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ABSTRACT

The radiative transfer problem in pulverized coal combustion is
described and a model is developed for solving the radiative transfer
equation in nongray media in planar and cylindrical geometries. The
multigroup formulation is adopted for discretizing the wavelength
variable. A diffusion limited Arrhenius heat generation is used to
describe the heat generation rate due to the oxidation of the coal
particles. The particles in suspension in the medium are assumed to be
bounded by black walls at constant temperature. A distribution of
particle sizes is assumed and the Mie theory is applied to arrive at the
spectral interaction coefficients. A FORTRAN code is developed to solve
iteratively the system of coupled nonlinear equations describing
radiative transfer and the internal heat generation in the medium.

The code is applied to study the effect of radiative heat transfer
on thermal ignition of pulverized coal suspensions. A calculational
model is presented for predicting ignition in coal dusts and particle
suspensions. The P-3 spherical harmonics method is applied for the first
time to predict radiative heat transfer in nongray planar and nonplanar
enclosures with a range of particle sizes. This method has been
extensively applied in neutron flux calculations in nuclear systems. The

effect of the activation energy, optical thickness and the spectral
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properties of the particles on the temperature and the critical heat
generation rates (Hc) are determined.

Ignition is observed to occur only when the activation energy is
greater than a critical value which lies between 7 and 8. This is
consistent with earlier investigations. It is found that the treatment
of nongray media in terms of an equivalent gray model underestimates the
temperature by upto about 12 percent in both planar and cylindrical
enclosures, and to predict ignition at higher He values- by about 35 to

39 percent for both geometries.
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NOMENCLATURE
A pre-exponential factor in Arrhenius equation
D particle diameter; the operator d/dr
E activation energy
Ebg normalized black body emissive power for group ‘g’
H Arrhenius heat generation rate
Hc critical heat generation rate coefficient (critical A)
ik k’th moment of intensity
Ik normalized moment of intensity
L half dimension of the slab
lr, 1,7 direction cosines in cylindrical geometry
N particle number density
NG number of wavelength groups
q; radiative heat flux
T spatial variable in cylindrical geometry

radius of the cylinder; gas constant in Arrhenius equation

R

Tl, T2 boundary temperatures in slab geometry

T2 surface temperature in cylindrical geometry
Tr reference temperature

z spatial variable in slab geometry

GREEK SYMBOLS

o non-dimensional activation energy

o

g Pe! P

-1X-




ﬂg extinction coefficient for group ‘g’

ﬂm maximum extinction coefficient of all groups

ng absorption coefficient for group ‘g’

A wavelength variable

I direction cosine (cosf) in slab geometry

3 Stefan-Boltzmann constant

. scattering éhefficient for group ‘g’

T optical length (zﬂm, rﬂm)

Ty optical thickness (2Lﬂm or Rﬂm)

ﬁ direction vector in 3-dimensional space

0 polar angle in slab and cylindrical geometry

e dimensionless temperature (T/Tr)

91, 92 normalized boundary temperatures in slab geometry

92 normalized surface temperature in cylindrical geometry
. Wy scattering albedo (osg/ﬂg)
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ABSTRACT

The radiative transfer problem in pulverized coal combustion is
described and a model is developed for solving the radiative transfer
equation in nongray media-in planar and cylindrical geometries. The
multigroup formulation is adopted for discretizing the wavelength
variable. A diffusion limited Arrhenius heat generation is used to
describe the heat generation rate due to the oxidation of the coal
particles. The particles in suspension in the medium are assumed to be
bounded by black walls at constant temperature. A distribution of
particle sizes is assumed and the Mie theory is applied to arrive at the
spectral interaction coefficients. A FORTRAN code is developed to solve

iteratively the system of coupled nonlinear equations describing

radiative transfer and the internal heat generation in the medium.

The code is applied to study the effect of radiative heat transfer
on thermal ignition of pulverized coal suspensions. A calculational
model is presented for predicting ignition in coal dusts and particle
suspensions. The P-3 spherical harmonics method is applied for the first
time to predict radiative heat transfer in nongray planar and nonplanar
enclosures with a range of particle sizes. This method has been
extensively applied in neutron flux calculations in nuclear systems. The
effect of the activation energy, optical thickness and the spectral
properties of the particles on the temperature and the critical heat

generation rates (Hc) are determined.
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Ignition is observed to occur only when the activation energy is
greater than a critical value which lies between 7 and 8. This is
consistent with earlier investigations. It is found that the treatment
of nongray media in terms of an equivalent gray model underestimates the
temperature by upto about 12 percent in both planar and cylindrical

enclosures, and to predict ignition at higher Hc values- by about 35 to

39 percent for both geometries.
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CHAPTER I

INTRODUCTION

1.1 Overview

Fossil energy is being continuously depleted through various
industrial and commercial applications and thus considerably affects the
economy of any industrialized nation. Since natural resources such as
coal and oil are non-replenishable, it is important to utilize these
resources in an efficient manner and this necessitates an improved
understanding of the combustion process/systems. There exists a great
potential for improvement in the thermal performance of such systems;
this could have a very positive effect on a country’s economy and hence
motivates research in combustion technology. Thus there is a need for
developing computational models with optimal design of combustion systems
so as to improve the performance of such systems.

Pulverized coal is finely crushed coal which can be burnt up very
fast while in a state of suspension in air. It is used for producing
high enthalpy steam which in turn is used to generate electricity.
Combustion of pulverized coal is also used as a heat source for the
manufacture of cement.

Combustion of pulverized coal is a difficult process to model
mathematically; a complete and accurate model must take into
consideration the treatment of three-dimensional two phase fluid
dynamics, turbulent mixing, fuel evaporation, radiative and convective
heat transfer and chemical kinetics. One would require comprehensive
models incorporating all these factors in order to design combustion

systems based on fundamental principles.
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The role played by radiative transfer in coal combustion, pulverized
coal fired boilers, industrial furnaces, gas turbine combustors and fires
has been recogonized for some time. Radiation heat transfer plays a
dominant role in most industrial furnaces and may account for up to 95%
of the total heat transfer [1].

An adequate treatment of thermal radiation is essential in order to
develop a mathematical model*of pulverized coal combustion systems. The
nature of the problem at hand - viz. whether one is interested in the
instantaneous spectral local radiative flux, the flame structure, the
scalar properties of the flame, formation of flame-generated particles
(largely soot), the local radiative flux and its divergence or, the
temperature distribution - would determine the complexity in the
analytical treatment of the problem.

Combustion may be conceived of as a rapid and self accelerating
oxidation of any given substance. We focus on combustion of pulverized
coal particles in a combustion chamber. Heat is generated within the
medium as a result of the exothermic oxidation of the coal particles.
This is a source of photon production in the medium. The coal particles
absorb, scatter and emit photons. The black walls surrounding the

chamber also emit photons. Heat is removed from the system by being
transferred to the boundaries.

Thermal equilibrium exists in the system when the heat production
rate in the system is equal to the heat removal rate. It has been shown
that two such equilibrium states are possible resulting from two possible
temperature distributions in the medium [2, 3, 4]. The equilibrium

corresponding to the higher temperature implies ignition of the coal




particles in the medium. It is desirable to be able to calculate the
heat flux to the walls, the spatial temperature and intensity
distribution in the system and the temperature at which the coal
particles ignite, and to predict the dependence of these variables on the
various physical and chemical characteristics of the medium; one would
like to know the conditions which lead to the onset of ignition.
Radiation transfer E}om the flame and combustion products to the
surrounding walls can be predicted if the radiative properties and the
temperature distributions in the medium and the walls are known. In

general, however, the temperature itself is an unknown variable, thus

resulting in a coupling between the total energy and the radiant energy
conservation equations.

A study of the equilibrium states, the determination of the
temperature distribution and the heat flux variation in planar and
cylindrical systems, and the dependence of these variables on the optical
properties of the medium such as the optical thickness and the scattering

albedo is the objective of the current thesis work.

1.2 Literature Survey

Gray and Lee [5] reviewed some of the earlier models in spontaneous
ignition as applied to thermal explosion. In this review they have
discussed the critical conditions obtained by the application of
Semenov’s model which assumes a uniform temperature distribution in the
medium and Frank-Kamenetskii’s theory which assumes a purely conductive
heat transfer from the reacting medium to the surroundings, and have
highlighted the limitations of these models.

Essenhigh and Csaba [6] analyzed the propagation of a plane flame




through a monodisperse dust cloud of finely ground coal in air. They
solved three differential equations simultaneously :

(i) The equation describing the heat transfer by radiation from the
flame to the dust,

(ii) The equation for the loss of heat by conduction from the particles
to the ambient gas, and

(iii) The equation describin% the rate of rise of the gas and particle
temperatures.

With a series of simplifying assumptions, they obtained analytical
solutions for the dust and gas temperatures, and the flame speed. They
studied the behaviour of the flame speed with various parameters such as
the input velocity of the dust, the ignition distance and time.

