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ABSTRACT

A three~dimensional flux synthesis program called DOTSYN is developed
to estimate neutron fluence in light water reactors (LWRs). The main
purpose of developing this program is to provide the U.S. utilities with
an economical tool for routine three-dimensional fluence calculations at
various ex-core locations in a reactor, especially at critical pressure
vessel sites for embrittlement analysis. The synthesis is based on a
simple expression which uses lower dimensional flux values obtained from
2-D and 1-D transport theory calculations to approximate the desired 3-D
fluxes. 1In order to verify the accuracy and efficiency of the method, a
simulated PWR, similar in configuration to the Babcock and Wilcox
Arkansas Nuclear One Unit 1 (ANO-1) reactor, is modeled in three-
dimensional cylindrical coordinates, and calculations are performed with
the Three-dimensional Oak Ridge Transport code TORT as well as with
DOTSYN. Results by TORT are used as a reference three-dimensional
"benchmark'" solution, and DOTSYN results at various locations, especially
near the pressure vessel, are compared to this reference solution. The
error between TORT and DOTSYN results at the peak flux locations (8 = 9°)
at the inner surface of the pressure vessel varies between 0.367% at the
midplane and 4.73% at the bottom of the nozzle. The worst agreement was
found to be about 19.8% at the bottom of the nozzle at an azimuth of
about 39.5°. The above calculations are performed for five energy groups
for which the TORT calculation required about five CPU hours (on an IBM
3033 computer) whereas DOTSYN along with three DOT-IV (2-D discrete

ordinates transport code) runs took only about eight minutes of CPU time.,
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It is concluded that the 3-D synthesis method is a very efficient
method for estimating reactor pressure vessel fluence, which gives

acceptable accuracy even at axial locations far above the active core

height.




CHAPTER 1

INTRODUCTION

Estimation of the neutron flux at various locations in the reactor
pressure vessels (RPVs) of light water reactors (LWRs) is extremely
important for safety as well as economic considerations. The U.S.
Nuclear Regulatory Commission (NRC) requires that each nuclear reactor
maintain an RPV surveillance program to ensure that the vessel fluence
does not exceed a maximum allowable value. This is necessary because
bombardment of the RPV by high-energy neutrons will eventually cause
embrittlement of the steel vessel, which could result in vessel failure
under certain accident conditions which place the RPV under thermal
stress,

There are two general locations in the RPV where possibilities of
embrittlement must be estimated!:

(i) somewhere near the 1/4th thickness along the reactor horizontal

midplane; and

(ii) at the inner surface for critical weld locations above or below

the active fuel height.

The first of the locations is close to the point where fluence is maxi-
mum. This location is important for reactor lifetime considerations.

At the second location the fluence is less, but the thermal stress can be
much higher during transients such as encountered when the inlet water
temperature is rapidly decreased; and, depending on the composition of

the weld material, the degree of embrittlement may be higher. If the RPV
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fluence is large enough that the steel has become very brittle, then the
second location is susceptible to fracture during sudden emergency
coolant flow and subsequent repressurization during a loss-of-coolant
accident - this phenomenon is called "Pressurized Thermal Shock (PTS)"l.

The determination of the RPV fluence is a complex procedure. The
most accurate method to determine RPV fluence is to combine the results
of neutron transport calculations with surveillance dosimetry measure-
mentsl, The dosimeter measurements are performed by measuring the acti-
vities of various irradiated foils composed of materials having
high-energy threshold reactions. These activities provide a direct
experimental estimate for the flux. Unfortunately, the dosimeter data
are rather limited; they only provide information at a few points within
the reactor, and do not provide sufficient data concerning the energy
distribution of the neutrons striking the vessel, which is important in
assessing the radiation damage to the RPV. Thus, it is necessary to
supplement the dosimetry analysis with transport calculations. The
accuracy of the transport calculations can be verified by comparing the
computed versus measured dosimeter activities at the surveillance
locations.

In the transport calculations, a calculational model is necessary
which can predict at any stage in reactor life the detailed three-
dimensional (3-D), energy-dependent RPV flux distribution as well as the
computed estimates for the surveillance dosimeter activities, since the
incident RPV flux varies in all three spatial dimensiomns.

A finite difference numerical calculation with a detailed 3-D mesh
would be the apparent method for this purposez. Unfortunately, until

VEry recently no such codes had been developed. The DOT-IV computer code




[developed in Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee]
has been extensively used for transport theory calculations of reactor
shields; however, it cannot treat 3-D geometry explicitly. Rather, it
calculates fluxes for two-dimensional (2-D) geometries (namely, X-Y,

R-Z, R-6) and one-dimensional (1-D) geometries (X, R). Recently at ORNL,
a new computer code called TORT has been developed for solving the 3-D
transport equation, but it has not been released to the public. Using a
3-D code of this type for the purpose of RPV fluence determination is
very expensive, and not practical for routine utility applications.
Furthermore, in many regions important for RPV safety analysis, the core
pover varies slowly in the axial dimension and the shape is rather uni-
form. Therefore, utilities do not really need a detailed 3-D calcula-
tional model. If by some means, we could avoid performing 3-D transport
calculations by using some other methods that yield a good approximation
to the true 3-D flux distribution, much computer time could be saved and
the cost of calculations could be reduced dramatically.

Much effort has been made in the past to develop methods of con-
structing a 3-D flux shape by combining the results of 1-D and 2-D
calculations?, The procedure of comnstructing a 3-D solution from the
combination of lower dimensional calculations is called "Synthesis", and
the resulting approximate fluxes are referred to as "Synthesized Fluxes".
The vast majority of synthesis studies have focused on obtaining a 3-D
representation of the power distribution within the reactor core, and
were usually based on the diffusion theory approximation to the
transport equation.

Although diffusion theory cannot be used accurately for the deter-

mination of the RPV fluence, it is instructive to consider a simple
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synthesis example based on diffusion theory. The solution to a rec-
tangular, parallelopiped reactor with no axial variation of materials
properties (i.e., a truly separable problem) is a simple example of

synthesized flux:
Yo (x,y,2) = Cos(Byz)Hg(xX,y) = - - - - - = - - - o _______ (1)

where, Hg(x,y) is the solution of the 2-D problem in the x,y plane with
a transverse buckling of Bzz; and "g" is the energy group index. Here,
the synthesized and exact solutions are identical because the axial
variation for the flux is the same at all (x,y) points. This is true
for any truly separable problemz.

The so-called "Conventional" synthesis method has been widely used
in reactor physics calculations for axially non-uniform reactors, having
a small number of axial zones. This approach essentially assumes that
the flux is separable in each axial zone. For example, a reactor having
two axial zones separated by a control rod bank has the following

approximate solution by the conventional method:

ng(x,y), 0<z¢zp
Ye(x,y,2) = 2,(2) ¢ ° % L _______ (2)
Hzg(x,y), zg<z4L

where, Hj, and H2g are the solutions of 2-D problems with rods out and
rods in, respectively, and with the axial buckling chosen to be consig-
tent with the subsequently determined Zg(z); zg is the height of the
first zone and (L-zg) is the height of the second zone?2, Although this
method is easy to use, the synthesized flux shapes with this method have

dlscontinuities at the axial zome interfaces.




Several other synthesis techniques which may improve upon the con-
ventional method have been suggested to approximate 3-D fluxes. For the
diffusion equation, the following methods are uged for synthesig?,3;

(1) weighted-residual method; (2) variational methods; (3) multichannel
synthesis; and (4) method based on gross coupling. These methods were
developed mainly for in-core reactor physics calculations, and have not
been used for ex—core, deep penetration problems, such as encountered in
flux calculations near the RPV.

