and
bottom ply groups are assumed to be independent, since the coordinate systems are based on the

crack locations in the individual ply groups.

Modeling of Progressive Cracking in the Laminate
Progressive cracking is again modeled using basic fracture mechanics principles, and a

FORTRAN program has been written for ease of calculation. The development of the equations for
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work done by external loads and strain energy in the individual ply groups is given in Appendix C.
Once again, the change in strain energy for each ply group includes the in-plane and through
thickness shear terms.

A FORTRAN program has been written to perform all culculations, since many of them are
iterative. For example, the load at which cracking starts is found by assuming a single crack
separated from any other crack by an infinite distance occurs in a given ply group. The load in the
laminate is increased until the strain energy release rate for the laminate is equal to the critical strain
energy release rate for cracking to occur. This procedure is repeated for each ply group. Cracking
begins in the ply group in which the strain energy release rate is reached at the smallest applied load.
The actual crack densities of the three ply groups are then fed into the progressive cracking portion
of the model. In this section, additional cracking is assumed to occur in each ply group respectively.
The applied load is increased until the critical strain energy release rate is reached by the laminate
for cracking in one of the ply groups. The crack densities are then updated. Thus, the program
returns crack density versus applied load. In addition, strains and moduli at each crack density are
calculated. Finally, local delamination is modeled in the same manner as in the initial model, except
that the shear lag modification term is applied to the shear lag parameters of the top and bottom ply
groups. This is necessary, because the through thickness shear stiffness of the bottom layer is
included in both shear lag parameters.

The initial and final models are compared with data in the literature and with in-house

experimental data in Chapter 5.



CHAPTER 4

EXPERIMENTAL METHODS

Four E-glass epoxy laminates were tested under monotonic tensile loading and the progression
of damage was measured. The results were compared with the progressive cracking model

previously described.

Specimen Preparation

The materials tested in this research were symmetrical lay-ups of 3M Scotchply 1003
pre-impregnated glass epoxy laminae. Table 4.1 gives the material properties of the cured Scotchply
1003 samples used. The layup used to verify the initial model was [0/902]s. The layups used to

verify the final model were [90/0/903]s and [902/02/90)s. The layups used were chosen to

Table 4.1. Material Properties of Cured Scotchply 1003

Tensile Modulus (Msi) Shear Modulus (Msi)
0°, E; 5.7 G 1.4
90°, Eg 1.4 Gi3 1.4
E3 14 Ga3 .63
Tensile Strength (ksi) Coefficients of Thermal Expansion
0°, oults 108 ay 3.5
90°, oult2 2.9 ag 11.4
Poisson’s Ratios Critical Strain Energy Release Rate (in-lb/ib)
1o 0.3 G, 227
V13 0.3
Va3 0.49

54
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test modeling extremes, as well as to investigate the effect of relative thicknesses of constrained and
unconstrained 90° plies.

Referring to Table 4.1, the 0° tensile modulus, the in-plane Poisson’s ratio, and the 0° tensile
strength were verified experimentally. The critical strain energy release rate was estimated using

equation 4.1 [32].

2
X O
G, = ——"IZE‘; = (4.1)

where 2ag¢ is the critical or effective flaw size and is equal to 5.0 times the total thickness of the 90°
ply group [23]). This method correlates well with the estimates of other researchers [21-23, 25].
The other values were taken from the manufacturer or were found using the assumption of transverse
isotropy. The only significant variation from the manufacturer’s data was in tensile strength. The
manufacturer’s value was 140 ksi. The discrepancy is probably due to flaws in the specimens
manufactured in-house. A flaw can initiate a local crack or debond that may lead to premature
failure. The other material properties would not be substantially affected by such flaws.

The composite laminate specimens were manufactured as 10 x 10 inch lay-ups in a 12-ton
simple heated (maximum of 500° F), vacuum bag press. Pre-impregnated Scotchply 1003 was cut
into 10 x 10 in squares and stacked in layers of appropriate orientation. After the tacky laminate
was layed up and smoothed out, it was placed between two sheets of Airtech Release Ease 234TFP-1
teflon coated, woven glass fiber release film. Three 11 x 11 inch sheets of Richmond, E-5555 #116
high temperature release fabric were placed on top of the sandwich and three layers of courser high
temperature woven fiberglass were placed undemeath the sandwich. These fabrics act as bleeder
cloths for the curing process. They act to facilitate outgassing and resin pull off during the
manufacturing process.

Once the laminate sandwich is laid on the bottom plate of the press, Schnee-Morehead
vacuum bag onme inch (S-M 5126-2) sealing tape is placed around the perimeter of the sandwich.

This is to act as a sealant between the base of the press and the vacuum bag. Once in position, the
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backing of the sealing tape is removed and a 14 x 14 inch layer of Richmond, Vac-Pak UHT-750
ultra high temperature bagging film is placed over the top of the composite sandwich and smoothed
against the sealing tape. A vacuum is then drawn through a hole in the base plate at the edge of the
laminate.

The press is then closed and brought to a jack pressure of 1,000 psi. At this pressure, the
laminate is cured for 20 min at a stabilized 250° F temperature. At the end of this cycle, the jack is
pumped up to 1,500 psi and the thermostat is increased to 330° F. Once the temperature reaches
330°, the laminate is cured for 25 minutes. At this point, the laminate is removed from the press,
peeled away from the release film and left to cool.

After the laminate has been prepared, the 10 x 10 inch specimen is cut into nine, 1 x 8 inch
samples. The top and bottom 1 inch is cut off and discarded, to remove any edge tapering, and the
same is done to sample 1 and sample 9. All of the testing in this research involved the use of the
best three samples from the center of the 10 x 10 specimen. The machining of the samples was
performed using an Everett 3450 rpm cutting machine with an Everett #1410, 10 inch abrasive

cut-off wheel.

Experimental Setup and Procedures

An Instron 8500 Series Servohydraulic Testing System with a 50,000 Ib load cell and standard
tension grips was used to apply a uniaxial tensile load to each specimen. For most experiments,
strain was measured using Measurements Group CEA-06-125UW-350 350 ) strain gages, which all
had a gage factor of 2.12. A Measurements Group Model 2160 strain amplifier was used to amplify
and condition the signal from the strain gages. An amplification of 400 was used. For the
experiments done to verify the initial model, an Instron Dynamic Extensometer% a 0.5 inch gage
length and a £ 0.2 inch travel was used. The output from the strain amplifier or extensometer and

the output from the 50,000 Ib Instron load cell were fed into a Hewlett Packard 8090A Measurement
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Plotting System. Damage progression was measured via both the decrease in Young’s modulus and
by the density of transverse cracks formed.

The samples were loaded in increments of 400 to 1000 lbs, depending on the expected failure
load. The idea was to obtain at least six measurements. Loading was done at a rate of 500 lbs/min.
This relatively slow rate was chosen to allow the damage state in the laminate to reach equilibrium
for each measurement.

In order to obtain stress information from the load data, the average cross sectional area was
measured for each specimen. Five measurements were taken of the width and thickness of the
specimen in the region where the strain gage was to be placed. Using the information described,
Young’s modulus was calculated for each loading step.