Arpaci and Tabaczynski [7] have investigated radiation effects in a
laminar flame with combined modes of heat transfer inveolving both
conduction and radiation; they have studied the effects of scattering,
absorption and emission on the radiation flux as well as the variation in
the thickness of the flame for varying conduction to radiation ratios.

Khalil et al [2] , studied ignition in a one-dimensional particle
suspension system. They solved the following system of two simultaneous
equations :

(i) The equation of transfer for the intensity (photon flux) variation,

(ii) The stationary energy balance between the radiative heat flux and
the volumetric heat generation due to the chemical reactions in the
combustion chamber as described by the diffusion limited Arrhenius
equation.

Assuming elastic scattering, they studied the behavior of the




temperature distribution in response to the variation of particle size,
scattering albedo and anisotropy in scattering. They also studied the
variation in the maximum temperature in the system in response to the
optical thickness of the suspension for various boundary conditions and
compared the critical behavior for various boundary conditions. Mie
theory [8], which approximates particles as spheres in order to solve the
electromagnetic wave equatio;s, was used for calculating the extinction
and scattering efficiencies.

The study assumed a large initial positive value for the scattered
and thermally emitted radiation in the suspension, the initial radiation
thus serving as the ignition source. In a following study [9], two
extreme cases of ignition in a particle suspension were investigated- one
where the ignition was induced by an initial source as in the earlierl
study and the other where ignition was induced not by an initial thermal
energy source but solely by thermal emission from the bounding walls. A
comparative study was performed for the two cases.

Crosbie and Pattabongse [3] have compared several methods of
calculating the temperature distribution for both uniform and Arrhenius
heat generation in the medium and determined the critical heat generation
for the two cases. They have studied the influence of the dimensionless
activation energy a, the optical thickness o and the scattering albedo w
on the critical behavior; they found the value of the critical heat
generation rate Hc to decrease with increasing o and increasing w, and
to increase with increasing a’s. They also observed that increasing
values of a brought about a more abrupt jump in the equilibrium state-

thus causing increasingly intense ignition in the medium. The minimum




value of a required to cause ignition was determined to be around 7.5 for
all cases.

In another investigation [10], they have studied transient heat
transfer with both conduction and radiation in a planar medium. Again
results have been presented for both uniform as well as Arrhenius heat
generation in the medium. Besides the temperature distribution in the
medium, parameters such as the time taken to reach steady state in
regions close to the critical point, and the value of the critical point
were studied in response to varying conduction/radiation ratios.

This brief review of past research in this field gives a flavor of
the various developments in this area over the years; the recent works
gsignify the current areas of interest and the nature of research being

carried out presently.

1.3 Objectives

A mathematical model is developed to study thermal radiation in a
pulverized coal suspension system. Although there is some precedence in
this field [2, 8, 9 and 11], most of these studies have been limited to
highly simplified models of the radiation processes taking place in a
combustion chamber. These studies have been restricted to cases where
all the particles are assumed to be of the same size, the radiation
assumed to be monochromatic and the medium considered to be gray. All
studies have been confined to plane geometry systems. The current thesis
work is the first to treat in detail the combustion of pulverized coal
particles in planar and cylindrical enclosures taking into account the
wavelength dependence of the interaction coefficients of the the coal

particles; such a medium is known as nongray and this wavelength




dependence is called the gspectral behavior of the particles.

In practical situations there exists a distribution in the particle
sizes. The bulk of particle diameters falls in the range 1um to 100 pm.
Such a distribution is often assumed to follow a mathematical law such as
the Gaussian distribution for the number densities of the various
particle diameters; it may also be chosen on the basis of a realistic
sampling of various coal types, ;s is done in this study. The
cross—sections of these particles are a function of the size (diameter)
of the particle as well as the wavelength of the radiation. A very
strong dependence on the wavelength leads to pronounced peaks in these
cross—sections called "resonances”". Such a dependence also results in a
ripple structure in the cross—sections arising from the interference
patterns. These resonances are reproduced in the corresponding
interaction coefficients. Hence a monochromatic treatment of the
radiation, with the cross-section assumed at the corresponding
representative wavelength, could lead to significant inaccuracies in the
results.

A more detailed model is developed in the current work to treat
combustion in particle suspensions. The overall energy balance is
assumed to involve two phenomena : (1) radiation transfer, and (2)
internal heat generation in the system arising from the chemical kinetics
of the reactions involved in combustion. The former is described by the
equation of transfer and the latter by the Arrhenius heat generation
equation; the required kinetic and diffusion parameters are assumed to
be known a priori.

This study is limited to steady state conditions. Radiation is assumed
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to be the sole mechanism of heat transfer. The model takes into account
the wavelength dependence by treating radiation in a multigroup viz.
discretized form. The CALLBH code [8] based on Mie theory [8] is
modified to XSNGEN in order to generate the extinction and scattering
cross—-sections as a function of the particle size and wavelength. The
cross—sections along with the particle size distribution, give the
spectral extinction and scatteri;g coefficients. These interaction
coefficients are collapsed into a desired number of groups in order to
discretize the wavelength variable A; a FORTRAN code XSN.COLAPS is
developed in order to do this. These coefficients then go into the
equation of transfer for calculating the spatial distribution of the
spectral intensity of radiation. The transfer equation and the energy
equation are solved iteratively to determine the photon flux and
temperature distributions in the system.

A computer code PN3 is written in FORTRAN 77 to solve the above
equations in one dimensional planar and cylindrical geometries. The code
is well structured and highly modular with further potential extensions
easy to incorporate.

The code is applied to solve some representative numerical problems.
Gray problems in planar geometry are first solved in order to compare the
results with available results and validate the code. The effect of the
non-dimensional activation energy a on ignition is compared for nongray
and equivalent gray problems in planar geometry and the influence of the
nongray effects is studied; this study is carried out for various optical
thicknesses (7).

One of the particle size distributions used by Menguc and Viskanta




[12] is considered for generating the cross-sections. A seven group
structure in the wavelength range of 1pym — 30um is assumed for the group
interaction coefficients. Geometrical lengths of 0.1m and 0.2m are
considered for the nongray models.

Finally, the above studies are repeated for cylindrical geometry in

order to determine nongray effects in non-planar media.
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CHAPTER 11

THEORETICAL DEFINITION OF THE PROBLEM

2A: Radiative Transfer

Radiation is electromagnetic energy in transport. When radiant
energy impinges on a particle, it results in a temporary excitation
because of the increase in the ;nergy level of the particle. As the
particle returns to a lower energy level, it emits radiation in the form
of one or more photons; it is called thermal radiation (detected in the
form of heat and light) if the excitation comes by virtue of temperature.

Radiation is transmitted by electromagnetic waves in a wavelength
range of 1 nm to 1 km, corresponding to X-rays and radiowaves
respectively (Fig. 2-1). Thermal radiation falls in the range of 0.1-100
pm. This is the general range of interest in the treatment of combustion
processes. However, the specific range in which the spectral dependence
must be accounted for will largely depend on the variation in the
cross-sections with wavelength and this range in the current study has
been determined to be between 1 and 30 um.

Owing to its dual nature, radiation may be treated either as waves
or as particles. The particle nature leads to the application of
Boltzmann’s transport equation to solve for the photon density
distribution in space viz. the spatial distribution of the spectral

intensity of radiation.

2A.1 Equation of Transfer

Radiation traveling along a path is attenuated by absorption and by

scattering into other directions, and is enhanced by both emission as

10
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well as by radiation scattering in from other directions. The equation
of transfer is a first order integro-differential equation which governs
the radiation intensity along a path through a participating medium and
undergoing absorption, emission and scattering.

Intensity is defined as the amount of radiation energy that is
locally traveling in any given direction per unit solid angle and
wavelength, and crossing a unit a;;a normal to the direction of travel.
The net energy crossing a unit area is obtained by integrating the
product of the intensity and the direction vector, the integration being
over all directions and wavelengths. This gives an equation for the
local radiative heat flux, which when coupled with the energy balance
equation in the system leads to a system of non-linear equations; the
solution of this system of equations gives us

(i) The temperature distribution within the system, and
(ii) The radiation intensity distribution within the system.

The general steady state equation of transfer, assuming elastic

scattering, for a 3-dimensional system of any geometry may be written as

A

VA GEAD + BEN HERYD = () TN

(A0, i.(r, 8’2 an 2-1
+ IA' o (r, ,A) i, (r, -

A A
where r, {} and A are the spatial, angular and wavelength variables

A
respectively, iA(?,ﬁ,A) is the spectral intensity, ibA(r,A) the blackbody
O A A Al A A
intensity, and g(r,A), os(r,ﬂ 2{l,A) and x(r,A) are the extinction,
scattering and absorption coefficients respectively. il

For a homogeneous medium, there is no spatial dependence of the

L
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interaction coefficients and only their spectral variation needs to be
considered. In theory, the variation of the interaction coefficients
with wavelength must be treated as a continuous function; this however is
not very practical because of the complex functions which describe the
spectral behavior of the interaction coefficients based on the electro-
magnetic theory of radiation. Instead, the wavelength can be discretized
into a finite number of intervals*called wavelength ‘groups’ (a term
often used in neutronics calculations to refer to the energy variable)
and all quantities integrated over these groups to arrive at an average

or representative value for each group. Such a formulation is known as

the multi-group method, and results in the multi-group equations.