In order to apply a synthesis approximation to RPV fluence predic-
tion, it is necessary to develop a method which is applicable to ex-core
calculations based on the transport theory. The Primary objectives of
this study are:

(a) to develop a synthesis code (to be called DOTSYN) which performs

3-D synthesis of 2-D and 1-D fluxes computed by DOT-IV. This

program is to be provided to the Electric Power Research Institute

(EPRI) for distribution to U.S. utilities as part of the LEPRICON

(Least-Squares EPRI Consolidation) computer code system for RPV

fluence determination;

(b) to model a typical PWR reactor configuration in three dimensions

and perform 3-D discrete ordinates transport calculations with the

3-D transport code TORT;

(¢) to perform R-6, R-Z, and 1-D (R) calculations with DOT-IV for

the same configuration;

(d) to use results of DOT-IV R-6, R-Z, and 1-D (R) calculations to

synthesize a 3-D flux distribution with DOTSYN; and

(e) to compare the results obtained from the 3-D TORT calculations

and the DOTSYN synthesis in order to verify the accuracy of the

Proposed synthesis method.




CHAPTER II

THEORETICAL BACKGROUND

" A. Steady State Transport Equation in Multigroup Form

By definition, a steady state condition is one in which the rate of
neutron loss in dEd{ldV equals the rate of gain or production, where dE,
df}, dv are differential energy, direction and volume elements, respec-
tiyely. If we express this differential neutron balance condition
(loss = production) in terms of the angular neutron flux ¥(f,E,) which
depends on space, energy and direction coordinates, then we obtain a
mathematical expression called the Boltzman Transport Equation for the
directional flux density W(t,E,ﬁ):

There exist several forms of the transport equation, namely,

1. integrodifferential form;

2. integral form; and

3. surface-integral form.

The direct integration method has been applied to solve the neutron
transport equation in X-Y-Z geometry.4

In this study, the integrodifferential form of the transport equation
is used in R-6-Z and we shall deal with only one of the methods of solu-
tion applied to this form, namely, the discrete ordinates technique
which is most often used in RPV fluence analysis.

In three dimensions, the multigroup form of the integrodifferential

transport equation for energy group ''g" can be written as follows

Velttg ¥ Ipp¥o = | [ Tgp. g0 a0)ygdf” 4 Qg - - - - - - - - - - - (3)
g” Q




where, ¥, = multigroup angular neutron flux which is a function of six
independent variables that define the neutron position (f), direction of
propagation (), and energy group (g);

zTg = total cross section (XS) for group "g";

z

sg»+g(ﬁ'+§) angle-dependent (differential) scatter XS for a neutron
in energy group g°, traveling in a direction {i“to scatter
to energy group g in the direction ﬁ;

Qg = source of neutrons (fission and external);

>
m

neutron direction defined by the direction cosines
(e, n, &) =<u, n, \Jl-uz-n2> .

An R-6-Z cylindrical model of the reactor is used for most RPV flux
calculations, where R, ©, and Z are the radial, azimuthal, and axial
coordinates, respectively (fig. 1). Equation (3) can be written in R,

6, Z, system of coordinates as follows

(RY,) Y Y a(n¥y)
wattig 0%, g__&__l.___8_+z,rgwg
R 3R R 36 32 R 3w
=] [ Iagrag(@W¥dls 4 Qg - - - - - - - - - - - - - (4)
8" 0~

where, 1, n, £ are the direction cosines of Q in the R, ©, Z directions,
respectively. Often transport calculations are performed for lower
dimensional sub-spaces of the 3-D R-6-Z space. Of interest in this
study are the following sub-spaces:
(a) R-6 geometry (2-D), which corresponds to a slice through an
infinitely tall cylinder. The flux varies radially and azimuthally,
but is constant axially.

(b) R-Z geometry (2-D), which corresponds to a finite height
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cylinder which is azimuthally uniform. The flux varies radially and
axially, but is constant azimuthally,

(c) R geometry (1-D), which corresponds to an infinitely tall, azi-
muthally uniform cylinder. The flux varies only in the radial

direction.

In 2-D R-9 coordinates, equation (4) reduces to

p ARY) ooy 1 3(nvg) + ¥

R 3R R 30 R g Te g
=7 / ngt+g(ﬁ‘+ﬁ)wg'dﬁ' Qg - - - - oo (5)
g‘ ﬁa

In 2-D R-Z, equation (4) has the following form:
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B. The Discrete Ordinates Method

The continuous Boltzman Transport Equation is expressed in terms of
discrete variables by the discrete ordinates method. The differential
intervals dE, d{, dV over which the transport equation expresses a par-
ticle balance are represented by finite intervals AEg, A, AVi. The
discrete ordinates equation thus expresses a particle balance over these
finite-sized intervals.

In the discrete ordinates approximation, a numerical quadrature in
the angular variable is used to evaluate the integral appearing in the
transport equation; i.e., a finite set of N angular directions ﬁm and
associated weights Wy, specified on a unit sphere of directions, is used
to define a quadrature formula®. As a result of this, a system of N
coupled ordinary differential equations emerges, which describe the
angular fluxes in the directions specified by the quadrature formula; in
other words, the integrodifferential form of the transport equation is
replaced by a purely differential form with the integral term expressed
as a quadrature summation. These equations are solved by a finite dif-
ference technique. 1In treating the spatial variable, the domain is
decomposed into a set of discrete homogeneous cells by defining a spa-
tial mesh. For a given direction ﬁm a finite number of flux values,
representing cell-averaged fluxes, describe the angular fluxes Yo(2)

within the spatial domain. The energy group boundaries provide energy

discretization.

1, Angular Discretization

Two angular coordinates are required to specify the direction of

Ne€utron travel ({}) in multidimensional problems. As will be shown




later, these two angles are specified in a local system of coordinates
relative to an orthogonal system of coordinates (fig. la). The unit
vector { defines a point on the surface of a unit sphere which is mapped
out by all possible directions of neutron travel. 1In 2-D problems, due
to symmetry conditions, the angular flux is calculated over only four of
the octants of the unit sphere described by the unit direction vector Q.
In 3-D problems, the angular flux must be determined over all eight
octants.

In the discrete ordinates method, each of the N discrete directions
intersects the surface of the unit sphere at a particular point, and the
whole surface of this unit sphere is considered to be divided into N
surface elements which contain these points. A point of intersection
can be thought to be located at the center of a solid angle "direction
interval" (fig. 2).

Each discrete direction ﬁm (m = 1,N) is associated with an area ele-
ment AA, which is proportional to the solid angle interval Aﬁm (in

steradians) about f, i.e.,

~

Mg = AQg*p? - - - - - - - - o oo oo (8)

The magnitudes of the direction intervals (AQgy) are called the
quadrature weights. The weights are generally normalized to unity in
discrete ordinates calculations, so that:

. 4mp2 4T

Figure 3 shows a level symmetric quadrature where the ordinates are
arranged on the unit octant; these types of quadratures are widely used

and they utilize the same set of N/2 positive values of the direction

11
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Fig. la. Angular coordinate system
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Fig. 2. Division of a unit sphere into "directional mesh"
(only upper section for S4 quadrature shown)
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A level symmetric Sg discrete ordinates
quadrature set

Fig. 3.
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cosines with respect to each of the three axes; as a result, py = n = §p,
My = Ny = £, Uy = Ng = E3, and M, = N, = &, etc. No axis, in this
case, has any preference compared to the others, because the ordinate
directions do not change with 90° rotations about any axis. The coor-
dinates that have a direction cosine M, relative to the axis x) are
located on the nth level relative to that axis; the same procedure
applies for n, and £,. There are N(N+2)/8 ordinates in each octant and
N(N+2) on the whole unit sphere6.

The discrete ordinates angular flux for a direction {j is equal to
47 times the number of neutrons per cm? which pass through the area AAp

associated with Qp per second. The scalar flux from its definition is

given bylz
N N N
%= f ¥dii = X Y(Qp)AQp = ZW(Qm)Wm ______________ (9)
47 m=1 m=1

~

Defining the direction vector @ in curvilinear geometries (e.g.,
R-6-2Z) is somewhat different from that in cartesian geometries. In the
curvilinear geometries { is described in a local system of coordinates
that depends on the spatial position. Since the direction variables
continuously change for a streaming neutron in curvilinear geometry,
extra terms containing derivatives with respect to the angular variable
appear in the leakage term G-V [see Eq. (4)]. The three components yu,
N, £ of the direction vector {i on R-6-Z coordinates, respectively, are
shown in fig, 1.