In order to measure the progression of cracking, a laminate edge was dyed and photographed
at each load increment to reveal cracks. The load increments varied according to the specimen being
tested, with the goal being to obtain about eight data points per specimen. Thus, the load increments
used varied from 250 to 1000 lbs. The specimen cross-sectional edge was inked using stamp pad ink
according to a procedure developed by Doucet [53]. The ink was allowed to soak into the cracks for
approximately 5 minutes; whereupon, the excess ink was wiped off, and the sample was carefully
and lightly polished with 400 grit sandpaper to remove surface ink. A Konica 35mm camera with
Tzumanon Close-up lens attachment and black and white film was positioned approximately 4 inches
from the inked side of the laminate. Good contrast was obtained for most pictures. The
photographs were viewed at 8x magnification with a Hama Lupe, and cracks were counted over at
least three different inch-long segments. The three measurements were averaged to get the crack
density at a given load. This procedure minimized error due to localized flaws. As a result, a
photographic history of the damage was recorded from O lbs to failure via this dye penetration

technique.



CHAPTER 5

RESULTS AND DISCUSSION

The progressive cracking model is compared with the results of several experiments and with
a model and experimental data from Laws and Dvorak. A note on the use of the FORTRAN
program is in order. When delamination is incorporated into the model, i.e. for laminates where the
central 90° ply has four or more layers, the strain energy release rate is higher than GC during the
delamination portion. This is expected, since delamination increases the strain energy dissipated due
to cracking. Ideally, G should be required to be equal to GC for matrix cracking plus Gc for local
delamination as a criterion for their occurrence. However, since the delamination size for each crack
or load increment as well as the modulus decrease associated with delamination have been determined
a priori, the conditions for delamination would be overconstrained were GC to be specified as well.
Thus, the strain energy release rate increases to a value of almost twice the GC for matrix cracking
and then decreases to the Gc for matrix cracking as delamination ends. Modeling delamination in
this manner is not entirely certain, so the model stress versus crack density curves for samples with a
large amount of delamination are plotted using the initiation of cracking and the crack state at the
end of the initial local delamination as the first two data points. The results that follow are thus

based on engineering judgment and not just a blind usage of the progressive cracking model.

Initial Model
The initial model is compared with the results of one set of published experiment and with
another shear lag model in the literature. It is then compared with the results of in-house

experimentation.
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[0/903]s E-Glass Epoxy
The model is first compared with the umiaxial tensile testing results of [0/903]s E-glass
epoxy reported by Laws and Dvorak [26]. The experimental results, their model, and the present

model are shown in Figure 5.1. Since transverse crack tip delamination is expected to occur
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Figure 5.1. Comparison of Model Predictions with Experimental Data for Matrix Cracking in
[0/903]s E-Glass Epoxy

between the 0° and 90° plies, the factor described in equation (3.14) was included in the evaluation
of the Ai. The present model shows excellent agreement with the experimental data in the region of
higher crack densities. Laws and Dvorak’s model shows better agreement in the middle crack
density range, but their model does not predict transverse matrix crack saturation as well as does the

present model.

[0/902]s E-Glass Epoxy Scotchply
Next the initial model is compared with experimental resuits of [0/902)s E-glass epoxy

Scotchply. A small amount of delamination is expected in this laminate and is taken into account by
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the model. Observations verified that prediction, since small delaminations were noticed emanating
from the transverse crack tips at one of the interfaces, but not at both interfaces. There is a
discrepancy between the experimental results and the model predictions of final failure, which is due
primarily to the fact that both specimens tested failed at the tabs, indicating a stress concentration not
accounted for in the model. The predicted failure stress is based on the stress in the 0° plies of the
crossply laminate reaching the ultimate tensile strength found experimentally and is 37.6 ksi. The
experimental failure stress was 24.4 ksi for one sample and 25.0 ksi for the other. The modulus
predicted using the material properties given in Chapter 4 is 3.16 Msi and the actual moduli
measured were 3.14 Msi and 2.80 Msi. This difference is not great, thus, the true composite
laminate failure stress probably matches that used in the prediction. The results are as shown in

Figures 5.2 and 5.3. Figure 5.3 shows that the model accurately predicts the modulus decrease.
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Figure 5.2. Comparison of Model Predictions with Experimental Data for Matrix Cracking in
[0/902]s E-Glass Epoxy
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Figure 5.3. Comparison of Model Predictions with Experimental Data for Modulus Decrease in
[0/902])s E-Glass Epoxy

Final Model

The final model is compared with the experimental results for [902/02/90]5 and [90/0/903]
laminates under loading in the x direction, where x is the longitudinal material direction of the 0°
plies. The experimental data of three different specimens is averaged in the Case 3 plots. The Case
1 plots include averaging of data from three specimens at failure. Data from two specimens are

averaged for crack progression due to poor photographic quality of one of the specimens.

Case 1: [902/02/90]s E-Glass Epoxy Scotchply Under Nx

Agreement between the model and the experimental data is quite good, as is shown in
Figures 5.4 and 5.5. The modulus prediction was good, with the model predicting a Young’s
modulus of 3.48 Msi and the samples having moduli of 3.44 Msi and 3.61 Msi. Recall that,
according to Wang [34], a central ply group must have at least four total plies for delamination to

occur. Since the ply groups subject to cracking are thin, no delamination is expected; therefore, the
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model is assumed accurate throughout the progression of cracking. The change in slope in the inner
ply group stress vs. crack density curve corresponds approximately with the onset of additional
matrix cracking in the outer ply group.

Once again, the failure strength is overestimated by the maximum stress criterion used in the
model. The model predicted failure at 45 ksi, while the experimental failure occurred at 32 ksi for
both samples. Both of the samples reported, like the ones discussed above, failed at the tabs. One
sample showed no delamination, while the other showed only a thin three inch long edge
delamination along the back side between the top and middle ply groups. Since edge delamination
does not interact with matrix cracking to the extent that local delamination interacts with it, edge

delamination was not incorporated into the model. The samples failed with no longitudinal splitting.

Case 3: [90/0/903)s E-Glass Epoxy Scotchply Under Ny

Again, we see a very good agreement between prediction and experiment in Figures 5.6 and
5.7. In addition, the prediction of failure stress was excellent. The predicted failure stress was 21.4
ksi and the three samples tested failed at 21.7 ksi, 19.3 ksi and 18.3 ksi. The excellent agreement is
likely due to the fact that all samples failed away from the tabs. One sample failed nicely in the
gage section with substantial local delamination between the middle and bottom ply groups and no
splitting. The other two failed near, but not at, the tabs, and they also showed substantial local
delamination with no splitting.

Local delamination was included in the model for this case and, indeed, small local
delaminations were observed for the first four cracks, as predicted. No further delamination
occurred until just before failure. It should be noted that the model predictions for modulus decrease
were obviously skewed by the delamination algorithm in this case; therefore, the initial and final

values predicted by the model are plotted along with the experimental data.
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Cases 2 and 4: Loading Under Ny

The model was designed to predict progressive cracking in the 0° plies of the above
laminates under loading in the y direction; however, the results were poor. This is most likely due
to the additional complication of two different interlaminar shear stresses. As modeled, the outer
and central layers of these laminates experience interlaminar shear stress due to cracking on one
surface only. The interlaminar shear stress is zero on the outside surface and at the midplane of the
laminate. The complex asymmetry of the through thickness boundary conditions on the 0° plies is a
likely explanation for the problem. The experimental results are shown in Figures 5.8 through 5.11

for future reference, since this is an area to be explored in future work.
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Figure 5.8. Experimental Results for Matrix Cracking in [902/02/90]s E-Glass Epoxy Under Ny
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Figure 5.11. Experimental Results for Modulus Decrease in [90/0/903]s E-Glass Epoxy Under Ny

Error Analysis

In reducing the data, several sources of error were taken into account and steps were taken
to minimize such error. The sources of experimental error included misalignment of the
extensometer and strain gages, extensometer blade slip, strain gage transverse sensitivity, Wheatstone
bridge nonlinearity, load cell error, measurement of specimen cross-section, measurement of the
slope of the load versus strain plots, and measurement of the crack density from the photographs.
The instrumental error was calculated and found to be negligible. The possible human error was

limited by taking multiple measurements where possible.