2A.2 Multigroup transfer equation

Defining a group ‘g’ between the wavelength limits Agl and Agu and

integrating equation 2-1 over ‘g’

A A
A p BU A A gu A A
v.nj i (7,0 a4 j ) (T, 8,0 dx
A A
gl gl
Agu Agu
A . A A ,
- L\ KA iy, (7,0 dA + (1/4x)J"M[ IA ACVRNCHRIPY dA] dn
gl fl gl

2-2

with the assumption that scattering is elastic and isotropic [2].
These groups are defined so that the interaction coefficients are
averaged within each group and the intensity is integrated over the

group; the following group quantities are defined

Agu
. A A
1g(r,ﬂ) = IA
gl

A A
iA(r,ﬂ,A) d\ = intensity for group ‘g’,
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A
gu
ib (r) = I i (?,A) dA = black body intensity for group ‘g’
g A bA
gl

and ﬂg, ng, and Usg’ are respectively the extinction, absorption and the

scattering coefficients for group ’g’. These coefficients are given as

A
Bu

[T ai,(7.8,2 ax
A

. gl
7g = b

BU A A
f iy (r,f1,0) dx
A
gl

where represents » £_or o__. In practice, since the intensit
Vg TeP Bgr Ko sg P y
distribution is not known beforehand, other functions such as the Planck
and Rosseland weighting functions which are assumed to represent the

intensity variation, are used to determine the interaction coefficients.

These are discussed in section 3.3.

Incorporating the above definitions in equation 2-2, we get
v i (r,f) + g i (7,0 g + (o am| 1 (70 a2
i (r,) + 81 (1, = Kk i, (r) + (o T i (r, -
g Pele g bg sg ar B
fl
Equation 2-3 is the general three-dimensional multigroup form of the
equation of transfer for any geometry.

2A.3 Spectral and group radiative heat flux

Integrating equation 2-1 over all directions (ﬁ = 0-47)
A A A A A A A A
v.jﬁ Q1,(r,0,2) dn + ﬂ(r,A)IA i (LA a1 = k(7,0 ibA(r,A)IA dn
fl fl

" [as(?,x)/4x]fA [ IA,iA(?,ﬁ:A) dn’ ] an 2-4
A
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M
From the definition of the radiative heat flux (qR) and the scalar

flux (io)
v.;n A A A \) i A A A . A A A \) i A
.qRA(r, ) + B(r,A) 10A(r, ) = 47 k(r,A) le(r’ ) + as(r, ) 10A(r,A)
2-5
Rearranging the terms and noting that
A A 5 A
os(r,A) - B(r,A) = - c(r,A) we get
V ) A A A A . A A . A A
.qRA(r, Yy = &(r,A) [ 4W1bA(r, ) - IOA(T, ) ] 2-6
The above equation describes the spectral radiative heat flux
vector E;A(;,A).
Integrating equation 2-6 over ‘g’ for a homogeneous medium and
recalling the earlier definitions, we can write
A A
B v A Bu A A A
.7 G ax = [ w20 [arip (50 - iy (0] ax 27
A A
gl gl
Define
A
LG a = i (T lar flux f g’
IA 10A(r, ) = log r) = scalar flux for group g
gl
A
gu_sll A N A
I gy (r,A) dA = g (r) = radiative heat flux for group ‘g’
A, B Rg
gA
Hence
V.a () [4mi () - (] 2-8
.ng r) = K xlbg r) - log T -
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Summing over all the groups (g =1, NG) which represent the entire

wavelength range 0 < A < ®
V NG M A V af A NG . A i A
.g§1 ng(r) = .qR(r) = g§1 ng[411bg(r) - 10g(r)] 2-9

¥ A
where qR(r) is the total radiative heat flux.

9A.4 Solution of Multigroup ﬁhuations

The above set of equations can be solved for the radiation intensity
and the radiative heat flux in each group if the temperature distribution
in the medium is given; this would give expressions for the emitted
radiation, and equation 2-3 can be solved for iog(?). This can be
inserted in equation 2-9 to solve for the radiative heat flux.

Over the last few decades, many analytical and numerical methods
have evolved for solving the transfer equation. Since analytical
solutions are not possible except for a few idealized cases, numerical
schemes are generally resorted to. These schemes involve discretization
of the space, wavelength and angular variables.

The Hottel’s zone method involves subdividing the system into a set

of volume and surface zones with uniform properties, and applying the
energy balance to each zone. However, a large number of zones are
required to obtain accurate solutions, thus increasing the computation
costs. The diffusion approximation is applicable when the medium is
optically thick and the absorption to extinction ratio is low, and
results in a differential equation that resembles the heat conduction
equation which can be solved using finite difference numerical schemes.

The Monte Carlo method is a statistical simulation scheme and has been
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used to study radiative transfer in concentric and full cylinders and
radiative heat flux in cylindrical furnaces. However, a good number of
'histories’ have to be considered in order to obtain accurate results.
The discrete ordinates method has been widely used in recent years;
it involves dividing the total direction domain into discrete directions

and solving for the radiation intensity in each direction. But the

, solutions tend to become expen;ive in a problem such as ours where it is
necessary to solve iteratively for the scalar flux and the temperature
distribution.

The PN method has been found to give accurate results over a broad
range of optical thicknesses [14, 15, 16]. It has been widely applied in
many nuclear engineering problems for neutron flux calculations.
Equations known as moment equations can be obtained by successively
multiplying the transfer equation by powers of the direction cosine and

integrating over all directions. The direction cosine is g (= Cosf) in

the planar geometry (Fig. 2-2) and 1r (= Sinf.Cosp) in cylindrical
geometry (Fig. 2-3). These can then be cast into a matrix form and
solved directly using the matrix solving routines in IMSL (International
Math and Statistical library) available in the IBM mainframe computer.
Hence this method has been adopted in this study.

The PN method is based on Spherical Harmonic functions which are

discussed briefly in the following section.

2A.5 Spherical Harmonics

The Spherical harmonics method employed in the development of the
code for this study is exact in its broadest sense. Spherical harmonics

are a set of mathematical functions in the angular variables p (= cosf)
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u = Cos®
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FIGURE 2-2

Coordinate System Showing Intensity as a Function

of Position and Angle for a Slab Geometry
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T
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n
FIGURE 2-3

Coordinate System Showing Intensity as a Function
of Position and Angle for a Cylindrical Geometry
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A
and p that determine the direction vector {I. They are defined as

Yﬁ(ﬁ) = Yﬁ(u,p) =J{n ani(g); m! 11/2 Pﬁ(u)exp(imp)

where n is a positive integer or zero, -n < m £ n, and Pﬁ(u) are the

associated Legendre polynomials defined as

m
Pﬁ(u) = (1 - nz)mlz ;ia Pn(u), and

P = ()" {8 Bl phgy,

n (n+m!

Pn(u) in turn are the Legendre polynomials defined such that

[}
[y

P, ()

|
=

Pl(u) =

Pn(u) for any other n > 1 can be detemined using the recursion

relationship
(2n + l)uPn(u) = (n+1)Pn+1(M) + nPn_l(u)

For one-dimensional planar geometry ’'m’ is always zero and the
spectral intensity can be expanded as an orthogonal series of the

Legendre polynomials to give
. 2n+1
1A(z,u,A) 2 Pn(u)An(z,A)

where the coefficients An can be written in terms of the intensity

moments. The first three Pn and An (for a P3 approximation) are given as
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PO =1 AO = ioA(z,A)
2 . .
p, = (1/2)(3u"-1) A, = (1/2)[312A(2,A) - 10A(z,A)]
2 . .
P, = (1/2)u(5p"-3) A, = (1/2)[513A(z,A) - 311A(z,A)]
where io, i1 and i2 are the intensity moments given by

inA(z,A) =1I4r " iA(z,p,A) dn

For one-dimensional cylindrical geometry under azimuthal symmetry,
the intensity distribution becomes an even function of ¢ and may be

expanded as [15]

. A) = QT 2 2n+1 n+my oo m A
IA(T:#,¢, )=Y 3} S 1+ (-1)""71] n(#)[An(r, )cos(mw)]

n=0 m=0

The associated Legendre polynomials Pﬁ and the coefficients Aﬁ for
the cylindrical geometry are discussed in reference [15].