When a neutron experiences a scattering interaction, its direction
of travel is altered. Consideration of anisotropic (i.e., non-

Symmetrical) scattering is very important in deep penetration problems
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since forward directed scattering increases the penetrating capability,
On the right-hand side of equation (3), the term ng,+g(ﬁ‘+ﬁ) is the
angle-dependent differential scatter cross section which relates the
scatter of neutrons from an energy group g~” traveling in direction 2” to
an energy group g, traveling in direction Q.

In the discrete ordinates method, anisotropic scattering is approxi-
mated by using a '"Legendre cross section expansion". The angle-dependent

differential scatter cross section is expanded in Legendre polynomials

of the scatter cosine

»

Mo = Co88 = f7ef = = - m mmm ool oo oo (10)

where, {{“and { are the initial and final directions, respectively, and ©

is the scattering angle (fig. 4).
Usually, a 3rd order Legendre expansion gives a good approximation
in most RPV transport theory calculations; thus, the differential scatter

cross section is expressed as follows

Lsg-,g(Mo) = Zog-sgPo + L1g-,gP1(Ho) +

ZZg’+gP2(“o) + Z3g’+gP3(uo) -------- (11)

where the Legendre polynomials are given by

P, = 1
P] = u

Py = 3(3p2-1)
P3 = #(5p3-3p)

The coefficients of the Legendre polynomials are called the

n .
€ross section moments." The Oth moment - zog'+g - corresponds to the




Fig. 4. Direction of neutron before and after scatter.
{“ is the initial and Q is the final directioms;
6 is the scattering angle
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group-to-group scatter cross-section matrix. The next moment , Elgﬂ+g,
is equal to three times the average cosine of scatter for a neutron
going from energy g” to g. The P, cross section has all positive
values; however, the other moments can be negative. The sum of all
moments multipled by the corresponding Legendre polynomials should be
positive for all values of U,, because this expression approximates the
angle-dependent scatter cross section which is positive. 1In reality,
negative values are sometimes obtained due to the finite number of terms

in the expansion; but this shortcoming does not appear to affect the RPV

flux calculation significantly.

2. Energy Discretization

To obtain an approximation to the transport equation in terms of the
group angular flux, we first divide the continuous energy range of
interest into G energy intervals (fig. 5). The particles in group "g"
are those with energies between E, and Eg_15; now we divide the energy

integrals into the contribution for each energy group, i.e.,
[+
[ dE =
°

The multigroup angular flux is equal to

¥o(2,0) = [ (2, 8,E)dE - - - - — - - o oo _ __ (13)
g
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Fig. 5. Division of the whole energy range
into several energy intervals




The multigroup form of the cross sections (og, VOfgs °g<+g) can be

defined as follows

0g(8) = Jo(2,E)EQ(E)GE = - - - - = - - - - - - - - (15)
g

where, fg(E) is the energy-dependent spectral weighting function which

is normalized to unity:

ffg(E)dE 2]l e ettt e e et et et e e e e e - .- (16)
g

To evaluate fg(E), we use some suitable approximation, such as

£4(E) = velB) .. (17)
fwg(E)dE
g
where, for example
wg(E) = X(E) = fission spectrum, for E > 100 KeVv - - - (18)

1/EEp(E) = narrow resonance approximation,

1 eV<EC<CI00KeV = = = = = = = = =~ (19)

M(E) = Maxwellian, E< ]l eV - - - - = = = - - = (20)
Multigroup cross section libraries have been developed by various

organizations, and are routinely available for transport calculations.

For RPV flux analysis, 40 to 60 energy groups are typically employed.

3. Spatial Discretization

To spatially discretize, the domain is decomposed into a number of
homogeneous cells. Now, instead of spatially continuous values of angu-
lar fluxes, a finite number of values describes the angular fluxes for a
given neutron direction. These values correspond to the cell-averaged
values over the mesh cell. All cross sections are assumed constant
Within each cell, but they may be different for different cells. Figures

6a and 6b show the basic mesh cells for R-6-Z, R-8, and R-Z geometries,

B
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C. Three-Dimensional Flux Synthesis

As previously discussed, "synthesis'" is an approximate method of
obtaining a solution to some physical problem based on combining func-
tions of a subset from the set of the independent variables associated
with the problem7.

Various approaches have been considered to approximate the multidi-
mensional flux in reactor analysis. In some cases, a single 2-D expan~
sion function for each axial zone is used. A more sophisticated method
uses a linear combination of several 2-D expansion functions. Synthesis
can be "single~channel” or "multi-channel." 1In multi-channel synthesis,
different trial functions are used in different planar regions (usually
referred to as '"channels'") as opposed to single-channel synthesis, where
there is only one channel’,

In this work, a single-channel synthesis method has been developed
in which "channel fluxes" for R, R~Z and R-6 channels are used to
obtain synthesized 3-D R-8-Z scalar fluxes. The multigroup channel

fluxes are defined as follows8

4o 2T
%,k = %g(R) = [ [ 0,(R,6,2)d6 dZ - - - - - = - - - - - -~ - (21)
-0 ()
21
%g,Rz = 0g(R,Z) = [ 35(R,6,2)d8 - - - = - = = = = = == - - - - (22)
0
4
% ,Re = 05(R,0) = [ ¢,(R,6,2)dZ - - - - - - - - - - - -~ (23)

-

where, g - energy group index;

¢g(R) - radial (R) channel fluxes;

23




24

®g(R,z) — radial-axial (R-Z) channel fluxes;

®g(R,0) - radial-azimuthal (R-@) channel fluxes.

The function ®3(R,0,2) in equations (21), (22), and (23) is assumed
to be the true 3-D scalar flux distribution.

The scalar channel fluxes are related to the angular channel fluxes

in the usual manner; for example,

9 (R,0) = [ ¥ (R,0,0)dd = - = - - - - - - oo oo (24)
471
where, ’
~ +w -
Yg,r0 = Yg(R,8,0) = [ ¥,(R,8,2,0)d2 - - - - - - - - - - -- (25)

- 00

It is important to note that for each energy group the three channel

fluxes are related to each other in the following way:

20 +
g %g,Rp 480 = [ Oy pzdZ =9 p - - --- - - (26)

1. cCalculation of the Channel Fluxes

To obtain equations obeyed by the R-Z and R-6 channel angular fluxes,
Ye integrate the 3-D (R-8-Z) transport equation [equation (4)] over ©
from 0 to 271 and over Z from - to +«, respectively. For example, let
9? find the expression for the R-® channel angular fluxes. When we

: Y .
lntegrate __% [see equation (4)] over Z from -~ to +>, we get zero,
d

Slnce the flux must vanish at *», Thus, we have after integration,
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p3R¥g.re) m¥gre 13(¥gRe) |
R R R 80 R oW

...u:
f Ipg ¥g(R,0,2,2)dZ =

4 +o0
L Jiage,g(@0)¥,.(R,6,2,8)d0 daz + Jogdz - - - - - - - - (27)
g - —c0

-
»

We now define the axially averaged total and group-to-group scatter

cross sections as follows:

+m ~
— ~ _[ ZTg‘Pg(R,e,Z,Q)dz
ZTg(R,e,Q) s = m s s s e e e = e e == - (28)
400
[ ¥g(R0,2,0)dz

and

+o0
f ng,_*g(g)‘*g)‘yg, (R,G ’Z,Q‘)dz

ZSg’.;g(R,e’ﬁ“*ﬁ) =

*m ~
f ¥g. (R,9,2,07)dz
-0
As we can see, the angular fluxes that appear in equations (28) and
(29) introduce a direction dependence ({}) to the average cross sections
(as with all multigroup transport developments). This is undesirable

and can be overcome by using an approximate flux distribution; e.g., the

angular fluxes are replaced by the scalar fluxes, thus obtaining the

following:
I
Iyt (R,6,2)d2Z
= '_[‘g g FASr]
Irg(Rg) == = " = e e e e e e oo a oo - - oo (28a)
4+ ©

] 2 (R,6,2)dz

- 0O
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and

+m
_o{ Zog ag (24 05 (R, 0,2)dz

4o
f ¢, .(R,6,2)dz

-0

This approximation amounts to assuming that the angular and the sca-

lar fluxes have the same axial variations at a given R,8 point.