CHAPTER 6

SUMMARY AND CONCLUSIONS

Two models have been developed which predict transverse matrix cracking in
fiber-reinforced composites under static biaxial loading. They utilize fundamental fracture mechanics
principles and include the effects of local delamination. The initial model predicts transverse matrix
cracking in the 90° ply group of laminates of the type [£6/90m]s or [On/90m]s under in-plane biaxial
loading, including in-plane shear. The final model is written to predict transverse matrix cracking in
all ply groups of laminates of the type [90n/Om/90p]s under in-plane biaxial loading but not
including in-plane shear. The inputs to the model are material properties including critical strain
energy release rate. In addition, the degree of delamination expected, in terms of delamination at
one or both transverse matrix crack tips, must be supplied. The model gives stress and strain at the
onset of transverse matrix cracking, a prediction of progressive cracking as load is increased, and the
decrease in modulus as cracking occurs. It also shows the effect of transverse crack tip delamination
on transverse matrix cracking. In addition, the laminate ultimate failure stress is predicted. Specific
conclusions and contributions are summarized here.

1. The initial model is the only shear lag model developed to date to predict progressive
matrix cracking under biaxial loading using fundamental fracture mechanics principles. In addition,
it is the first shear lag model to incorporate the interaction between ply groups in terms of local
delamination.

2. The final model is the only shear lag model, which is written for cracking in all ply
groups of laminates with five ply groups. It is also written for in-plane biaxial loading and it also
incorporates the effect of local delamination on matrix cracking.

3. Models were compared with experimental data for E-glass epoxy composites and

excellent agreement was obtained in most cases. In cases where agreement was not perfect
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throughout the progression of cracking, excellent agreement with the initial and final damage states
was still obtained.

The current model lays the foundation for a more rigorous predictive method for transverse
matrix cracking and local delamination in all ply groups of laminates with angle plies; however,
additional work remains. First the problem with loading in the Ny direction (Cases 2 and 4) must be
solved. Then, the model should be expanded to include transverse matrix cracking in angle plies. A
more rigorous method for evaluating the effects of local delamination should be developed. A
statistical method for predicting the site of each new crack would enhance accuracy of the model,
particularly for the initial damage development, since crack spacing becomes more uniform as
cracking progresses. Verification under biaxial loading should also be done.

The success of the model predictions and the experimental observations lead to some
important generalizations. Small delaminations occur at transverse crack tips and they account for a
decrease in the shear modulus of the laminate. Local delamination depends strongly on the thickness
of the central 90° layer, and, when it occurs, it has a substantial effect on transverse matrix
cracking. Final failure is accurately predicted by applying the maximum stress criterion to the

uncracked plies, provided the samples fail in the gage section.
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APPENDIX A

DEVELOPMENT OF THE GOVERNING EQUATIONS FOR THE FINAL MODEL

In this appendix, the governing equations are derived. Table A.l. gives symbol definitions for

reference, and the coordinate system is shown in Figure 3.5.

Table A.1. Symbols Used in the Model Equations

Symbol Meaning
Nj Integrated laminate force resultant in the j direction
Ajj Element of extensional stiffness matrix defined by linear laminated
plate theory
€ Laminate midplane strain in j direction
NjT Integrated laminate thermal force resultant in the j direction
Qi Integrated laminate through-thickness shear resultant in the i
direction
7i Laminate through-thickness shear strain
nj(k) Integrated stress resultant in the j direction for the K ply group
1K) th
nj Integrated thermal force resultant for the k ply group
qi(k) Integrated through-thickness shear resultant for the K ply group
Ui Total displacement in the i direction
ui Laminate midplane displacement in the i direction
ej(k) Midplane strain in i ply group
® . g th
Tij Shear stress in the ij direction for the k ply group
-riji Interlaminar shear stress between ply groups 1 and 2
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Table A.1. Symbols Used in the Model Equations (continued)

ﬁj'h Interlaminar shear stress between ply groups 2 and 3
An® Change in integrated force resultant due to cracking
Hx Thickness of k™ ply group

Lt Distance between two cracks in ply group 1

Lm Distance between two cracks in ply group 2

Lo Distance between two cracks in ply group 3

75

For a crossply laminate with no applied in-plane shear force, the constitutive relations can be written

as:

T
Ny A1 Ajgz| Jet Ni
N» [A12 A2z |€2 Nj

and

Q4 Agg O 74
Qs |0 Ass) |75

(A.1)

Each lamina group or layer is treated as a Mindlin plate element. This approach was taken by

Flaggs [23]. The constitutive relations for each ply group take the form:

(k) (k) (k) (k)
{ﬂl _ [Au Alzl {61 _ {ﬂl }
ng Ajz Az €2 n3

and

(k) (k) (k)
q4 _ |A4a O 74

q5 0 Ass 75

(A.2)

(A.3)
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(k)
where the Aij are the elements of the stiffness matrices for each ply group. Note that for

simplicity, we assume that in-plane shear is zero throughout the laminate. Tsai, Daniel and Lee [29]
have made this assumption with little loss of accuracy. The displacements are assumed to be:
Up=uy(x1,X2) +275(X1,X2)

Uz=uz(x1,x2) +274(x1,X2) (A.4)

Uj3=0

The strain in the laminate when the first crack occurs is given by:

A

e =11 (A.5)

€2

For in-plane loading, the strain is equal in all lamina groups prior to cracking. The strain state for

each lamina group before or after cracking is defined as follows:

(ky (k) 5 (k) 5 (k)
e =201 _bur | 85
6x q 0x 1 6x 4
(ky (k) (k) s (k)
6x o éx9 éx 9
k
(k) 6U(2 )
74 =—
éz
k
(k) w(l )
75 =——
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The equations of equilibrium are:

(k) 5
5oy O () ) [l
— +7113 |5 -7138 [—5| =0
6x 1 -
5 k k .
én (9] 09 [H
22 4 T23 [—2] - T23 3| = 0 (A7)
éx 2 / :

Il
©

|:::
NIx

5 me [ Ml (k) .
95 -—2["13 [—2] + 713 ]

O me [ 9 M () [ Hy
94 -—5 |23 || 728 || =0

Now, symmetry and the sample configuration dictate that the through-thickness shear stresses are

zero at the laminate midplane and at the surface of the laminate. In addition, continuity implies that

(k) (k)
723 and 713 are equal at the interfaces between lamina groups. The interlaminar shear stresses

are called ‘rijm between ply groups 1 and 2 and -riji between ply groups 2 and 3.