Thus far no approximation has been introduced; if the series were
fully represented by an infinite series i.e. 'n’ allowed to take on

values from zero to infinity, then the treatment is exact. In practice,

the series is truncated after a finite number (N) of terms; this leads to
what are known as the PN approximations. The number of terms considered
depends on the physical nature of the problem. For isotropic variations
in intensity P1 or P3 expansions are normally used. For anisotropic
problems it may be necessary to resort to higher order approximations.
Higenyi [15] has obtained solutions using P3 and P5 approximations. This
method has also been applied by Yucel and Bayazitoglu to investigate

radiative transfer in nongray planar media [14]. The current study
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considers the P3 approximation.

2A.6 Moment equations and boundary conditions

2A.6.1 One dimensional Planar Geometry

Substituting the expressions for the coefficients An and the
Legendre polynomials Pn(u), the spectral intensity iA(z,u,A) for a one-

dimensional planar geometry may be expanded in a P3 approximation to give

iA(z,p,A) = (1/4w)[ ioA(z’A) + 3ui1A(z,A) + (5/4)(3#2—1)[3i2A(z,A)
— iy (2,00 + (174 (58 -3 51 (2,0) - 31 ,(2,00] | 2-10

Integrating over A, this may be cast in the multigroup form as

. _ . . 2_ . .
iy (2,0) = (1/41)[ iog(2) + 3l (2) + (5/4)(3W7-1)81,,(2) - ig ()]

+ (1/0) (5530 (51, (2) - 3 (2)] ] 2-11

The multigroup transfer equation for the intensity of radiation in a
homogeneous medium (with constant interaction coefficients over space)

may be written as

6i (z,p) o, I 0
_ . - : s ! ! 4 —
m ——53;——— = Ky 1bg(z) ﬂg 1g(z,u) + Z;E 47r1g (z,pu')d 2-12

Noting that the integral in the last term of the above equation is

the scalar flux i__(z), the above equation may be rewritten as

og
di_(z,p) _ . ggg .
u __EEE__— = ng 1bg(z) - ﬂg 1g(z,p) + ( yr ) 10g(z) 2-13

As mentioned in the previous section, the above equation is
successively multiplied by p(k) for k =0, 1, 2, 3 (and equation 2-11

substituted for ig(z,u) ) and then integrated to yield the following




-23-

moment equations

di1 (z) ‘
—Ezg——_ = ng( 4ebg(z) - 10g(z) ) 2-14(a)
di2 (z) . )
—a;g——- = —(ng + asg) 11g(z) = —ﬂg 11g(z) 2-14(b)
disg(Z) (4/3) k e, (z) - p_ 1, (z) + (o /3) i (z) 2-14(c)
iz = g bg g 28 8g og
di4 (z) .
——g——dz = —ﬂglsg(z) 2-14(d)
and the closure condition
i4g(z) = (6/7)i2g(z) - (3/35)i0g(z) 2-15

where ebg(z) is the hemispherical emissive power for group ‘g’ and is

- - 3 3 1oyt
where Fg = Fo—Al Fo—Au is the black body fraction [13] for group ‘g’,

A
o is the Stefan-Boltzmann constant, and T(z) is the temperature at z.

We define the following normalized quantities

r:ﬂmz;d'r=ﬂmdz;D[]=d/dT[]
w_ = asg/ﬂg ; ag = ﬂg/ﬂm
Lg(®) = ikg(z)/43’1‘: . 8(z) = T(2)/T,

A 4 4
Ebg(z) = ebg(z)/oTr = 4Fg9 (z)

where ﬁm is the maximum extinction coefficient, 7T represents the optical
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length, wg is the scattering albedo for group ’g’, ag is the ratio of the
extinction coefficient for group ’g’ to ﬂm’ Tr is the reference
temperature and ikg(z) represents the k’th moment for group ’‘g’.

Dividing the equations 2-14 and 2-15 all through by 4ﬂm3T: the

moment equations may be rewritten in terms of the normalized quantities

DIlg[r] = ag(l—wg)[Ebg(r) - Jog(r)] 2-16(a)

Dlzg[r] = - agllg(r) 2-16(b)

Dlsg[r] = ag[(l—wg)/3] Ebg(r) - aglzg(r) + (agwg/S) Iog(r) 2-16(c)

DI [7] = - aglsg(r) 2-16(d)
and

I4g(r) = (6/7) Izg(r) - (3/35) Iog(r) 2-17

The above set of four linear differential equations are manipulated
arithmetically to give the following set of two second order differential

equations

2 2
D Iog[r] + ag [ (35/3)I2g(r) - {ﬁo(l—wg) + (35/9)w;} I_(7)

og
0 2-18(a)

+ (55/9) (1) B, _(7) |

"
o

2 2
D Izg[r] + ag(l—wg)[Ebg(r) - Iog(r)] 2-18(b)

Boundary conditions

Marshak boundary conditions [15] are applied to the two boundaries
which are assumed to be black walls maintained at constant temperatures

T, (at z = 0) and T, (at z = 2L) respectively. Thus
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-1 -1
f u(k) ig(z,u) a0 = I p(k) ibg(z) dn k=1, 3,5 2-19(a)
u=0 u=0
0 0
[ u® i, (z,0 0 = [ u® i () 41 k=1,3,5..  2-19(b)
pu=-1 u=-1
for z = 0 and z = 2L respectively.
Substituting equation 2-11 for ig(z,p) in equation 2-19 and
evaluating the integrals for k = 1 and k = 3 we get
at z =0 (7 =0)
3i0g(o) - 16ilg(0) + 1512g(0) = 32ebg(0) 2-20(a)
—2i0g(0) + 30i2g(0) - 32i3g(0) = 32ebg(0) 2-20(b)
and at z = 2L (7 = ro)
3i0g(ro) + 16ilg(ro) + 15i2g(ro) = 32ebg(ro) 2-21(a)
—210g(ro) + 3012g(ro) + 32i3g(ro) = 32ebg(ro) 2-21(b)

A
Dividing through by the factor 40T: the above equations may be

written in terms of the normalized quantities as

3Iog(0) - 1611g(0) + 1512g(0) = 8Ebg(0) 2-22(a)
-2Iog(0) + 3012g(0) - 3213g(0) = 8Ebg(0) 2-22(b)
3Iog(ro) + lﬁllg(fo) + 1512g(ro) = 8Ebg(ro) 2-23(a)

-210g(ro) + 3012g(r0) + 3213g(r0) 8Ebg(fo) 2-23(b)
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Eliminating Ilg and I3g using the moment equations 2-16

7T =0

4
3 aglog(O) + 15 agIzg(O) - 16 Dlzg[O] -8 agF'gG1 =0 2-24(a)

-2 aglog(O) + 30 aglzg(O) - (192/7)D12g[0] + (96/35)D10g[0]

8aFe8! = o 2-24(b
ag 81 (b)
T=1,
4

3 aglog(ro) + 15 aglzg(ro) + 16 Dlzg[ro] -8 agFg62 =0 2-25(a)
-2 agIog(ro) + 30 aglzg(ro) + (192/7)D12g[70] - (96/35)DIog[TO]

8aFB = o 2-25(b

ag % 5(b)

2A.6.2 One dimensional Cylindrical Geometry

The multigroup transfer equation for this case may be written as

di (r,0,p) di (r,0,p) .
1 ——ga;————— - (1/1‘)1’7 —_EEZ_____ = —ﬂglg(r,ﬂ,p) + nglbg(r)
+ (ag/4w)i0g(r) 2-26

where 1r and l,7 are the direction cosines along the r and n directions

and are given (from figure 2-3) as

lr = 8in(8) .cos(p) ; 1’7 = cos(8).cos(p)

Multiplying the above equation successively by powers of lr (l:k)

for k = 0, 1, 2, 3) the following moment equations may be derived for the

P3 approximation [15]

(rm) §[ri (0] =k laey (1) - 1 ()] 2-27(a)

L



-27-

(r) 2-27(b)

. 2
—ﬂgllg(r) + (5—

2 d 2. .
(1/r%) i [r 12g(r)] r)10g

d

(/1) IF [rsisg(r)]

. 8 ..
—ﬂglzg(r) + (5?)11g(r)

+ (osg/3)i0g(r) + (4ng/3)ebg(r) 2-27(¢)

4, d 4, . . 2 5.
() Sfrti, (0] = B0 + (8D, - GG 2-27()

and the closure condition
i4g(r) = (6/7)i2g(r) - (3/35)i0g(r) 2-28

Defining the following normalized quantities

T=28

LT dr = B dr ; D[ 1 =d/dr[ ]

and recalling the earlier definitions, the above equations may be

rewritten in terms of the normalized quantities as

(I/T)D[Tllg(T)] = ag(l—wg)[Ebg(r) - Iog(r)] 2-29(a)
2 2 2

(1/7°)DI7 Izg(T)] = - agllg(r) + (5;)Iog(f) 2-29(b)
3 3 8

(1/7°)Dl7 Iag(T)] = - aglzg(f) + (g?)llg(T) + (agwg/3)log(r)

+ ag[(l—wg)/318Ebg(T) , 2-29(c)

4 4

(1/7°)Dl7 I4g(T)] = - aglag(f) + (7;)12g(f) —(53;)Iog(r) 2-29(d)

and

I4g(T)