Equation (27) now becomes

u 3(RYy Rg) N ¥ R 1 o(n¥y Rg) —
- —8.R8C , _ _BRE 2 g’ 8" , ZTg(R,6)¢g,Re
R 3R R 236 R w
= Z’!’ Zg’+g(9)+9)¢g’,Re de” + Qé ————————————— (30)
g
where,
4+
Qg = f QgdZ - - - - - - - - - - - - - - s - - - - - (31)

(the source is zero outside the core region).

The same procedure applies to obtaining an equation for the R-Z
channel fluxes. If the "exact" channel average cross sections are used,
then equation (30) gives the exact R-6 channel fluxes.

In reality, the exact channel average cross sections are not known,

since these are weighted by the unknown scalar flux distribution. If

the macroscopic cross sections do not vary strongly in © or Z, which is
usually the case for RPV fluence calculations, then the channel average
cross sections appearing in the R-8 channel equation are not very sensi-
tive to the axial weight function; so that crude approximations for the
8calar flux variation are adequate to obtain the weighted cross sections.

In fact, in the usual case for the ex-core region, where the total and
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the group-to-group scatter cross sections are almost invariant axially
(over the height of interest), axial weighting of these cross sections is

not needed. This situation is characteristic to most PWRs in the high-

energy range, assuming that the concentration of water and structural
materials are approximately uniform axially. The non-fuel nuclides have
the largest macroscopic cross sections in this energy range. On the
other hand, if cross sections do vary axially, then axial weighting can
actually be performed, if desired, by using an approximate axial flux
distribution. For example, the known neutron source distribution along
the axial direction can be used as a weight function. A simpler way is
to merely smear the cross sections over the axial direction. This
assumes a flat axial flux distribution. In fact, previous reactor

studies have shown that, in most practical cases, the axial weighting

has almost no effect on the ultimate resultss.

Equation (30) is identical to the standard R-6 transport equation
solved by the 2-D discrete ordinates transport code DOT-1v8. Therefore
in practice, R-@ channel fluxes can be obtained from a DOT-IV R-8 calcu-

lation. The midplane values of the macroscopic cross sections or one of

the other weighting approximations discussed previously can be taken as
the axially averaged cross sections, and the R-8 channel source is
obtained by simply integrating the known 3-D (R-8-Z) source over Z - the
axial direction. In a similar way, the R-Z channel fluxes are calculated
by DOT-IV where the R-Z source is obtained by merely integrating the
known 3-D (R-6-Z) source over the azimuthal direction; and cross sec-
tions are weighted, in a similar fashion, over the azimuthal direction.
In a similar manner, by solving the 1-D radial transport equation we

can find 1-D channel fluxes. In determining the 1-D channel transport

A
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equation, the R-6-Z transport equation is integrated over both Z and @
directions, the source being integrated over Z and © directions and the
cross sections weighted over both Z and © directions. The 1-D source
can equivalently be found by integrating the R-Z channel source over the
axial direction. Note from equation (26) that the R channel fluxes
could also be obtained by integrating the DOT-IV R-Z fluxes over the

axial direction, e.g.,

where Zj, and Zy are the lower and upper limits of integration. 1In this

case, the axial limits Zj and Zy should be large enough so that

Z
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This approximation follows directly from Equation (26). Unfortunately,
this approximation usually underestimates the radial channel fluxes,
because the R-Z channel flux falls off slowly in the Z direction, con-
sequently preventing expression (33) from being very accurate unless Zy
and Zj are very large. Often the upper and lower Z values used in R-Z

channel flux calculation do not satisfy this condition.

2. Synthesis Approximation in R-6-Z System of Coordinates

We now define the synthesized 3-D flux as a function of R,0,Z

variables for the cylindrical geometry to be8

fs(n,z)*?g(k,e)
¢g(R)

055(R,0,2) =

where, ¢sg(R,e,z) = multigroup synthesized 3-D flux.
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This synthesis approximation is simple, and by only one multiplica-
tion and one division, the desired synthesized flux can be found if the
channel fluxes are provided.

Although equation (34) is an approximate expression, it becomes

exact if the flux is separable either azimuthally or axially. For

example, if the flux is separable azimuthally, we have
9g(R,8,2) = Ag(R,2)*By(p) = - - = - - - - - - - - - - - __ (35)
Then from €quations (21), (22), (23), and (34), we can write

2x +o
| A (R,2)*B(@)de* [ Ag(R,2)*B,(8)dz
q)Sg(R’e’Z) =0 =

+00 21'[

| Ag(R,2)dz*[ B, (6)d®
— 0

2w +o0

Ag(R,Z)J Bg (6)d6+B, (6) ng(R,Z)dZ

+oo 27
;iAg(R,Z)dZ*ofBg(B)de

Ag(R,Z)*Bg(e) = ¢g(R,0,2) - -~ - -=-- - - -~ (36)

In the same manner, it can be shown, that equation (34) is exact if
the flux is separable axially.

In the case where the flux is not separable, equation (34) always
Preserves the integrated values of the flux in both the axial and azi-

muthal directions at all radial points. This is shown below.

Let us integrate equation (34) over Z at some arbitrary location R.

We get
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+m
+? | %(R,2)dz* 0, (R, 8)
0, (R,6,2)d2 = —— o _ _ ... (37)
s » Yy
From equation (26),
+co
£ % (R,2)dZ = &5(R)
Therefore, equation (37) can be written in the following way:
+= d5 (R)*¢, (R, 0)
[ ¢g,(R,0,2)dz = & "B "
. BT bg(R)
+oo
= 35(R,0) = [ %,(R,0,2) dZ - - - - - - - - - (38)

- 00

Equation (38) is exactly the same as equation (23), thus proving
that the synthesized 3-D flux has the same integrated value as the true
3-D flux at all radial points.

Equation (34) is essentially a single-channel synthesis approxima-

tion for ¢g(R,6,Z). The term corresponding to

¢,(R,Z)

e - S
Ag(R,Z) ¢g(R) (39)

can be viewed as the axial distribution factor at each R point, which

distributes the axially-integrated flux (¢gg) over the Z dimension.




D. Three-Dimensional Synthesis Code - DOTSYN

The computer code DOTSYNS, developed as part of this study, functions
as a module in the LEPRICON computer code system which is distributed by
the Electric Power Research Institute (EPRI) to U.S. utilities for RPV
fluence analysis. The flow chart of the LEPRICON computer code system
is shown in fig. 7. DOTSYN, as a vital part of this system, accomplishes
the 3-D flux synthesis and activity calculations for various dosimeter
materials used in the RPV surveillance program. The synthesis methodo-
logy corresponds to that discussed in the previous section. The code
is designed to be coupled with DOT-IV output for the channel fluxes,

and can treat "variable mesh'" problems from DOT.

1. Programmiqg Methodology

DOTSYN is written in FORTRAN programming language. Variably dimen-
sioned arrays have been used to minimize storage requirements. The con-
venient free-form input system FIDO is used for entering datal. The
flow chart in fig. 8 shows the sequence of calculations in DOTSYN.