After cracking occurs in a ply group, the load taken by that ply group changes according to the

following relation:

(k) (k) (&) a7k NI
[Aﬂl nj _|A11 Ag2 €] AL
~ t
Any ny A1z A2 €3 n2

(k) A (k)
Ay Ar2 €1-€
A2 Az €9-€2

Substituting equation (A.8) and the through thickness boundary conditions discussed above into

(A.8)

equations (A.7), one finds for ply group one:
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(1) (1)a (1)a t(l) th
— |Any +Aj;  €1+Ap2 €2y -113 =0

ox1
(A9
5 (n (1) (Da (D
— |Angs +Aj12 e€1+Az2  €rn2 -1r93 =0
éx2
Differentiating with respect to x; or x2 as appropriate gives:
(n
62An; _ 6ri3" o
0x 1 2 oxy
(A.10)
(1
62An2 ) b"l’z:«;lh 0
6% 9 2 6x9
Likewise, for group 2,
(2) .
82Any | Srig" by _
o ¢ 2 ox1q ox1
(A.11)
(2) .
2 th i
6°Ang + 693 6123 -0
6x 2 2 5X2 6X2
and, for group 3,
5 (3 ;
_A_P_l + ﬂ e 0
6x 1 : 6x1
(A.12)

2 (3) ;
2

0

éx o éx2
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The basis of shear lag theory is that

y= _6_2_ and -_; — ﬁ _ U(top of layer) - U(bottom of layer) (A.13)

thickness of layer

80,
_(n 1 [ (D) (D H2
75 — |ut "3 -uq —2
Hy |
_(1n 1 (1) H, (2) H2
74 — |u2 — -u2 —i
Hp |
_(2) 1 F (1) B:A H’
5 =—|u | uy [—a (A.14)
H2 | . '/
_(2) [ (1) 'qu 2) -Hj
74 — |u2 — -uz [—2
Hz | <
(3 1[ ¢ 2) '_Hz" 3) Hj
75 — |ui ) 'ul [_2
Ha | . P
(3 1T (2) '-H2~ (3) Hj
74 — |u2 5| u2 [—2
I.I3 | . s
Substituting equations (A.14) into the moment equilibrium equations (A.7),
(1
Ass n Hj (2) & El _
uj 2 -ug 211 T3 =
H;y 2
(A.15)
n
(Y] (2)
47 (1] 42 (1] g
H, 2




(2)
(N (. (2) [ :
Ass ujg [H—zl] -ug [H_;] ’&713&""713' =0
H» 2
(2)
(1 [ (2) (. .
Ad uz [H—zl] -uz [H_;] B 8" + T13'| = 0
Hs 2
(3)
Ass [P (-Ha| P [Hs]] Hs, i_
ug 2 ul 2 T3 =
Hj 2
(3)
(2) [ (3) [ .
Adg uj [H_;] -ug [H—;] -&"'23l =0
Hj 2
Differentiating (A.15)
(h_ () (2 ,h
Ass |[fuy  buy _Hybriz _ 0
Hy |[6x; 6x 1 2 6x
(n (1) (2) th
Agq [bug  buy _Hybray _ 0
Hy |é&x2 éx2 2 éxa

_(k

The midplane lamina strains, €i

are determined at z=0, so equations (A.6) become:

80

(A.16)

(A.17)

(A.18)

(A.19)
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Equations (A.16) are then

(n (1) (2)
_(1) _(2) th
Ass |77 (Hifys 7 Habys | Hibra
H; 2 6xq 2 6x 2 6xg
(A.20)
(n (1 (2)
_(1) _(2) th
Ag o7 (Hibye % Hady | Hibras _
Hi 2 6x9 2 6x9 2 6xg
Likewise, for ply group 2,
(2) (1) (2) .
_(1n _(2) th
Ass (o0 Hibys o Habys | Ha|drs s
Hs 2 6x4 2 6xy 2 | éxg éx1
(A.21)
(2) (n (2) ;
(1) (2 th i
Age [0 Hidye 7 Habye | Ha| by sl
Hs 2 6x9 2 6x9 21 6xg ox2
and, for ply group 3,
(3) (2) (3) :
_(2) _(3 i
—A55 €1 -&m -€1 +&m _m_b‘rla =0
Hj 2 6xy 2 6xy 2 6xy
(A.22)
(3) (2) (3) .
_(2) _(3 i
Ag (7% Hibye o7 [ Haby | Hybr _,
Hj 2 6x2 2 6x9 2 8xo
Substituting for 74 and 75,
(1) 2 2 .
(1 (n th _(2) (2) th th
Ass [J07 pHip ) fna o7 Hag S tbma | brs)) Hibrg
Hjy 4 ox1 4 ox1 éx1 2 6x1
(A.23)
(1 2 2 .
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(3) 2 :
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LYY S Ha ks brag , Sra3| o,
Hj bx9 ox2

=3 Fyq =3

2 . .
(3 6193 Hj 61'23l -0
4 6x2

When a crack occurs in a given ply group, it can no longer carry a load at that point. The other
laminate ply groups must carry the load at the crack locations. Thus, we can give the boundary
conditions on the crack faces:

Ply group 1 or top layer: At xz=% IEA- ,na1 =0

Ply group 2 or middle layer: At x;=% Ii—m , g D=0 (A.26)

Ply group 1 or top layer: At xp=% 12-£ , g3 =




In other words,

nz(z)'+n2(3) = Ngatxg = %

=

nz(l) + n2(2) = Ngatxg’ =%

n1(” +n1(3) =Nlatx1=*%‘-

which implies that

Any'? + Ang(¥ = ny! D oatxg =2 22
Ana'V + Any'? = ny! 3 atxg =2 22
m

Any D 4 Anyl 9 = ng 2) at x1=¢% Ii—

Now, before cracking, a force balance on the 1z plane gives:
N2i=n2i( by nzi( 2) 4 nai 3
and on the 2z plane,
Nli=n1i( by nli( 2 4 ﬂli( 3)
After cracking,

Nof=naf' ' + naf(? + npe! ¥
and

Nyf=ngt' ) + el P + 0yt

Before cracking occurs, equation (A.2) can be written as:
~ t

@® = ®%e - 4%

so, the initial integrated force resultants can be expressed as:

NJ=[A1' D (&) - {0}V +[A1' D {e} - ('} ¥ +A1D) (&} - {n} D
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(A.2T)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)



84
After cracking, using equation (A.8), the final integrated force resultants are:
(NY=TAT D (e} - {0}V +{An) D +[A]D) () - '} ) +{An} D) + (o) D (A.33)
Combining equations (A.32) and (A.33),
An)(D + (An}D = [AI'Y [{&} - (&) (A.34)
A2+ (AmpD = [A]'D (e} - (D) (A.35)
Aoy D+ (AnpD = (A1 (e} - (D) (A.36)
Relations (A.34) through (A.36) can be summarized.
@O = (& + @O (an® (A37)
where [F]=[A]"l. This leads to the relations,
{;}(2) _ {;}( 3) _ [F](2) {An}(2) _ [F]( 3) {An}(3)
@ - &GP =\ A - F? (anpt? (A.38)
{;}( 1) _ {;}( 3) _ [F]( 1) {An}( 1 _ [F]( 3) {An}( 3)

Finally, by substituting equation (A.38) and the equilibrium relations, equations (A.10-A.12), into

equations (A.23-A.25), one obtains the governing equations for matrix cracking:

1
Hi

62An (1) 62An (2)
__I_-12_2 Fs5 O 6x 1 6x 1
4 |0 Fyq 252An2‘” §2Any' Y
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(2) (1 (1 (2) (2)
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(A.40)
§2An (D _§2Any' D | 62402
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APPENDIX B

SOLUTION OF THE GOVERNING EQUATIONS FOR THE FINAL MODEL

The governing equations found in Appendix A are:

(mf (1 () 2 (2) ]
| [Ass © Fi Flz) in | Fip FIZ) fn _(o)
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®8.3)

The assumed forms of the change in load terms (nmi, nti, nbi) are deduced from the initial model and are given

by:
Dz cosh(xxn.x l) B cosh(}.t x2) cosh(}.b x2)
cosh()v EE) cosh(}.t —) (;, )
2 2
A D ‘cosh().t-x 2) . cosh(lb-x 2) X cosh().m X 1)
cosh(}.t-E) cosh(),b.L_) cosh(}.m L_m)
2 2
i 1(2)=G cosh(hn-x ]) B cosh().t-xz) . cosh(lb-xz)
cosh(lm-L—m) cosh (M.E> cosh (lb H})
i 2(2)=J. cosh().t-x 2) K cosh().b.x 2) L cosh().m-x 1)
cosh (ME) cosh(}.b'g) cosh(m@)
2 2 2
M\ (3)=M: cosh(imxy) o o{iexg) - cosh(ibxs)
cosh().m-L—m) cosh(lt-E) cosh(kb-g))
tn ,P=p. cosh(}.t-x 2) o cosh().b-x 2) . cosh().m.x 1 )
cosh(xt‘%) cosh(lb-%) cosh(lm %m)

B4

B.5)

(B-6)

®B.7)

B.3)

B.9)
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where the Li are the distances between the cracks in the top, middle, and bottom layers, respectively.
The Ai act as the shear lag parameters discussed earlier for the top, middle, and bottom layers, respectively.

Forall x.1 and all x.2, , the total load carried by the laminate must equal the applied load; therefore,
D san Py a0 P=o and A0y ™ 4 a0, 4 4, P=0
for all x 1and Xy

Thus,
-I-C=0 -H-B= -G- A=M -L-F=R -E-K=Q -J-D=P
and
cosh(im-x cosh(At-x cosh(Ab-x
n,¥=(-G- A) S ]) +(-H-B) (1 2) +(-I- C)-“(] 2) (B.10)
cosh —-}.m-Lm) cosh|—-At-Lt cosh{—-Ab-Lb
2 2 2
cosh{Ab-x cosh(At-x cosh{Am-x
n,®=(-E-K) (tox2) +(-J )-M+(-L_ F)._M B.11)
cosh(%-lbLb) cosh (%-).t-Lt) cosh(%-lm-Lm)

Substituting into the governing equations:

(1) (2) (2) (1) (2) (2)
[ FVE+F P 1eF 9 {F 12" D-F ) PH-F 3]

=C (B.12) = B.13)
) (n
Fn Fii

2 A 55
> . -F“(Z)'G-i-F 11(1)~A ..=Am B.14)

,\/Z-A 55( l)'H 22'F 55(2)‘A+ ASS( l)'H 22'F 55(2)'G+ H 12'A +F-F 12( H -LF 12(2)

Ass "
& M 20 (2 M 20 (@ 2.1 F 6+ F DAL =’
[Z'ASS ‘Hy"Fss™-A+Agsg "Hp Fgg™ G+H, -A] +FF 12“)_F12(2)-L
Second equation
(1 2) )
D FoF,DG-F -L]
[ 22 12 22 L, B.15)

(D
F1a
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(1
2JA4a (1) (2)
- [F oV E-FpPI.. =b  (B.16)

2 N 2 (2) (1) 2 (2) 2 1
JH1'5+A44 Hy Fag TR+ 2A 44 PH F g O E [+ (-F ) DK+ CF 1V

4
2 (1) g7 2 (2) (1) 17 2 (2)
[H2E+ A gV H2F 1Pk 4 2. 1 VH,2F E|

2

Mg (1 (2) -
A gy HFpE-F P01 =ib
+ (—F 22)(2)K+ C.F 12(1)

2. |A 44tV

FF P H-F 27 = ®.17)
2 (1) gy 2 2) (1)1 2 (2) 1 1
JHI'D*Z'A44 ‘H, F 44 D+Ayy Hy F g ] +F22( )-D+F12( )B

A44(1)
Hi’D+2A 4 "H,2F ., 2D+ A, V- H,2F,, ]
+(Fa\VD_F,. VB 1 P0+2A40 “Hy Fyug ™ D+ Agy Hp"F gy
22 12
The third and fourth governing equations are the same as the first two.
Fifth equation
(2) (2) (3) (3)
_[F K+F ;P I+F D14 F -(E+K)]
12 11 1 12 —c B18)
Fii
2 2 3
@ [F1PG+F ;2L F (64 M+ F e B)]
YAss 2 (2) 2 (2) 2 =hm ®.19)
[2:A 55 H ) F 58D-A4+ A 55 H,2F 552G 4 Hy (G+A)]
(2) (2) (3) (3)
PP HF P04 F O F .(J+D)LB B.20)
(3)
Fii
Sixth equation
@ o) 3) )
~[F G+ F 0D LsF o (L4 F)+F -G]
12 22 22 12 G|_, B21)

3)
Fia
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[F 90 PK+F P14 F P B+ K) +F 1,0+ C)] 2

4-A 44(3). =)b (B.22)

[2~A44(3’-H22-F 1D Ev A O HLF PR Ha%(E+ K)]

3 [F 22(3)'(J+ D)+F 12(3)'(H+ B)+F 12(2)'H+F 22(2)._]]
4Agq " 5 ; 3 . 5 =)t B.23)
(22 44 D H,2F 4D A g HF 4P+ B3 (14 D))

Now we can combine these expressions with those given above in order to find more of the constants, noting
that, for example, F{1F{2=F2F for a crossply laminate of the type [90n/0m/90p]s only.

Summarizing the constants found,

ak=l  (B23
: _[F1d®F O P Ve F 0

Dr ®_p Dp (D_g (Dg_ (3)
[-Fn Fp -Fu ™ F -Fop Fp ]
a-J=H B.24)

where
@ () @p (D G (D
_[Fzz Frp +Fp 7 F 1y T+ FppF g ]
_ @ 3 @25 () (D (3
bl=G  (B25) [‘F12 Frp 7 -FpoFp "-Fp "Fpp ]
2 2
FyPas+F ]
1 2 g r M B ¢ o ck-F,0—E =¢ (B.26)
M 2 o 2
Fy 1 1
FiPa+F (2)]
1 12y, D = or  cJ-Fy,tV =B B.27)
) 2 o 2 T
Fn 1 11
0 o)
F ) Db+F ]
[ 12 Fo 0 F op o aL-F,, " =A (B.28)
22 2
F (1) F (1) F (1)
12 12 12




2 @
_[Flz b+Fpy ]
(D

Fiz

o=-(b+d)}[-¢F 1)+ F | Dby F 122 A5V Hs?
+(-b-2-d)|(b+d)-F 1 1(3)+ 2.F “(2)-b— dF 11(1) -A55(3)-H22-A55“)-F 55(2)
+2F 1P+ F .0
+- &[0+ d)F P4 F ;@ F ) Pp i F 122 AP H 2