(6/7)12g(r) - (3/35)Iog(f) 2-30

Again the above set of four linear differential equations may be

reduced to the following set of two second order differential equations
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2 1 26 2 52
D1, 0r1 - Gt tr) + @on, )+ a2[ {(E2) + wsrmlr, (0

37
52 ]
-.{(912) + 10(1—wg) + [(35/9)wg]}40g(r) + (55/9)(1—wg)Ebg(r) ] = 0
2-31(a)
D’1,, 071 + GD1, (] - GODI (] + (1w ) [E (1) = 1 (D] = 0
2-31(b)

Boundary conditions :

The Marshak boundary condition [15] is applied at the surface of the
cylinder (7 = To) which is assumed to be a black wall maintained at a
constant temperature T2; a reflected boundary condition is applied at the
center of the cylinder where the temperature, the scalar flux and the
spectral radiative heat flux are maximum. Hence we get the following set

of boundary conditions

7T =20
DIOg(O) =0 2-32(a)
DI, (0) = 0 2-32(b)
T=1,
32 32
3(ag - 3,ro)log('ro) + (15ag + To)Izg(To) + 16D12g[70]
4
—8agFg92(To) = 0 2-33(a)
= 64 192 192
(2ag + 770)10g + (30ag + 71_0)12g(1'0) + ( - )Dlzg[ro]

96 4
- (§E)Dlog[70] - 8agFg92(ro) = 0 2-33(b)
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2B: Thermal Equilibrium and Ignition

2B.1 Heat generation

This study concerns radiative heat transfer in a medium with heat
generation which is temperature dependent. This heat generation results
from the exothermic nature of the oxidation reaction of pulverized coal

and can be described by the Arrhenius equation [2]

-

H(T) = A Exp[-E/RT(r)] 2-34

where R is the universal gas constant.

The quantity E is called the activation energy for the reaction and
depends on the chemical kinetics of the reaction; 'A’ is known as the
pre-exponential factor and depends on the physical conditions, such as
the temperature and pressure, existing in the medium.

Normalizing the temperature T(?) and the activation energy E with

respect to the reference temperature Tr’ we define

A A
e(r) T(r)/Tr

a

E/RT
T

Hence the above equations may be rewritten in terms of the

normalized quantities as

H(T) = A Expl-a/8(1)] 2-35
Rewriting the above equation in terms of the optical length 7

H(7) = A Expl-a/8(7)] 2-36

2B.2 Overall energy balance

Neglecting conductive and convective heat transfer, the net energy
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balance for a differential volume AV may be written as

Heat generated in AV = Theat radiated from AV

Thus
¥
H(7) . AV = V.qR(r).AV
Substituting equations 2.9 and 2.36 and recalling all the previous

normalizations

IGM
A Exp[-a/8(7)] =g§1ag(1—wg)[Ebg(T) - Iog(f)] 2-37

2B.3 Thermal Equilibrium

The theory of combustion deals with the combined system of equations
of chemical kinetics, heat transfer and diffusion. The reaction rate
always depends on the temperature in a non-linear fashion (given by the
Arrehenius expression). Such a non-linearity is an important
characteristic of combustion phenomena.

Thermodynamic equilibrium is achieved only if there is sufficient
time for all the reactions to reach their equilibrium state. In the
burning of coal, such a state is referred to as "thermal equilibrium"
viz. an equilibrium between the rate of heat generation from the chemical
reactions involved and the rate of heat removal from the system by
radiative transfer. The study of such equilibrium states helps in
predicting the onset of ignition in the coal particles.

Ignition results from a non-feasibility of equilibrium between the
reacting system and the surrounding medium. This depends on the

parameters affecting the reaction rate and the release of heat or active
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products into the medium. Ignition can be brought about by changing any
of the following parameters

(i) The physical properties of the mixture such as the temperature,
pressure, composition, coefficient of thermal diffusivity and the
diffusion coefficient.

(ii) The dimensions of the syftem.

Ignition may also be brought about by an artificially induced
disturbance to the equlibrium state which exists for the given initial
conditions.

Figure 2-4 gives a typical heat generation rate variation in a
combustion chamber. The coal suspension is assumed to be maintained at a
temperature T. With all the other parameters such as fuel type, particle
size and the fuel/air flow rate invariant, the figure illustrates the
dependence of the volumetric heat generation rate H on the temperature T
at that location in the medium. It is observed that H starts off at a
low value for low temperatures, rises steeply with increasing
temperatures, and finally levels off at a value Ho (which depicts the
maximum value for that fuel supply and the onset of diffusion control in
the reaction ). For an efficient production of energy it is desirable to
design the combustion chamber such that H approaches H0 at as high a
temperature as possible.

Figure 2-5 illustrates a typical heat removal rate QR (= V.qﬁ (0) )
curve for fixed wall temperature Tw; the curve shows the dependence of
this function on Tw‘

Superposition of figures 2-4 and 2-5, viz. the rate of heat

generation and heat loss, gives the equilibrium states in the system.
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Heat Removal Rate to the Wall
of a Combustion Chamber (Ref. [4])
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This is shown in figure 2-6; three different heat removal rate curves are
superimposed on a typical heat generation curve. Depending on the the
nature of the heat removal curve, two equilibrium cases are possible

(i) The heat removal curve intersects the heat generation curve at one
point only.

This may be further be subdivided into two cases

(a) The point of intersectiogtlies on the limb s1 of the heat
generation curve - this represents a stable equilibrium state without
ignition, viz. the lower equilibrium temperature,

(b) The point of intersection lies on the limb 83 of the heat
generation curve - this represents a stable equilibrium state at the
higher temperature indicating that ignition has already occurred.

(ii) The heat removal curve intersects the heat generation curve on all
the three limbs s1,s2 and s3. The middle state denotes an unstable
equilibrium state and is physically unattainable. A small displacement
in the suspension temperature will move the point of intersection to one
of the two equilibrium states.

In case (ii), the point X represents the equilibrium state where the
amount of combustion is negligible and the temperature is close to the
inlet temperature. The point Z represents the equilibrium state where
the degree of combustion approaches completion- leading to the onset of
ignition. Physically, X and Z correspond to unignited and ignited
states respectively. It is the former state which normally occurs in a
combustion chamber though a small input of heat source at this point can
lead to ignition. The presence of an initial heat source (eg. sensible

heat of inlet fuel/air) would normally result in the ignited state.
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2B.4 Ignition

As seen in the previous section, ignition occurs when the upper
equilibrium state (at the higher temperature) is reached. This state
might already exist in the system, or, if the system is in the lower
equilibrium state, a small displacement in the equilibrium state will
lead to ignition. .

When there is only one possible state of equilibrium (cases (i)(a)
and (i)(b) in section 2B.3), then a change of state in the suspension
(between X’ and Z’ in figure 2-6) can be brought about only by a
permanent change in the system. These states X’ and Z’ represent highly
stable states since a temporary change in the input conditions (which are
subsequently brought back to the initial conditions) will result in a
corresponding temporary displacement from the equilibrium and a
subsequent return to the original equilibrium state. A permanent change
in the system, however, results in a different pair of heat generation-
heat removal curves, and leads to the change of state from X’ to Z’ or
vice versa, leading to ignition or to the lower equilibrium state
respectively.

Contrary to this, when there are two equilibrium states such as X
and Z, a temporary change in the input conditions is sufficient to change
the equilibrium state. In this case ignition can be achieved by using an

independent heat source such as a match or an electric discharge.




CHAPTER 111

CROSS-SECTIONS AND INTERACTION COEFFICIENTS

3.1 Radiative properties of polydispersions

It is necessary to know the radiative properties of polydispersions
in order to analyze radiative heat transfer in combustion chambers.
These properties depend chiefly on the particle size distribution, the

refractive index- which varies with the wavelength of radiation and the

type of coal, and the spatial distribution of the particles in the

chamber. Even if the optical and physical properties of the coal are
given, it is often quite difficult and time consuming to determine the
exact radiative properties of the particles; hence certain assumptions

are made to arrive at these properties.

3.2 Mie theory [8]

In principle, the exact interaction behavior for radiation may be

obtained from a rigorous treatment and solution of the Maxwell’s

electromagnetic wave equations that govern the radiation field for the
medium-particle system. The solution however tends to be extremely
complicated even for simple particle geometries, and hence in practice,
some simplifications are resorted to, one of which is to treat the
scattering particles as homogeneous spheres.

This approximation leads to the Mie [8] theory for determining the
interaction probabilities. This theory describes the scattered intensity
when a plane wave strikes a spherical particle; exact solutions are also
available for other regular geometrical shapes, e.g. cylindrical

particles. One must bear in mind though that pulverized coal and other

36
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particles in a combustion chamber are neither homogeneous nor perfect
spheres. However, it has been shown [1] that Mie theory can be extended
to clouds of non-spherical particles of equivalent area since the
radiative properties of the cloud are not very much dependent on the
exact geometry of the particles. Lee and Tien [16] have recommended the
cylindrical shape assumption for the particles.