As seen from the flow chart, there are two calculational parts in
the program. The first part consists of calculation of the synthesized
3-D fluxes for the number of energy groups desired. A synthesis region
is specified by user input. In performing the synthesis for each energy
group, the channel fluxes for R-8, R-Z, and 1-D (R) are read from the
respective logical units or cards as required [see input description in
Appendix E], and the synthesis calculation is done according to equation
(34) for each discrete point. This is done in the following manner:

In the synthesis region, for a given azimuthal interval at a given

axial level, synthesis is performed for all the radial intervals

31




32

Power Description:
PDQ7 + Instruments

R
DOTSOR ELXSIR
| (Source Preparation) (56-Group Library)
RO RZ RO
[—ﬂ—— :
| DOT4 AXMIX
‘ (2-D Transport) (Xsect Manipulation
R6 RZ
- 1
DOTSYN ANISN

(3-D Fluxes/Activities) (1-D Transport)

TIMEPATCH
(Variable Source Effects)

A

FLUENS
LEPRICON
&= PRIC = (38-Group Pressure Vessel

Adjustment d . ..
(Adjustment Procedure) Fluences with Uncertainties)

Dosimetry
Measurements

Fig. 7. LEPRICON System Flow Chart




33

Input R(1-D), R-Z, R-6
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Fig. 8. Sequence of Calculations in DOTSYN
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contained in that azimuthal interval. This procedure is repeated for all
successive azimuthal intervals keeping the axial level fixed. The whole
procedure, described above is now repeated for all subsequent axial
levels. These steps are followed for all the enmergy groups. The fluxes
calculated in this way are stored on a scratch file (logical unit 8) in
binary form. Each record in this data set has the fluxes computed at all
radial and azimuthal intervals, corresponding to a fixed axial level for
a given energy group. This procedure saves core storage requirements.
In the second part of the routine, activities (e.g., reaction rates)
for different dosimeter materials, for a given number of experiment
(dosimeter) locations are computed using the synthesized fluxes calcu-
lated in the first part. Dosimeter locations must be contained within
the synthesis region. There is an option in the program which allows
the user to compute activities at all the locations for which synthe-
sized 3-D fluxes have been calculated. This option in invoked when the
parameter ISPAR(3) is equal to -1. In the input description, parameter
ISPAR(2) specifies the number of dosimeter locations. For the ISPAR(2)
dosimeter locations [specified in the arrays 16** (R coordinates), 17%%*
(6 coordinates) and 18** (Z coordinates)] a linear interpolation is
performed to get the synthesized 3-D flux at the specified dosimeter
location, if this location does not coincide with an interval midpoint.

Activities are calculated by multiplying the 3-D flux (at that location)

by the respective activation cross section of the dosimeter material,

and summing over energy groups.

Two important points need to be mentioned here:
(i) in the synthesis region, the R coordinates for R-Z geometry and

R-6 geometry must coincide. In other words, variable R-© meshes are
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allowed, but the R coordinates in R-8 and R-Z geometries have to be

the same in the synthesis region. The R coordinates in 1-D (R)

geometry must also coincide with those in the R-Z geometry. This
should be taken care of during the DOT-IV runs for the channel fluxes.
(ii) During the activity calculations, the Z coordinates for the

dosimeter locations in the 18%*% array must be in increasing order.

2. Execution of DOTSYN

A simple main program assigns the total core storage needed for
DOTSYN. This is defined by the container array D, which is dimensioned
by the core storage required and specified by the user for each particu-
lar problem. DOTSYN calculates the storage required for input and
calculations; if the total storage is less than that provided, DOTSYN

terminates the execution with a message of "insufficient storage'.




CHAPTER I1I

TRANSPORT CALCULATIONS IN R-68-Z SYSTEM OF COORDINATES

In order to validate the synthesis approximation, a typical PWR
reactor has been modeled in R, © and Z dimensions. The reactor model
is based on a similar configuration to the Babcock and Wilcox Arkansas
Nuclear One Unit-l (ANO-1) reactor. Because of azimuthal symmetry, only
1/8th of the reactor has been considered. The outer radius extends from
the core center past the pressure vessel. The 3-D code TORT is used to
analyze this configuration to provide a reference 3-D "benchmark" solu-
tion to which the synthesis results will be compared. The synthesis
results require determining the 2-D R-8 and R-Z channel fluxes with the
2-D transport code DOT-IV. In this section, the 3-D and 2-D models,

needed for the discrete ordinates transport calculations, are developed.

A. Model Configurations of the Reactor

The cross-sectional view of the reactor vessel and internals of the
ANO-1 nuclear reactor is shown in fig. 9, and fig. 10 shows the vertical
cross section of this reactor.

The configuration consists of 177 fuel assemblies in the core, which
is surrounded by a 1.91-cm-thick stainless steel baffle. A stainless
steel core barrel of inner diameter 358.14 cm surrounds the baffle.
Outside the core barrel is a stainless steel thermal shield. There are
four surveillance specimen holder tubes attached to the outer side of

the thermal shield. Water flows downward through the downcomer region

36
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between the thermal shield and the carbon steel reactor pressure vessel
(RPV). Some of the core design, thermal and hydraulic data of ANO-1 are
given in table 1, A somewhat simplified version of the actual reactor
has been used as a calculational model in the present study. Sg quadra-

ture sets have been used in all calculations.

1. The R-6-Z Model

A 1/8th segment of the ANO-1 nuclear reactor in three dimensions is
shown in fig. 11. This 3-D model is used for the 3-D transport calcula-
tions by TORT. TORT is the 3-D version of the 2-D discrete ordinates
transport code DOT-IV. The current version of TORT is still at the
experimental stage, and has not been made available to the public. LSU
was given special permission by ORNL to use the code in this study.
Unfortunately, TORT does not currently have the option to use a reflect-
ing upper © (at 45°) boundary condition - a difficulty which will be
discussed later in this chapter.

There are 55 radial, 33 azimuthal and 40 axial intervals in the
model used to represent the reactor in three dimensions. A total of 11
different regions have been identified with eight different material
compositions. A P3 Legendre expansion of the cross section is employed.
Input data to TORT for the 3-D transport calculations is given in

Appendix D.

2. The R-6 Model

The R-0 model? of the reactor used in the DOT-IV transport calcula-
tions of the R-0 fluxes is shown in fig. 12 and fig. 13. There are 55
radial intervals and 33 azimuthal intervals for a 45° slice. A reflect-
ing boundary condition is used along the 0° line. Usually a reflecting

boundary condition is used along the 45° line as well; but in the newly




TABLE 1

Core design, Thermal, and Hydraulic Data for ANO-1

Reactor

Design Heat Output, MWth

Vessel Coolant Inlet Temperature, Deg. F
Vessel Coolant Outlet Temperature, Deg. F
Core Outlet Temperature, Deg. F

Core Operating Pressure, psig

Core and Fuel Assemblies

Total Number of Fuel Assemblies in Core

Number of Fuel Rods per Fuel Assembly

Number of Control Rod Guide Tubes per Assembly

Number of In-Core Instrument Positions per Fuel Assembly
Fuel Rod Outside Diameter, in.

Cladding Thickness, in.

Fuel Rod Pitch, in.

Fuel Assembly Pitch Spacing, in.

Unit Cell Metal/Water Ratio (Volume Basis)

Cladding Material

Fuel
Material

Form

2599.6
554
603.8
606.2

2185

177
208

16

1
0.430
0.0265
0.568
8.587
0.82

Zircaloy-4
(Cold Worked)

U0,y

Dished-End,

Cylindrical Pellets

Pellet Diameter, in.
Active Length, in.