F oD
(1) 2 2) (1) 2 @] 22
Bl F 1004 F @ F 1y be [(h- 200 F 1 V4 F Db F ?)] —
12
[ F22(1)
(3) 3) (2) (2) 3) (3) 2
+-F 1P de [ 244 b)F DL F P4 F ) Db F g, } ol Ass P H
I F2
(1 3) D (D 2, (3
+[(2d+b)F )V + (-b-2.0)F P .. A 55V F 55D HY2 A 5
(2) (3) 1:22(1)
+2F 14 (4d-b)F (V4 4F 2 F1g
12+ 11 +4Fq
@) (0 (1)
[[-F P +F ] F
[ 11 1 (n (1 (3) 2p (D4 (1), (322
g=2 o F22 +['F12 +F12 ]'Hz Fss " Ass “Ass
i Fa F2
EIRIC) Fo (D
+ _—( 11) H]ZF 22(1)+F 12(3)'H 12 -A 5(3)' 22
F (D Fo (D
REY 12
Fo (D Fo (D
(n - 22 (1) (1) ;4 25 22
+ @ Fi12 |Ass H3t—
F F
12 12

o
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(Dqyr 2

= (2) (1) (3) 3) (2) (3) n 3) 2 (2)
h-[-2-F22 +F12 ’C—F22 —F12 'C—8'[2'F]2 +F12 j”A44 -A44 H2F44

+[F 1270- F g - oF ;] A4 Vm 2



=|_4. (2) | 5, (1), (1) (3) (3) (1) (3)17.2 2
P=[-4F 30 "+ 2F 15 e Fop V- 2F |)0e - 3F 0 LA VA O H2F P

(3) (1) (1
+[F12 -Fp ]'Fl2

+- 3[4F 12(2) + 2-F 12(3)J

Fl (n
2) (3 3]y 2 3 2 2
+ -F22 —Flz 'C—F22 ]Hl —a'[Flz( )+F12( ) Hl 'A44(3)
(1) 2 [F 12(1)]2
(2) ) 2 3) r 2
H[Fr2 e Fop e Foy Po iml lH - aF 1) Ha? A gD
Fi
(n72
o=l F,,(» [F12 ] A, V.2
Fp'?
:
2F P _2F F
(1) (3) 12 12 ] 1 3172 2
+ [F22 —F22 ]2+ 5 A44( )_A44( )'HZ 'F4 (2)
_ Fi
3 F "
(3) (3) 2
+ 'F22 +F12 m A44 'Hl
1
In addition,
eL?+ fF.L+ gF’=0 qE2+ pKE+ hK?=0 h-J’ + p-D-J+ gD%=0
SO
1 /
(—2—)-(-1‘-L+L- f2—4-g-e) —2]—-(-p-K+K- p2—4-q-h)
¢ =F B29) (29 =E
(11 red ek
— —\-fL-LAf - 4.ge ——\-pK-Kp°-4-qh
(2-g (2.q)
(—ZT—S'(-P‘J'FJ' P2—4'Q'h>
4 =D ®231)

1 <_p._]_ J.,,’pz_ 4-q-h)
(2-q)
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(B.30)



Summarizing the constants found,

A= d—F22“)- t(l) L =ra-J =rb-K =sa-J E=sb-K B32)
Fiz F=tL G=b-L H=a-J I=aK
where
2 (pedp-aqn) ey aan (P gl
o= (2-9) b (2:q9) = (2-g)

(5o L pe e aqn) L (e fP-age)
(oo aan) ——\-p-~p’- 4qh ——\-f- £~ 4ge
(2-9) | (2-q) (2-g)

(1) )
F F
ras|c - 1 (l)-sa rb=|c - 12(1)-sb
Fni Fii

We don't know apriori which values the above parameters will take for a given laminate. It turns out that,
indeed, they must be different for different laminates. For the laminates discussed in this work,

=1 ( f+ qlfz - 4-g-e)
(2-g)

and the values taken by sa and sb have opposite signs preceding the square root term for each laminate.

Thus, for the [90/0/903 ] laminate,

sa=-—1—- ( p- /Jpz - 4-q~h) and sb=—1—- ( P+ /\} p2 - 4-q-h)

(2:9) (2:q)

and for the [907/09/90]g laminate,

sa=(—1—- ( P+ /\/pz - 4-q-h) and sb=——1—- ( pP- /J p2 - 4-q-h>

2-q) (2-9)

Now the boundary conditions must be satisfied. They are:

An l“)“‘ An1(3)=N 1i(2) at X l=I‘Tm B.33)

e (22 (D =Lt 34

2 +hny =Ny at X2= (B.34)
Lb

)V an PN, xpE B.35)

2
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where Nj i(2)’ N2i(l), and N2i(3) are the initial loads taken by the three layers in the 1 and 2 directions. They

are found from the constitutive relations given in Appendix A. These cannot be satisfied everywhere, so
each disturbance to the change in load in each layer is averaged in order to get an average solution to the
boundary conditions.

tanh().t-g) tanh(xbﬁ)
H-1G-2

Lt Lb

1

cosh (lt- E)
2

cosh (l At Lt)
2

Z-Mnh(lb-%) F2tanh().mLTm)

D _E

=N, ®B.37)
- 21
Lb Lm

2-tanh(n-5) cosh(lb-L—b) 2-tanh(lm-L—m)
D. 2/ E 2 2] F =N,® ®38)
Lt cosh %J.b-Lb Lm
2-tanh(u-2) cosh(xbﬁ 2-tmm(m-L_‘“)
+J- 2 +K 2 +L 2
Lt Lm

cosh (% Ab- Lb)

Solving the first BC (equation 33) forL,

tanh(%-).t-Lt) tanh(%-lbLb)

e M a)-2
Lt Lb

K- N
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Substituting for L in the third BC (equation 35) and solving for K

tanh(l-xmLm)
N2i(3)+2'(t+])'N1i(2)' 2
b Lm
K=
tanh(1 Am Lm)
Pl (B.39)
1+sb et D Labin)
(bLb)  \2 Lm
2-[2-a-_(lﬂl]-tanh(l-xm-Lm) +2(-sa- 1)]
+ (b-Lm) 2 -tanh(—l--lt-Lt)-i
tanh(l-l.m-Lm) Lt
1esbo 428t D anh l-xb-Lb)-
(b-Lb)  \2 Lm
Substituting for L and K in the second BC (equation 34) and solving for J (B.40)
tanh(%-).b-Lb) tanh(%-).m-Lm) tanh(%-lb-Lb)
N oD lcc - ee- . -[-2:sb ... - N3
2 Lb Lm 1 Lb 2
tanh(—-lm-Lm)
+ﬁ”~————2
Lm
tmh(l-xm-Lm) tanh(l-xb-Lb) tanh(l-xm-Lm)
+{ | bb+ aa- 1\ 12 NP
Lm (Lb) Lm
tanh l~).b~Lb) tanh(l-xm.Lm)
+dd-{cc - ee- 2 . 2
Lb Lm
J=
mnh(l-xb-Lb) mnh(l-xm-Lm)
-sa-lcc - ee- 2 . 2
Lb Lm
mnh(l.xm.Lm) 1 tanh(l-lt'Lt)
+ __gg_.mnh(l-zm-Lm) -tanh(l-xb-Lb ee- _obh| . 2
(LbLm) |2 2 Lm Lt
+.2.5
Lb
tanh| - Am-Lm tanh|+-4b-Lb tanh(—l--lm-Lm
2 2 2
+ff - ee :
| Lm Lb Lm




where -—

aa=4-dd-(t + 1)-% bb=- 4-sb-% ce=1+ sb dd=2-%

ee=4-a-% ff=2-a-dd gg=dda  hh=sa+1
and the other constants are given in terms of J, K, and L above. With the crack density terms,

N 21( l)|:cc - ee- (tanh(%-lbl,b)-ﬂb)t&nh %lmLm)-Bm] .