Mie theory, which is one of the most extensively models used to
predict the radiative properties of particles, essentially involves
solving the Helmholtz equation by expanding the electric field in an
infinite series of eigen functions. In general these are double series
and are quite difficult to evaluate. By applying the equations to simple
geometries like spheres and long cylinders however, they can be reduced
to a single series, thus rendering a solution both feasible [8] and
economical using a mainframe computer.

The CALLBH code [8], which applies the Mie theory, yields the
spectral scattering and extinction efficiencies Q,7 for spherical
particles which may then be combined with the particle size distribution
characteristics to yield the corresponding interaction coefficient. For

a single particle of diameter D this can be represented by [17]
(N = Q (D,A,1)) (xD%/4) N 3-1

where N represents any spectral coefficient (absorption Ky extinction
ﬂA or scatter asA) and Qﬂ is the corresponding efficiency factor as a
function of the size parameter (#D/A); N is the number density of the
particles. All quantities correspond to the wavelength A. Thus the

efficiency factor may be thought of as a ratio between the physical
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surface area and the corresponding interaction coefficient of the
particle.

For a distribution of particles

- - 2
7,(ny,N) = Iw (D,A,n,) (aD”/4)f(D) N diD] 3-2
Ay no A
where f(D) represents the size distribution of the particles normalized
to unity, viz. -
jm f(p) d[D] =1 3-3
D=0

The complex index of refraction is an important optical property
required in calculating the radiative characteristics of polydispersions
[17)]. Though it is quite straight forward to take into account its
variation with wavelength, such a treatment is computationally time
consuming and hence expensive. In theory, one could incorporate this
behavior and formulate the problem. In practice however, these effects
may be neglected in order to simplify the treatment [17]; hence it has
not been considered in this study.

The other important factor which influences the radiative properties
is the size parameter, aD/A, which is the size of the particle
relative to the wavelength of the radiation. Depending on their size
parameter, particles may be classified into three categories [8]

(i) Large particles (xD/A > 5) ,
(ii) Small particles (#xD/A < 0.6/n) , and
(iii) Intermediate particles (0.6/n g 2D/A £ 5)
where ’'n’ is the real part of the complex of index of radiation.

Whereas the "general Mie theory" may be applied to all of the above
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cases, it is usually limited to the particles belonging to the
intermediate size range (case (ii)). Cases (i) & (ii) are treated as
simplifications to the solution of the Maxwell’s equations [8].

For the particle size distribution considered in this study, the
diameter D ranges from 1 to 70 um; the wavelength range for the group
structure chosen extends from 1 §9 30 um. For an ’'n’ value of 1.7 (for
the coal used in this study), this results in the size parameter ranging
from 0.1 to 220; hence the size distribution incorporates particles from
all the three classes. Therefore the scatter and absorption coefficients
obtained from the application of the general Mie theory would be most

suitable for this study.

3.3 Multigroup coefficients

In order to discretize the wavelength variable A, it is desirable to
obtain average interaction coefficients which are constant over the
wavelength interval AAg for group ’g’ so that the entire wavelength
spectrum of radiation may be divided in to a finite number of energy
groups. These interaction coefficients are called group coefficients and
have been introduced in chapter II. Various weighting functions are used
in radiative transfer studies to integrate the spectral interaction
coefficients over the groups. If f(A) represents a typical weighting
function, then the group interaction coefficient 7g for group ‘g’ bounded
by the wavelength limits Agl and Agu (the lower and upper group limits)

is given by
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Agu
f AV dA
Ay
'7g = \ 3-4
gu
j £(A) dA
A

gl

where 7g represents any interaction coefficient (absorption, scatter or

-

extinction) and the weight function f(A) is normalized to unity viz.

Agu
j £OA) d = 1 3-5
A

gl

Some of the weighting functions used in radiative transfer and also
in this study to collapse the spectral coefficients into discrete group

values are

(i) Unit weight function

f(A) =1
This gives
i% Yierz Pier ~ )
Noo= Acg 3-6
¢ ) (Ai+1 - Ai)
ieg

which represents the numerical integration of the fine point structure

within the group ‘g’ and Yi+1/2 and A are the mean values within

i+1/2

the fine structure.
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(ii) Planck function [17]

2701
f(A) = ebA(A,T) = 5
A [exp(CZ/AT) - 1]

where Cl and C2 are constants in Planck’s spectral energy distribution

with the values

-

C, = 0.59544 x 107'% ym? C, = 14388 pm-K
Recalling that
i+1
j e, (A\,T) d\ = (F.  -F.) of* = AF, or*
A bALA ir1 T T i

black body fraction [13] for Ai at temperature T

[
:
[
or
|

.2 Tit1/2 AFi .2 Tit1/2 AFi
_ ieg _  leg
Tg = = 3-7
Y AF, F
. i g
ieg

(iii) Rosseland function [17]

An inverse weighting function is applied with the following

definition for the interaction coefficient




-42-

de, (A, T)
[ wwon,
AN

daT
No= E 3-8
{1/9(N)} — g d\
A\
g
In the discretized form we get
’ ’
ig aF; - ["i+1 P~ Vi Fy ]}
T, = & 3-9
’ ’
2 [1/7i+1/2]{%pi - [vi+1 it ™ Yy Fi]}
ieg
where
, dFi
Fi = v vV = C2 /AT

It is observed here that the group interaction coefficients
generated using the Planck and Rosseland weight functions are dependent
on the temperature of the medium. Hence, in principle it is necessary to
update these coefficients during the computation of the spectral
intensity and the temperature for an exact treatment of the problem.

This renders the problem more complex as well as more expensive to solve.
However it is found that by a judicious choice of the group boundaries,
this artificial temperature dependence introduced through the weighting

function may be minimized.

3.4 The interaction coefficient data

As mentioned in chapter I, this study assumes a realistic coal
sample instead of a mathematical distribution; this is preferable in the
analysis and design of combustors and furnaces in order to get a better

feel for the order of magnitude of the temperatures and critical
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conditions that may be expected in such systems.

The particle size distribution used in this study is one of the
three used by Menguc and Viskanta [12]. The sample consists of
pulverized lignite coal with a refractive index of 1.7 - 0.066i. The
size distribution is presented in table 3-1.

The XSNGEN code has been used to generate the cross-sections and to

obtain the extinction and scatter coefficients for the above size

distribution. This fine point structure has then been collapsed to give

a seven group structure using the code XSN.COLAPS which was developed for I

this study. These data have been generated using the three weighting
functions mentioned in the previous section. The group boundaries have

been manipulated to give a group structure with minimal dependence on the

temperature; the values have been listed in table 3-2. It is desirable
to select a group structure with the minimum number of groups (in order
to reduce computational efforts) which will give a good representation of
the spectral behavior of the interaction coefficients. With some trial il
and error, a seven group structure has been found to meet this criterion.

Finally the extinction and scatter coefficients have been determined
for a one group structure (table 3-3a) so that the nongray results may be

compared with the equivalent one group (gray) results for which the

coefficients were calculated using the Planck and the Rosseland weight
functions at two temperatures (10000 K and 2500° K) each and the
arithmetic mean of the four values taken to give representative values;
this is presented in table 3-3b.

Figure 3-1 shows the spectral variation of the absorption, scatter

and extinction coefficients in the wavelength range 1 to 60um. The
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Planck function (normalized with the maximum value of the extinction
coefficient) has been overlayed in order to identify the wavelength
region of importance for determining the group structure. This is seen
to fall in the range 0 < A < 30um. The range selected for this study is
1 A g 30 pum since the blackbody fraction for A < 1 um at 1000 K is
found to be negligible. Figure 3-2 gives the spectral behavior of the
interaction coefficients in this range of interest. I
The extinction coefficient ﬂg's for the seven group structure is
shown in figure 3-3 for two different temperatures and the three
weighting functions (unit, Planck and Rosseland). As discussed earlier,

it can be seen that by an appropriate choice of the group boundaries the

artificial temperature dependence of the extinction coefficient has been

minimized.