Density, % of Theoretical

0.370

144

92.5

40
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TABLE 1 (continued)

Heat Transfer and Fluid Flow at Design Power

Total Heat Transfer Surface in Core, ft2 49,734
Average Heat Flux, Btu/h-ft2 171,470
Maximum Heat Flux, Btu/h-ft2 534,440
Average Power Density in Core, KW/% 83.39
Average Thermal Output, KW/ft of Fuel Rod 5.66
Maximum Thermal Qutput, KW/ft of Fuel Rod 17.63
Maximum Cladding Surface Temperature, Deg. F 654
Average Core Fuel Temperature, Deg. F 1280
Maximum Fuel Central Temperature at Hot Spot, Deg. F 4220
Total Reactor Coolant Flow, lb/h 131.32 x 106
Core Flow Area (Effective for Heat Transfer), fr2 49.19
Core Coolant Average Velocity, fps 15.73
Coolant Qutlet Temperature at Hot Channel, Deg. F 647.1
Power Distribution

Maximum/Average Power Ratio, Radial x Local (FAh Nuclear) 1.78
Maximum/Average Power Ratio, Axial (F, Nuclear) 1.70
Overall Power Ratio (Fq Nuclear) 3.03

Power Generated in Fuel and Cladding, % 97.3




42

Orlio, g
i
//
11 Ve 1 - core
/7
Pt 2 - baffle
P 3 - barrel
4 |
2 4 - water gap
ld
7+ B8 P 5 - radial reflector
10 R ST N % | 6 - thermal shield
7 - downcomer
O B 8 - RPV liner
: 9 - RPV i
|
10 - upper reflector
region
237 11 - upper reflector {
steel region
1 4__,#—-6
7
5 9
8—4

Fig. 11. 1/8th segment of ANO-1 nuclear reactor
in three dimensions (R-6-Z).
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Fig. 12. 1/8th slice of ANO-1 nuclear reactor up |
to pressure vessel (top view). [
Zones are shown by numbers.,
scale: 1.0 cm = 21.0 cm
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developed 3-D Oak Ridge Transport Code TORT, this boundary condition has
not been incorporated yet, and consequently, only a vacuum boundary con-
dition can be treated in the benchmark 3-D solution. Obviously, this
boundary condition is not realistic for actual power reactors. However,
the flux at azimuthal locations far from the 45° boundary (i.e., near 0°)
is not sensitive to the outer boundary condition, and the calculated
values should be valid in this region. Furthermore, the objective of
this study is to validate the synthesis approximation, rather than to
obtain actual, realistic flux values. Therefore, the important factor
is consistency in the treatment of the boundary condition in the 3-D
calculations and the 2-D calculations of the channel fluxes for the
synthesis approximation, rather than the specific boundary condition
itself. Therefore, in the DOT-IV R-© model, a void boundary condition
has been used along the 45° line to make the model consistent with that
used in TORT.

It has been verified numerically that the results with the void and
the reflected boundary conditions at 45° agree well from 0° up to about
22° in the R-6 model for radial points away from the origin. The azimuthal
flux variation obtained with DOT-IV at the pressure vessel inner surface
is shown in fig. 14 for each boundary condition. It can be seen that at
22°, the fluxes obtained with the two boundary conditions agree to 1.28%.
All the pertinent input data to DOT-IV for the R-6 calculations are
given in Appendix A.

Usually for a 45° slice, about 60 azimuthal and 100 radial intervals
are used in order to represent the edge of the core as accurately as
possible. But since the main purpose of this study is just to compare

the approximate results produced by DOTSYN with those produced by TORT, :
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only 55 radial and 33 azimuthal intervals are used in all calculations.
This relatively coarse mesh approximates the core fairly accurately as
can be seen in fig. 15. For simplicity and to save computer time, it
was necessary to use a smaller number of intervals. There are 21 radial
intervals in the core region and 8 in the RPV region. There are in

total 9 regions in the R-6 model, shown in fig. 12. by numbers.

3. The R-Z Model

The R-Z model of the reactor used in the DOT-IV calculations of the
R-Z channel fluxes is shown in fig. 16 and fig. 17. For this model, the
transport calculations have been performed from the core midplane to the
nozzle top, because the reactor is assumed symmetrical about the
midplane. This reduces the number of axial intervals by half which con-
sequently saves computer time. In reality, the core is not exactly sym-
metrical, but this approximation is quite adequate for the purpose of
this study. The section from the core centerline up to the nozzle has
been divided into 40 intervals (fig. 17) - 15 intervals in the core
region (from the core centerline up to the core top), 10 intervals in
the upper reflector region (region 2 in fig. 16) and 15 intervals in the
upper reflector steel region (region 3 in fig. 16). The number of
radial intervals has been taken to be the same as for the R-8 model,
i.e., 55. All input data to DOT-IV for the R-Z calculation are given in
Appendix B. There are 1l regions in the R-Z model as shown by the num-
bers in fig. 16. The R-Z model corresponds, in fact, to a full cylinder,
unlike the R-6 model which corresponds to only 1/4th core (due to the
void boundary condition at the 45° boundary); therefore, a different
normalization factor will be associated with the R-Z and the R sources

compared to the R-6 source. However, as long as they are consistent,

- . |
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Fig. 15. R-6 representation of 1/8th of the

core outer edge of ANO-1 nuclear reactor.
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Fig. 16. R-Z view of ANO-1 up to pressure vessel
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Zones are shown by numbers.
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the normalizations of the R-Z and R sources do not affect the synthesis
results, because the respective R-Z and R channel fluxes appear as

ratios.

4., The 1-D (R) Model

The DOT-IV 1-D (R) model is shown in fig. 18. Axially, there is
only one interval and the number of radial intervals again has been
taken to be the same as for the R-6 or R-Z model. The axial mesh is
irrelevant, since flow in this direction is not treated in the 1-D
calculations. The number of regions in the 1-D model is the same as in
the R-6 model (i.e., 9). The 1-D source was obtained by integrating
the R-Z source over the Z coordinate to ensure normalization consistency.
Input data to DOT-IV for the 1-D calculation are given in Appendix C.

The above three models [R-8, R-Z, and 1-D (R)] have been used in
DOT-IV transport calculations to obtain the channel fluxes for use in

the synthesis procedure.
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B. Neutron Source Determination for DOT-IV and TORT

The total source in the reactor model has been calculated using a

power-to-source conversion factor obtained from the following relation:

VIf
StoT = [EE;] L (40)
VI
where, i is the power-to-source conversion factor, calculated with the
KIf

design average burnuplo (= 29100 MWth-day/ton), and P is the thermal

power (= 2599.6 MWth).

The 3-D source distribution was assumed to have the following form:

Slf?ﬁ = Qij*COS(BzEk) -------------------- (41)
S
where Qjj = o e _L- .- (42)
VRe2 008 (B, Z1) AZ)
k
VRg = volume of core region in R-6 geometry;

Zy = axial midpoints for each axial mesh in the core region;

2]
N
1}

axial buckling = w/(H+28); where, H is the height of active
core (= 365.76 cm) and § is the reflector saving (= 7 cm).
The value of B, is equal to 8.27256E-03 (1/cm).

Equation (41) physically corresponds to a flat source in the R and ©
dimensions, and a cosine variation in the Z direction. The source is
normalized to an integrated value of

Stor = 2.12614E+20 (neutron/s) - - = = = = = = - - - - - - — (43)

The R-0 source is calculated by integrating the R-6-Z source over

the axial dimension as shown below:
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RO ROZ . _
815 = J Sijic 9k = Q3L AKAZK - - - - - - - oo oo (44)
k k
where Ay = Cos(B,Z)) and
AZy = axial mesh interval.

The R-Z source distribution has a cosine shape and is calculated in

the following way:

s?ﬁ = a¥F;*C08(ByZg) = - = = = = = = - = = = = = = = = o _ - (45)

where "a'" is the appropriate normalization factor; and
F{ = source distribution for all radial mesh points at & = 0°.

The value of the normalization factor "a" is actually arbitrary as
far as the synthesis is concerned. A value of 4.16874E-03 is used in
this study so that the total R-Z source and the total R-8 source are
consistent with Spgr. For the models used in this study, the R-Z source
is four times higher thanm the R-8 source.

The 1-D source distribution is obtained by summing the R-Z source

distribution over the axial dimension as follows:

SY = a*F{*)Co8(B,Z )% - = = = = = - - = e e = — o (46)
k
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C. Multigroup Cross Sections Used

The cross-section library SATLOR!! has been used for nuclear data in
the DOT as well as TORT calculations. SAILOR has 47 neutron energy
groups and 20 gamma energy groups; however, only the first five out of
the 47 neutron energy groups have been used to reduce computing costs
for the purpose of this study. Activities have been computed for the
following three high-energy threshold dosimeter materials:

59Co(n,2n); 58Ni(n,2n); 63Cu(n,a).