¥ ( 2:sb +ﬁ'-mnh(—;--lm~Lm)-Bm)-- I-tanh %xb-Lb)-ub-N 5
+ (bb+ aa-tanh(%-).m-Lm)-Bm)-tanh(-;--lb-Lb Bb ... --l~tanh(%~).m-Lm)-Bm-N“(2)

+dd- (cc - ee-tanh(—;—-).b-Lb)-tanh(%-lm-Lm -Bb-ﬁm)

J=_
- sa- (cc - ee~tanh(%-lb-Lb)~tanh(%-).m~Lm)-Bb~ﬂm)
+ (Z-gg-tanh(%-lm-Lm)-Bm ...)-tanh(%lb-Lb)-ﬂb (ec-tanh(%-lm'Lm)ﬂm ) -tanh(%-lt-Lt)-Bt
+-2:sb +-2-hh
+ﬁ'-tanh(%-lm-Lm>-Bm- (cc _ ee-tanh(%').b-Lb)-tanh(%-lm-Lm){lmBb)
where Bi=—1—
Li
[N 5+ 2.t Dy li‘”-tarm(l.xmLm)-pm]
K= b 2 s
[1 reb- 4-a-%l-M(l-lb-Lb)-tanh(%-km-Lm)ﬁm-Bb]
[4-&-M-tanh(l-lm-Lm)-Bm+ 2-(-sa- 1)]
+ (®) 2 -mnh(l-xt-Lt)-at.J
14+sbo 4~a-(t—+l—2-tanh(l-lb-Lb)~tanh(l-).m-Lm)-Bm-Bb]
(b) 2 2
{-2-tanh<—l—-).t-Lt)-ﬂt~a-J- 2.mnh(l-xb-Lb)-pb-a-K_ N u‘”]
o 2 2

b
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The constants can be found for the case of initial cracking. In order to simplify for the case of zero cracks,
all the tanh terms are approxixEltely equal to one for Li large.

N 5" (cc - ee-pb-pm) - (-2-sb + fF:pm)-pb-N 5P ..
+((bb + aa-pm)-Pb + dd-(cc ~ ee-Pb-pm))- 1-pmrN 1>
(-sa-(cc — ee-fb-pm) + ((2-gg-pm - 2-sb)-pb-(ee-pm - 2-hh) + ff-pm-(cc — ee-pm-pb))-pt)

J=

[N P42t Dy 1i(2)'9mJ 428 D gm0 Csas 1)
= b ®)

+1) (t+1) e
(t l t -
b-4.a>~— “. . — 4.2 7.Bm-Bb
I+s a ) Bmﬂb} l1+sb-4a ®) pm-p

[- 2-pt-a-J- 2-pb-aK- N 1i(2)]
1= J
b
Then the crack density terms are set equal to zero, and

(1
“N»:
= A B.41)
sa
(3)
N2 (B.42)
1+sb
(2)
-N; B.43)
1= 1i




APPENDIX C
DETERMINATION OF STRAIN ENERGY RELEASED DUE TO CRACKING

—_—

For a given crack density, the change in work due to external applied loads is equal to the work needed for
the previous crack density minus the work needed to achieve the current crack density. The applied loading
is the same. The external work for state j is thus,

- 3) (3) (3) 3) (2) (2) (2) (2)
Awextj—Z'Nl'F 11 'AD] +F 12 -An2 +2:N 2[F 12 -Anl +F22 -An2 }-Area (C.l)
where N and Nj are applied loads in the 1 and 2 directions. As stated in Appendix A, the coordinate system
is referenced to the 90 degree layer. A factor of 2 is used because Ny and N are half laminate loads.

Area=L -L; (C.2)

where Li=Lb or Lt depending upon which lamina is cracked at the current state, or, if the middle lamina is
cracked, i refers to the ply group previously cracked.

The in-plane strain energy for ply group k is given by:

AW (k)=%-(Anl iy ). ( r2 (C€3)

intip) Fia3 Fop/ \Ang P)

(k) (k) (k) t| (k)
Fiy FIZ) An ) €] 2(F11 FIZ) ny
Fig Foa

t
n2
where € and ¢, are the strains in the laminate at the time of cracking. They are given with a caret over

them in Appendix A. The change in load terms are defined for crack state j.
The change in load terms are actually area averages. They are integrated over area and divided by area.

A
For example, A Py
2 2
ny dA K An ¢ dA
A (C4)  and , ) (C.5)
An =_2— Any'=
1 A A

This operation is straightforward for the  An | terms but not for the  An 12 terms. Both are described more
fully below.
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For the change in load in the top layer,

umh(;.m-kg) tanh(}.t--l‘—t) tanh(lb-l‘-tz)
Anl(l)=A-2- +B-2-—2+ c.2.__2
Am-Lm At-Lt Ab-Lb
(C.6)
tanh(lt-g) tanh(xb-l_“_’) mnh(xm--I:E)
An 2( D=p.2. 2 +E2 2 F 2
ALt Ab-Lb Am-Lm
For the change in load in the middle layer,
tanh().m-L—m) umh(m.E) tanh().b~2)
tn,P=G2 2/ H2 2/ 12 2
Am-Lm At-Lt Ab-Lb
(oK)
tanh(u-B) mnh(be) mnh(;.m-l“ﬂ)
An2(2)=J-2' 2 +K-2- 2 +L-2. 2
At-Lt Ab-Lb Am-Lm
For the change in load in the bottom layer,
tanh(lm-L—m) tanh(}.t-B) mnh(xbﬁ)
s, P=(-G- A)2- +(-H-B)2- FCI-0)2— 2/
Am-Lm At-Lt Ab-Lb
(C8)
tanh().b-L—b) tanh().t-E) tanh(lm-L—m)
tn,P=(-E-K)2. 2/, (¢I-D)2 +(-L-F)2. 2
Am-Lm

These terms have the same form regardless of where cracking has occurred. For example, cracking in the top
lamina group only means that the effects of the middle and bottom are averaged, while the top layer term is
integrated between cracks.