TABLE 3-1

Typical size distribution for Pulverized Coal [12]
(Coal density 1300 kg/m , bulk density 0.133 kg/m )

3
Range Dmi (wi/w)/Dmi Fi
(pm)  (pm) (%)
1-10 5 4.08E-1 97.66
10-20 15 9.19E-3 2.20
20-40 30 5.56E-4 0.13
40-70 55 1.80E-5 -
70-up - - -
TABLE 3-2

Interaction coefficient data for a 7-group structure
(Planck weight function at 1000 K)
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Alum] osg[llm] ﬂg[l/m] wg Fé

1 -3 2.5534 E+01 4.7163 E+01 5.4140 E-01 2.7290 E-01
3 -4 3.1309 E+01 5.1956 E+01 6.0261 E-01 2.0763 E-01
4 - 6 5.0579 E+01 6.8628 E+01 7.3700 E-01 2.5693 E-01
6 -8 5.0364 E+01 6.5199 E+01 7.7247 E-01 1.1846 E-01
8§ - 10 3.7899 E+01 5.0191 E+01 7.5510 E-01 5.7908 E-02
10 - 15 2.4165 E+01 3.3407 E+01 7.2336 E-01 5.4779 E-02
15 - 30 1.3920 E+01 1.9241 E+01 7.2346 E-01 2.6358 E-02




TABLE 3-3a

Interaction coefficient data for a l-group structure
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n wt. fn. osg[llm] ﬂg[l/m] W

1 Planck(1000° K) 3.6493 E+01 5.4539 E+01  6.6911 E-01

2 Planck(2500° K) 2.8048 E+01  4.8858 E+01 5.7406 E-01

3 Ross (1000° K) 3.0544 E+01 5.1062 E+01  5.9818 E-01

4 Ross (2500° K) 2.5810 E+01  4.7187 E+01  5.4696 E-01
TABLE 3-3b

Mean Interaction coefficient data for a l-group structure

g Alpm] osg[llm] ﬂg[l/m] W,
1 1 - 30 3.0224 E+01 5.0412 E+01 5.9953 E-01
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CHAPTER IV

RESULTS AND CONCLUSIONS

The FORTRAN code PN3 developed for solving non-linear radiation
problems has been applied to study thermal radiation in combustion
systems in pulverized coal media. Several test cases have been solved
involving gray and nongray media in both planar and cylindrical

geometries.

4.1 Planar gray

Gray problems in a planar medium bounded by black walls maintained
at a constant unit temperature (dimensionless) have been solved in order
to validate the method and to verify the correctness of the code; the
results obtained by Crosbie and Pattabongse [3] are taken as reference.

The temperature distribution in the medium has been compared for
both uniform heat generation (H = 1.0, a = 0.0) and Arrhenius heat
generation (H = 1.0, a = 1.0) in the medium. These results are presented
in tables 4-1 and 4-2 respectively for three different optical
thicknesses (To). In both problems, the results for all cases compare to
within one percent of Crosbie and Pattabongse’s. These two sets of
results apply to the case of a non-scattering medium (w = 0.0).

The results obtained in this study with regards to conditions
leading to ignition are also found to be compatible with those of Crosbie
and Pattabongse. As discussed in chapter II, two equilibrium states in
the system are observed for higher values of a. As we move along the
lower curve we approach the critical heat generation coefficient Hc’

beyond which the lower temperature equilibrium state ceases to exist.

50
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Any further increase in H will cause ignition in the medium with only the
high energy solution feasible . Crosbie and Pattabongse [3] have also
obtained solutions corresponding to an intermediate equilibrium state for
a certain range of H < Hc; the actual solution obtained depends on the
initial guess for the temperature and the intensity distribution in the
medium. This third equilibrium state is highly unstable and can only be
obtained within a very limited ran&e of initial guess; it has not been
possible to obtain this solution for any of the cases studied in the
present work.

The critical heat generation constant Hc (maximum value of H for
which a lower temperature solution exists) has been determined for
various optical thicknesses T scattering albedos w and the exponential
factors a. The effects of these parameters on Hc are found to be
consistent with those observed by Crosbie and Pattabongse. Increasing
the scattering albedo w is found to decrease the critical heat generation
coefficient Hc. This is so because introducing scattering in the medium
renders it more difficult for the energy to escape from the medium. A
similar effect is noticed when the optical thickness of the system (ro)
is increased. Thus, ignition occurs at lower energies (Hc) for
increasing o and w.

Numerical values for Hc for these various cases are given in table
4-3 and compared with those obtained by Crosbie and Pattabongse. The
relative difference between the two sets of results is found to vary
between 0.28 percent for a =10.0, 7_ =1.0, w = 0.9 and 33.4 percent for

0

a=10.0, Ty = 10.0, w = 0.0. In general the values of Hc are found to

agree within 5-10 percent.
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The method of solution employed by Crosbie and Pattabongse is exact
whereas the P3 method adopted in this study is an approximation to the
third order. This is one possible cause of discrepancy in the two sets
of results. The second and more important cause could be the fact that
there is no definite criterion to define an exact value for the critical
heat generation Hc’ As may be seen from the 'S’ curves, this value is
reached very gradually and it becomes increasingly difficult to obtain
the solution for the lower temperature as the value of Hc is approached.
Hence the determination of Hc depends on the iteration parameters and the
incremental value of H; it may be mentioned here that though the value of
Hc varies somewhat, the corresponding difference in the temperatures is

observed to be minimal.

4.2 Planar nongray

The seven group and the one group interaction coefficients generated
with the size distribution used by Menguc and Viskanta [12] have been
used to study the effect of treating a nongray problem as an equivalent
gray problem; a comparison is made of the results obtained from using
these two group structures.

Two geometrical lengths 2L = 0.1 m and 0.2 m have been considered.
These correspond to optical thicknesses of 6.86 and 13.72 in the seven
group model (based on the maximum group extinction coefficient) and to
5.04 and 10.08 in the one group model respectively.

The temperature distribution in planar systems with black walls
maintained at a constant dimensionless temperature of 1.0 is shown in
figure 4-1. The maximum temperature for all cases is found to occur at

the center; this is as expected since the system is symmetric about the
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center, thus causing an equivalent reflected boundary condition about the
midplane. This symmetry is apparent from the temperature distribution
curves. The temperatures correspond to the lower equilibrium state for
various a’s with 2L = 0.1 m and H = 10.0. The temperatures obtained from
the seven group model are found to be higher than those obtained using
the one group model for all cases, though both models tend to give a more
or less flat distribution for large a’s. Since the seven group structure
is a more detailed and accurate representation of the interaction
coefficients, it may be deduced that the equivalent gray model tends to
underestimate the temperatures in the system.

The relative difference in the maximum temperature between the two
models is found to be 11.48 percent for a = 1.0, 18.51 percent for a =
5.0 and 0.73 percent for a = 8.0. The small difference for a = 8.0 is
because of the fact that the heat generation term becomes very small with
increasing a, thus resulting in a flat temperature distribution in the
medium, with all temperatures being close to the wall temperature.

As discussed in the previous section, increasing H leads to a
discontinuous jump in the temperature; this multi-solution behaviour for
the seven group model, for various values of a, is shown in figures 4-2
and 4-3. The curves are observed to be continuous for small values of a;
the characteristic ’S’ curves are observed for higher values of a. For
these cases the upper level temperature solution is obtained by starting
at a large value of H and moving towards smaller values of H. The
opposite of this viz. starting with a value of H less than Hc and
increasing H in subsequent steps, is not possible. Similarly, in order

to obtain the lower equilibrium temperatures, convergence is achieved by
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starting with a small value of H and moving along the positive H axis.

It can be observed from the above figures the that greater the value
of the dimensionless activation energy a, the more abrupt the jump from
the lower to the higher equilibrium state or in other words, the more
pronounced the ignition effect.

The critical heat generation coefficient Hc determined using the
gray and nongray models are tabula%ed in table 4-4. The results for 2L =
0.1 mand 0.2 m and for a = 8.0, 9.0 and 10.0 are presented. The
relative difference in the values of Hc using the two models is found to
vary between 35.67 percent for 2L = 0.2 m, a = 8.0 and 38.48 percent for
9L = 0.1 m, a = 10.0. The corresponding S-curves for the two models have
been compared in figure 4-4. It is observed that for a given value of a,
the seven group nongray model requires a lower energy (Hc) to induce
ignition. The rise in the temperature however is found to be larger for
the multi-group case thus indicating a "stronger” ignition process for
the nongray model. Also, the value of Hc is found to be consistently
lower for increasing optical thickness 7 since more energy gets trapped
within the suspension for higher 7.

Finally, the surface radiative heat flux (at z = 2L) has been
plotted vs. H in figure 4-5 for the multi-group model. Curves are
presented for three different values of a. The behavior of the surface
heat flux is found to be similar to the surface temperature variation
(figures 4-2 and 4-3). The curves are continuous for a values lower than
a critical value (7.0-8.0). Multi-solution behavior is observed for a =
8.0. The non-gray model is found to give higher estimates for the

surface heat fluxes as compared to the equivalent gray model.
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4.3 Cylindrical nongray

The problems solved for the planar nongray model have been repeated
in the cylindrical geometry using the same interaction coefficients;
similar tables and figures have been generated.

The temperature distribution for the lower equilibrium state in the
medium for the two models with R = 0.1 m, H = 10.0 and for different
values of a, have been compareé'in figure 4-6. Once again the one group
structure is found to underestimate the temperatures in the medium. The
relative difference in the maximum temperature between the two models is
found to be 11.85 percent for a = 1.0, 17.81 percent for a = 5.0 and 1.17
percent for a = 8.0. Again, the small value for this difference at a =
8.0 is due to the flattening of the temperature distribution in the
medium at this large value of a.