The threshold energies for the selected dosimeter materials are within
the energy boundaries of the five groups.

In performing calculations with DOT-IV and TORT, materials from the
SAILOR cross section library have been mixed with a program called GIP
(Group-Organized Cross Section Input Program). This has been done in
order to get a macroscopic composition comprised of materials from the
SAILOR library. In the mixing table, a total of 97 materials from
SAILOR have been used to get 29 different compositions for the different
material zones and dosimeter materials. In DOT-IV and in TORT, a P3
Legendre expansion of the scatter cross section has been used. As men-
tioned earlier, each expansion coefficient is considered a separate
material in DOT-IV; but in TORT, a single material is composed of Pg
through P3 expansions. Hence, we have altogether 8 materials in the
TORT calculations.

Materials used in the 3-D and 2-D models, their IDs in the SAILOR

cross section library and atom densities are given in tables 2, 3 and 410,
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TABLE 2

Atom Densities of Fuel* and Corresponding Material
IDs in SAILOR Cross Section Library

Material Atom Density ID
(atom/b-cm) (SAILOR)
U-235 1.541E-04 31 - 34
U-238 6.579E-03 35 - 38
H 2.811E-02 3-6
B-10 5.580E-06 7-10
0 2,814E-02 39 - 42
Zircaloy-4 4,327E-03 27 - 30
Fe 1.793E-04 19 - 22
Cr 5.299E-04 15 - 18
Ni 2.470E-05 23 - 26

*Atom densities are taken from Batch 6 fuel of ANO-1

tabulated in reference 10 (table 2.6, pp. 2-11),
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TABLE 3

Atom Densities* of Materials (other than
Fuel) and Corresponding IDs in SAILOR
Cross Section Library

Material Coolant S5-304 PV-Steel ID
(cs) (SAILOR)

H 4,744 E-02 55 - 58

B-10 9.416E-06 7 -10

0 2.372E-02 59 - 62

Fe 5.978E-02 8.190E-02 131 - 134 (RPV)
71 = T4%%

Cr 1.766E-02 1.270E-04 123 - 126 (RPV)
63 - 66%*

Ni 8.233E-03 4 . L4LOE-04 135 - 138 (RPV)
75 - 78%x

c-12 3.222E-04 9.810E-04 139 - 142
79 - 82t

Mn-55 1.760E-03 1.120E-03 127 - 130
67 - 70t

si 1.721E-03 3.710E-04 107 - 110

Al 7.020E-04 103 - 106

*Atom densities are in atom/b-cm

**For materials not in core and RPV

tFor materials not in RPV
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TABLE 4

Materials and Their Atom Densities in Different
Zones of the 3-D and 2-D Models

Zone
(Corresponding
Zone Materials to Material) in
Name Composition Atom Density 3-D R-Z R-8
(atom/b-cm)
Core (Fuel) Same as in Table 2 Same as in Table 2 1 1 1
Baffle $5-304 Same as in Table 2 4 2
Barrel $S-304 Same as in Table 3 6 4
Water Gap Coolant Same as in Table 4 7 5
Radial Coolant Same as in Table 5 5 3
Reflector
Thermal $S-304 Same as in Table 6 8 6
Shield
Downcomer Coolant Same as in Table 7 9 7
RPV Liner PV-Steel (CS) Same as in Table 8 11 9
RPV Pv-Steel (CS) Same as in Table 9 10 8
Upper Zircaloy-4 4 .,40419E-04 10 2 -
Reflector Coolant 3.25498E-06
Region Void
Upper $5-304 0.011752 11 3 -
Reflector Coolant 4.48303E-06
Steel

Region
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D. DOTSYN Calculations

In performing synthesis with DOTSYN, the computed 1-D (R), R-6 and
R-Z scalar fluxes obtained with DOT are used as channel fluxes. The !
entire radial, azimuthal, and axial ranges are used as the synthesis
region. 1In calculating activities at a given location, the 3-D synthe-
sized group fluxes are first interpolated to the correct axial position.
Then a linear interpolation is performed for the azimuthal coordinate.
Finally, linear interpolation is performed in the radial direction which
gives the desired 3-D group-wise flux at the location specified. The
group fluxes are multiplied by the respective reaction cross sections
for the desired energy group, and summed over groups to obtain the acti-
vity. The input description and input-output requirements for DOTSYN
for 3-D flux synthesis are listed in Appendix E. Input data to DOTSYN

are listed in Appendix E.1l.




CHAPTER 1V

RESULTS

Attention was focused primarily on the azimuthal variation of the
pressure vessel fluence at three axial locations, namely the midplane,
the top of the core and the bottom of the nozzle. These points
correspond respectively to the lst, 15th and 30th axial intervals. It
is important for the utilities to routinely monitor fluence at the
pressure vessel in order to keep up with the NRC ceiling of maximum
allowable fluence for the safe operation of the reactor. The aim of
this study is to determine how well and in which locations the synthesis
approximation agrees with the exact transport results, and to what
extent the synthesis technique is applicable. A comparison of the TORT
and DOTSYN group-integrated fluxes (i.e., groups 1l to 5 of SAILOR group
structure) computed at the inner surface of the pressure vessel and 1/4T
at the peak flux location (6 = 9°) is shown in table 5 and table 6,
respectively, for the three axial positions. As seen from these tables,
the error in the synthesized flux at this azimuth lies roughly between
0.2% and 3.0%Z at 1/4T and 0.4% and 5.0% at the inner surface of the
pressure vessel. These synthesis results are remarkably good, even at
the nozzle elevation. Figures 19, 20 and 21 show the azimuthal varia-
tions of the total fluxes at the inner surface of the pressure vessel at
the midplane, the top of the core and the bottom of the nozzle, respec-
tively. The synthesis results agree extremely well at the midplane as

expected and, as we traverse upward (axially) from the midplane, the
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TABLE 5

Comparison of Total Flux by TORT and DOTSYN at the Peak Flux
Location (8 = 9°) at the Inner Surface of the Pressure Vessel

Axial Location TORT DOTSYN Z Error
Midplane 8.82772E+08 8.79586E+08 0.36
Top of Core 1.38254E+08 1.39760E+08 1.09

Bottom of Nozzle 3.01893E+06 3.16168E+06 4.73
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TABLE 6

Comparison of Total Flux by TORT and DOTSYN at the Peak Flux
Location (8 = 9°) at the 1/4T of the Pressure Vessel

Axial Location TORT DOTSYN 2 Error
Midplane 3.96958E+08 3.96089E+08 0.22
Top of Core 6.28489E+07 6.34805E+07 1.00