Forthe An terms this is the same as averaging all three terms, but for the An® terms the effect is different.
For the example of cracking in the top lamina group, before integration,

A.2~tanh(;.m-]-“9)
2 +B cosh(At-x2) N
AmLm cosh(h, %) Ab-Lb

C-Z-Mnh(lb-I‘B) -
2 (C.9)

m V=
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SO, -~

2
tanh(-;--lm-Lm) tanh(—;--lm- Lm)

2 - .
[Anl(l)] =4.A° . C4A p.cosh(hx2)
(hm® Len?) (Am-Lm) cosh(l-m-m) (C.10)
2
tanh(l-xm-Lm) mnh(l-xb-Lb)
+8-A- 2 .C- 2
(Am-Lm) (Ab-Lb)
2
, tanh(l~}.b-Lb) tanh(l-xb-Lb)
+B2 cosh(Mt-x2) 2+4-B- cosh(At-x2) C. 2 L a.cE 22 :
cosh(l.u.u) cosh(l~m~Lt) (Ab-Lb) (x%Lb?)
2 2
u 1
2 . mnh(—-u-u)
[nlm] dx2= 2 + L Lt B?..
At 2 1 2
(Lt cosh E.M.Lt (C.11)
2
mnh(l~xt-Lt)
! 1 2 ..

+8. —-C-tanh(l~).b'Lb)+
2 2

b-Lb
(tanh(l«lb-Lb>-lm-Lm-C N A-tanh(%-lm-Lm)-lbLb)

-A-tanh(l-xm-Lm) :
A

Am-Lm
2

+4.Lt

[ 1Ly (AmLm)?]

The other terms are given by essentially the same expression, but with the constants switched appropriately.
For An 1( l)-An 2( H , for example, B? becomes B-D, A? becomes A-F ,and C? becomes CE.
In addition, A-B becomes A-D, A-C becomes A°-E and B-C becomes B-E. Shown explicitly, using

equation C.9 and equation C.12 shown below,

mnh(xb.é) tanh(}.m-L—m)
cosh(Mx2) oo 2) o 2

+ . .
cosh().t- %) Ab-Lb Am-Lm -

(C.12)

An 2( l)=D'
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(C.13)

-4.Lt

(C.18)

(C.15)

1 2 .
tanh(?lb-Lb)

the result is:
It o :
mnh(_.u.u)
An 1(1).An2(1)dx2=B_D 2 . Lt :
At :
Lt cosh (l-n Lt)
2 2
mnh(l-mLm) tanh().t-E)
+|(AD + B-F)- | 24 ..
(Am-Lm) At
mnh(l-wLb)
+(CD+BE)—% 1
(Ab-Lb)
2
tanh(l-lm-Lm)
+| A'F 2
(lmz-Lmz)
tanh(l-xb-Lb) mnh(l-mLm)
+(CF+AE) 2
Ab-Lb Am-Lm
2
tanh(—l--lbLb)
+C-E-————£———
(w?1b?)
Similarly, cracking in the middle lamina group means
tanh().t-E) c-2~tanh(xb2)
n1(1)=A'GOSh(Am.XI)+B‘2- 2 2
cosh(xml“E) AtLt Ab-Lb
2
SO
) tanh(—]-~).t~Lt)
[n (l)]2=A2- cosh(Am-x1) L 4A cosh(im-x1) B. 2
2 .
cosh (l-lm- Lm) cosh (%-lm- Lm) (AtLt)
2
tanh(l-xb-Lb)
+4A cosh(im-x1) .C. 2
cosh(—zl--).m-Lm) (Ab-Lb)
1 2 1 ]
tanh(--u-u) tanh(—-xm) tanh(—'xb-Lb)
+aB2_ 2 | ,gp 2 ) 12
(2L (A-Lt) (Ab-Lb)

(xb2Lb?)



and
Lm -
2 tanh(—')‘m-Lm)
nt12 dx1=A2 2 + Lo
Lm Am

1 2
== 2-cosh(5-lm-Lm)

tanh(%-).m-Lm) tanh(%-lb-Lb) tanh(l~xt-Lt)

+ -B|-8-A ...

am | ObLb) (A-Lt)

2
(c.mnh(l-xb-Lb)-n-Lt N tanh(l-u-Lt)-B-xb-Lb)
2 2
+4-Lm

[(eLty® (ab-Lby?]

For example, for initial cracking in the top laminate layer,

= 3 _, H+B (3),_,3+D 2, H (2,57

At At At At
2
- (1B (yBD B (1), Y1) (1. (1)
D2 D
+F 22(1)'-—--}-4'—'[82—- F 12(1)'11 lt(l)— F22(l)-n2'(l)]
At At
H? 2) HD H 2) . (2) 2) . 2
+F D2 2F ()-—+4-—-[e CF D D _F Py ’]
1) 12 AL B 1 12 12
RO F o, M _p_ (2 «2)
22 Tt&—Ea-Tyy Ry =Ty B |
At At
2
+F 11(3)_(B+ H)  oF 12(3)‘ (B+H)(D+J))
At
2
+4-—(B+H)- ey +F (P B LF B KDL F (3)-—(D+J)
1+ 11 1 12 03 22
At At
+4'(Dx+ J)'['Bz +F 12700 D+ F 22‘3)'“2“3)]
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Of course, the expressions for subsequent cracking are substantially more complicated.
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(C.16)

(C.17)

(C.18)
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The transverse shear terms must also be found for each ply group k and are given by:

-_—

2
H k)
x)_1 7k 2 2\(
where
(k) (k)
8An 8An
T 23(k)= 2 and T 13(k)= ! (C.20)
6)(2 ox 1
Again, an averaging scheme is used. For the first ply group,
sinh{Am-x
t13m=A-lm-(_])— (c.21n
cosh )vm-E
2
sinh({At-x sinh{Ab-x
153 =Dt (ex2) +E~lb~M (€22)
cosh ).t'£t sinh Ab-—L—b
2 2
WP 2. 2 sinh(}.mxl)2
[t 13 ] =A"im" 5 (C.23)
cosh(l.mL-—m)
2
. 2 . 2 . .
2 sinh(At-x sinh{Ab-x sinh{ At-x sinh(Ab-x
[1:23(1)] =D2-lt2-M +E2ab% (tex2) +DAt ( 2)~E-Ab- ) (C.24)
Lt\2 ] Lb\2 Lt . Lb
cosh|it-= sinh|Ab-22 cosh{At-— sinh{Ab-—
2 2 2 2

For cracking in the top layer only, the effects of the middle and bottom layers are averaged. Thus, when the
derivatives are taken of the An i(k) terms, the middle and bottom layer terms are constant. The interlaminar

shear terms are:

1 npk
113( )=0 [t13( )] = ) (C25)



mh lt'Xz ! 2
cosh (}.t —) " ().t Lt)2
cos . —
L
2 .
N L
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cosh|At-—
2
(Lt
J 2
Lt
2 .
2 sinh({At-x
[123( )] = DZ'MZ' ( 2)
Lt\?
cosh(lt —)
u
J 2
so
5. 2 | tanh(At-=—
[t (1)]2_D -M 2 Lt
23 = ' -
Lt At 2
Z-wsh(lt-g
2
Then,

o2 n (H712 (n (n1?

1.2 (2) 2)? @[. @2
+—'H2 [F44 '[123 ] +F55 1155

1.2 @[, P [, P
*3Hs '[F44 '[‘23 ]+F55 '[‘55 ]

oo
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(C.26)

(C27)

(C.28)

(C.29)

(C.30)

Note that if a crack has previously formed in the middle ply group, the 13 shear stress may not be zero. In

this case the appropriate value is the previous value for each lamina group.
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Finally, for the above example of the first crack occuring in the top ply group,

-—

1.2 (1) 2 1.2 (2) 2 1.2 (3) 2
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