A slight shift in the maximum temperature is observed to cause a dip
in the center. This results from the P3 approximation to the radiative
transfer equation.

Figures 4-7 and 4-8 show the multi-solution behavior for radial
dimension of 0.1 m and 0.2 m respectively for the seven group model; the
curves depict this behaviour for various a’s.

Table 4-5 compares the critical heat generation coefficient Hc given
by the seven group structure and the equivalent one group structure. Two
radial dimensions 0.1 m and 0.2 m corresponding to optical thicknesses of
6.86 and 13.72 in the seven group model and 5.04 and 10.08 in the one
group model respectively are considered. The three a's considered are «
= 8.0,9.0 and 10.0. The relatively difference in Hc between the two

models is found to vary from 37.17 percent for R=0.2 m, a = 8.0 and
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38.48 percent for R = 0.1 m and a = 10.0.

The ’S’ curves for the two models with @ = 10.0 are shown in figure
4-9; the curves are presented for R = 0.1 m and 0.2 m As in the planar
case, the one group structure is found to overestimate the critical heat
generation coefficient Hc and shift the curves to the right.

The surface heat flux (at r = R) variation is compared for the gray
and nongray models in figure 4—f0. The variation is compatible with that
observed in the slab model. Multi-solution behavior is seen only for the
case where a = 8.0. Again the nongray model predicts higher values for
the surface heat fluxes.

The multi-solution behavior is observed in both planar and
cylindrical systems in both gray and nongray media whenever the value of
the exponential factor ’a’ is greater than a critical value. It is
interesting to note that this value seems to lie between 7.0 and 8.0 for
all cases regardless of the geometry of the system, the optical
properties (interaction coefficients) of the medium or the geometrical
dimension of the system. Prior studies [3] have found this value to be

around 7.5.

4.4 Conclusions
The methodology and the computer code developed here may be applied
to various non-linear radiation problems with a temperature dependent
heat generation in the system. In comparing the results for pulverized
coal combustion problems, it is meaningful to compare temperatures and
intensities in the medium. However, in order to compare asymptotic
values such as the critical heat generation coefficient Hc’ one would

have to come up with standard criteria to determine the value to a
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certain degree of accuracy.

The computer runs for the nongray problems have mostly been run on
the IBM 3084; some of the cases were run on the IBM 3090 super computer.
The installation of the new super computer motivates further research in

this and related areas.
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TABLE 4-1

Temperature distribution for uniform heat
generation (H=1.0, a=0.0, w=0.0)

8(7)
r/ro present method Crosbie rel diff. (%)

ro=0.1 R

0.0000000 1.2081 1.2131 - 0.412

0.1182402 1.2085 1.2160 - 0.617

0.2896810 1.2090 1.2180 - 0.739

0.5000000 1.2091 1.2187 - 0.788
ro=1.0

0.0000000 1.3285 1.3234 + 0.385

0.1182402 1.3543 1.3622 - 0.580

0.2896810 1.3766 1.3874 - 0.778

0.5000000 1.3871 1.3970 - 0.709
ro=10.0

0.0000000 1.8334 1.8148 + 1.025

0.1182402 2.3140 2.3168 - 0.121

0.2896810 2.5821 2.5847 - 0.101

0.5000000 2.6687 2.6800 - 0.422
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TABLE 4-2

Temperature distribution for Arrhenius heat
generation (H=1.0, a=1.0, w=0.0)

()
‘r/r0 present method Crosbie rel diff.(%)

ro=0.1

0.0000000 1.0982 1.1011 - 0.263

0.1182402 1.0984 1.1028 - 0.399

0.2896810 1.0987 1.1040 - 0.480

0.5000000 1.0988 1.1044 - 0.507
ro=1.0

0.0000000 1.1760 1.1729 + 0.264

0.1182402 1.1889 1.1988 - 0.826

0.2896810 1.2080 1.2159 - 0.650

0.5000000 1.2153 1.2226 - 0.597
ro=10.0

0.0000000 1.6507 1.6347 + 0.979

0.1182402 2.0776 2.0806 - 0.144

0.2896810 2.3048 2.3231 - 0.788

0.5000000 2.3988 2.4099 - 0.461




TABLE 4-3

Critical heat generation coefficients for planar gray problems
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H
c
w present method Crosbie rel diff.(%)
8. 1. 0.0 337.20 334.00 + 0.96
8. 2. 0.0 172.90 188.90 - 8.47
9. 1. 0.0 753.50 738.00 + 2.10
9. 2. 0.0 385.90 419.60 - 8.03 .
9. 10. 0.0 31.17 46.00 - 32.24
10. 0. 0.0 3985.00 3763.00 + 5.90
10. 1. 0.0 1761.00 1708.00 + 3.10
10. 2. 0.0 892.00 970.00 - 8.04
10. 5. 0.0 240.50 320.00 - 24.84
10. 10. 0.0 71.00 107.00 - 33.64
10. 1. 0.2 1603.00 1560.00 + 2.76
10. 1. 0.5 1262.80 1237.00 + 2.09
10. 1. 0.8 683.00 677.40 + 0.83
10. 1. 0.9 387.30 386.20 + 0.28
10. 5. 0.2 237.30 314.80 - 24.62
10. 5. 0.5 228.00 299.00 - 23.75
10. 5. 0.8 197.50 249.00 - 20.68
10. 5. 0.9 161.40 194.70 - 17.10
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TABLE 4-5

Comparison of Hc for 7-group and l-group models (cylindrical)

He
a 7 group 1 group rel. diff.(%)
R0=0'1
8.0 30.80 -~ 42.30 + 37.33
9.0 68.50 94.50 + 37.90
10.0 158.00 218.80 + 38.48
R0=0.2
8.0 9.70 13.30 + 37.17
9.0 21.60 29.70 + 37.50

10.0 49.90 68.80 + 37.88
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Temperature Distribution in a Slab (Seven Groups)
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Temperature Distribution in a Cylindrical Medium (Seven Groups)
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APPENDIX A

Numerical method of solution to the system of equations

There are various numerical schemes available to solve the system of
equations derived in chapter II using the P-3 approximation. The method
used in this study is known as the collocation method [18]. The method
essentially consists of discretizing the spatial variable into a finite
number of mesh intervals and approximating the dependent variable
(temperature and intensity moments in our case) by Hermite polynomials
within each interval; The cubic Hermite polynomials are used in this

study and are given by

Hg(s) = 1-3s2+ 252
H;(s) = hi(s - 2s2 + sa)
0 2 3
Hi+1(5) = 3s° - 2s
1 3 2
Hi+1(S) = hi(s -s87)
where
h. = T. . —-T, = mesh spacing between nodes i and i+l
i i+1 i
s(r) = (17 - 'ri)/hi = relative distance within interval i

and 7 is the optical length.
The temperature 6 and the intensity moments Iog and I2g within a

mesh interval ‘i’ are approximated in terms of the node values of the

functions and their derivatives to give

8,(r) e(ri)n‘i’(r) + ne(ri)n;(r) + e(ri+1)n‘i’+l(r) + De(riH)H% (1)

1+1

0 1 0 1
Ioi(r) Io(ri)Hi(T) + DIo(ri)Hi(T) + Io(ri+1)Hi+l(r) + DIO(Ti+1)Hi+l(r)
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0 1 0 1
Izi(r) = Iz(Ti)Hi(T) + DIz(ri)Hi(r) + Iz(ri+1)Hi+l(r) + D12(1i+1)Hi+1(r)

The above equations are forced to satisfy the equations at two

collocation points given by Gaussian quadrature within each interval

... =T. . .. =T, .
711 i + 61h1 ’ 712 T1 + f2h1

where

w

fl =1/2 - 1/Y12 and 62 =1/2 + 1/Y12

Thus for IM intervals (IM+1 nodes) and IGM groups we get
2(1 + 2¥IGM)*IM equations. We also have 2(1 + 2*IGM) from the two sets
of boundary conditions thus giving a total of 2(1 + 2*IGM)*(IM + 1)
equations. Since we have (IM + 1) nodes, the number of unknowns is also
2(1 + 2*IGM)*(IM + 1); we thus have consistent system of equations.

For our seven group structure (IGM = 7) we have 2(1 + 14) = 30
equations per mesh interval and 30 boundary conditions.

These equations when cast into a matrix, resulted in a banded matrix
with both lower and upper diagonals and a band width of 30. The number
of mesh intervals chosen was 20 (21 mesh points). Increasing the number
of intervals to 50 was found to have no effect on the results. The MQA
algorithm [19] was used to solve the system of non-linear equations. The
pmaximum number of iterations and the maximum number of bisections were
set to 30 and 15 respectively. The smallest increment in H adopted was
0.1. For values of H not near Hc’ convergence was generally obtained
within 30 iterations and the CPU time taken on the IBM 3090 was in the
order of seconds for the planar case and in the order of a minute for the
cylindrical case. In the vicinity of Hc, both the number of iterations

required and the CPU time increased to higher values.
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