Bottom of Nozzle 1.35142E+06 1.39600E+06 3.29
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results start slowly differing from the TORT results, although they
agree very well up to the top of the core. Above the top of the core as
we go up further, the shape of the azimuthal flux-variation by TORT
slowly smoothes off, whereas DOTSYN retains the same azimuthal shape

as at the midplane. This is explained by the fact that in the regions
where flux is nearly separable in space (either azimuthally or axially)
the 3-D results obtained by DOTSYN are almost exact [see Chapter II,
equations (35) and (36)], which accounts for the excellent agreement
within the core height. However, DOTSYN does not take care of the flux
inseparability wherever it occurs, whereas TORT does; i.e., in DOTSYN
the shape of the flux variation obtained at the midplane is retained
everywhere. Up to the top of the core, the flux is separable in space
so that all Z levels have nearly the same flux shape in the R-8 coor-
dinates. Above the core, the R-6 variation is no longer separable in Z,
and as we move up (axially) the characteristic R-6 variation changes.
From figure 21, it is seen that the typical R-6 shape of the azimuthal
distribution of flux within the core height "smoothes off" above the
core region, and a more uniform azimuthal variation is obtained. The
characteristic shape of the azimuthal flux variation at the midplane and
the top of the core is due to the shape of the core and the source
distribution accordingly. The azimuthal shape of the flux above the
core is more uniformly distributed and, because of the void boundary
condition at the 45° slice, the magnitude of flux falls off as we move
from 0° to 45° angle. At the bottom of the nozzle, the divergence of
the DOTSYN values from the TORT ones is maximum as we expect, but as
shown in Chapter II by the equations (37) and (38), the synthesis

approximation used in DOTSYN [equation (34)] still preserves the
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integrated or the average values of the flux in the azimuthal coordinate
at any radial location R. The average flux calculated, respectively,

with TORT and DOTSYN at the bottom of the mozzle is equal to

¢ TORT
ave

¢ DOTSYN

= 2,46015E+06; P V.07 = 2.55883E+06

These values agree within 4,0%,

Group-wise activities were calculated at the bottom of the nozzle
and the inner surface of the pressure vessel for 5900(n,2n), 58Ni(n,2n)
and 630u(n,a) and then they were summed over groups; the azimuthal
variation of these activities is illustrated in figures 22, 23 and 24,
respectively. The first five energy groups from the SAILOR cross
section library vary between 17.33 MeV and 7.408 MeV. The variation of
the group fluxes per MeV for these energy groups are shown in figures 25,
26 and 27 which correspond to the midplane, the top of the core and
the bottom of the nozzle, respectively. The 5-group flux spectrum pre-
dicted by DOTSYN agrees extremely well with the TORT results at the
midplane and the top of the core for the same reasons explained above.
At the midplane, there is virtually no difference between DOTSYN and
TORT results. At the top of the core, DOTSYN flux spectrum disagrees
with the TORT flux spectrum by a maximum of 1.17% in the lower energy
groups; and at the bottom of the nozzle, the maximum disagreement
between these two calculations lies within 4.0%, which shows that the
much less expensive synthesis method of 3-D flux estimation produces
very reasonable and acceptable results compared to TORT.

Figures 28 and 29 show the radial variation of the total flux at the
peak flux location (6 = 9°), at the midplane and the top of the core.

As predicted and shown theoretically (Chapter II), in the regions where
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flux is nearly separable such as the midplane, the synthesis expression
for flux is almost exact compared to the true 3-D flux distribution. At
the top of the core, there is also very little disagreement between
DOTSYN and TORT calculations (within 0.7%Z). As seen from these two
plots, at two important locations - directly in front of the pressure
vessel and at the 1/4T - the fluence predicted by DOTSYN is very
accurate compared to TORT.

Figure 30 illustrates the radial variation of the total flux at the
peak flux location (6 = 9°) and at the bottom of the nozzle. As seen in
this figure, the flux shape behaves strangely starting from a certain
radial location. This location corresponds to the 15th radial interval
which starts roughly at 152.0 cm. At this location, the flux values
suddenly jump up, then dip down, and finally making another jump, fall
down rapidly. Near the core region, this behavior is not observed; but
as we go up further, the situation gradually worsens. This behavior is
predicted by TORT as well as DOTSYN. It was found from the calculations
that, in the case of the synthesis, only the R-Z channel flux shows f
these oscillations which start approximately at the 28th axial interval.
This interval belongs to zone 3 (fig. 16) - the upper reflector steel
region - which contains a mixture of S5-304 and coolant, the latter
having a density of about 0.7. Axially, there are 10 equal intervals
in zone 2 which are narrower than the ones in zone 3 which has 15 equal
intervals.

Two test runs were performed in order to see the effect of width of
the axial intervals on the flux shape. In the first test run, the 25
intervals above the core are kept equally spaced (axially) each having a

width of about 6.5 cm and the second test run contained only 16 equally
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spaced axial intervals above the core, each of which is about 10.0 cm
wide comparable to the 10.45 cm width at the upper part of the core. 1In
both test runs, the oscillations persist. The first 14 radial intervals
in the core are equally spaced, and they are about seven times wider

than the 7 intervals starting from the 15th. It is the 15th radial
interval also where the flux values start oscillating - thus the behavior
may be caused by the sudden change in the width of the radial intervals.
This is a problem associated with the numerical method applied in the

DOT R-Z as well as TORT calculations. TORT applies only the weighted
difference and, hence, the same method was adopted with DOT.

Finally, two more tests were performed with 21 equally spaced (about
7.9 cm wide) radial intervals in the core. In the first of these two
tests, the number of Z intervals is kept the same as in the very initial
run and in the second test, the Z intervals are equally spaced above the
core. In both the cases, it is found that the radial location of the
flux oscillations now shifts to where the narrower mesh starts, i.e.,
now the oscillations start not at the 15th but at the 22nd radial inter-
val (location of the relatively narrow meshes). The axial location of
these oscillations did not vary noticeably.

It can be concluded from the above information that in performing
the R-Z calculations, flux oscillations can be expected at the locations
where the radial meshes are very narrow compared to the axial meshes.
This is basically because of the fact that a neutron has to travel a long
way axially in order to traverse radially from one side of the interval
to the other. This sometimes produces negative flux which eventually
results in an oscillatory behavior of the flux shape. This is not seen
in the core region because of the source neutrons generated within the

interval.




Notice from figure 30 that at the locations of concern - in front of
the pressure vessel (R = 217.17 cm) and at 1/4T (R = 222.00 cm) - the
oscillations have no effect, and DOTSYN virtually gives the same values
as TORT in predicting the fluence.

It is to be noted from the above tests that in performing these cal-
culations it is a good idea to use meshes which are close to squares; in

other words, avoid long, narrow intervals in the transport computations,
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CHAPTER V

SUMMARY AND CONCLUSIONS

In this study, a three-dimensional flux synthesis program called
DOTSYN has been developed for use in reactor pressure vessel fluence
calculations in power reactors. The method is based on combining 2-D
R-6 and R-Z DOT transport calculations to obtain an R-8-Z (synthesized)
flux distribution. The accuracy has been established by comparison with
3-D discrete ordinates calculations performed with the code TORT.
Results indicate that the synthesis approximation developed in this study
produces extremely good results for threshold activities in the RPV. At
axial locations within the core region, the agreement is virtually
exact., Above the core, the error is within 5% at the peak flux location
and in the worst case, at the nozzle level, the maximum error is within
20%. The latter location is 61.67 c¢m from the core top. The five-group
flux spectrum predicted by DOTSYN agrees extremely well with that by
TORT. At the midplane, there is virtually no disagreement. At the top
of the core, the disagreement is within 1.17%Z and that at the bottom of
the nozzle lies within 4.0%. Although in some cases, the disagreement
between DOTSYN and TORT reaches about 20.0%, the computer time (actual
CPU time) required by DOTSYN (plus the 2-D DOT calculations) is about 35
times less than that required by TORT for a model such as the one used
in this study. This is a very important comnsideration for the utilities
who routinely calculate neutron flux in the power reactors. Hence, the

synthesis approximation is quite efficient and economical and can be
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used for routine reactor fluence calculations with a maximum estimated
error of about 20% at locations far above the top of the core.

Several extensions to the present study are recommended. First, the
accuracy of the synthesis approximation for lower energy groups needs to
be established. Also, the accuracy has not been determined for more
complex source distributions (such as for "part-length shield assembly"
cores). Currently, DOTSYN is not applicable to all geometries. In this
study, the cylindrical geometry (R-6-Z) has been treated. The code has
not yet been tested for an X-Y-Z geometry. It is possible to transform
DOTSYN to a more general synthesis code. For example, DOTSYN does not
treat a variable mesh within the synthesis region; this restriction can
be overcome. In the activity calculation subroutine, there is an option
to collapse 56 energy groups to any lower number of groups and this is
valid only for the ELXSIR cross section library. This option can be
extended to cover other cross section libraries as well, such as SAILOR

used in this study.
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