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Abstract

Traditional methods of performing transport calculations with forward peaked cross sec-
tions represent the wide angle scattering with Legendre polynomials and the small angle
scattering with a finite difference approximation to the Fokker-Planck operator. Finite dif-
ference representations being incompatible with standard discrete ordinates codes, Morel
has derived a moment expansion for use in Boltzmann calculations which rigorously ap-
proximates the Fokker-Planck operator but gives a scattering matrix with some negative
elements. In certain types of problems, these negative elements result in negative angular
fluxes. Conversely, the standard finite difference approximation gives a positive scattering
matrix and, hence, always gives positive angular flux solutions. In order to retain com-
patibility with existing Sn codes and obtain a positive approximation to the Fokker-Planck
operator, we have modified the expansion moments in a least squares fashion constrained to
give a positive angular scattering matrix and preserve the momentum transfer. The resul-
tant scattering matrix closely approximates the finite difference representation. The given
modified cross section moments representative of small angle scattering have the advantages
of moment operators and finite difference operators in that they can be used in standard
Sn codes and guarantee positive flux solutions. The modified scattering matrix contains
small wide angle scattering elements which are not present in the tridiagonal finite differ-
ence operator. In the typical case where smooth and forward peaked scattering is present,
the smooth scattering expansion dominates the small differences in the scattering matrices.
Boltzmann-Fokker-Planck calculations using the scattering matrices generated with the two

different methods have essentially identical, positive solutions.

vii




Chapter 1

Introduction

1.1 Objectives

The Boltzmann transport equation® is a mathematical description for a differential balance
of particles that interact with the medium in which they travel. A simplified version of it
and a description of the terms contained in it are in the Appendix. Although the transport
equation is relatively simple to derive, it is impossible to solve analytically for all but the
simplest problems. Solutions are obtained via different numerical schemes that have been
developed over the last thirty years. These schemes can be grouped into stochastic and de-
terministic methods. Stochastic methods solve the transport equation by tracing the history
of interactions of many particles as they travel through the medium. Deterministic meth-
ods solve for the expected (i.e. average) distribution without accounting for the statistical
variations. One of the most common of the deterministic methods is called the “discrete
ordinates” method because it discretizes the phase—space continuum into a space—energy-

direction mesh and “transports” the particles from one mesh cell to the next using finite




probabilities calculated from the material and geometric data?.

One of the characteristics of most of the computer codes that use discrete ordinates is
their calculation of the discrete angle—to—angle scattering probability based on Legendre
expansions of the differential scattering cross section. The required cross section data for
these codes is simply the Legendre moments of the scattering function. For many scattering
distributions, low order expansions produce sufficiently accurate results. However, with the
developments in charged particle transport, interest has grown in the solution of the trans-
port equation for cases when the scattering is highly forward peaked. Increasingly forward
peaked scattering distributions require increasingly higher order expansions to accurately
represent them. Truncation of the expansion at an insufficiently high order causes the ex-
pansion to oscillate about the true distribution in the region of large angle scatter. If the
scattering probability is small in this region, the oscillatory nature of Legendre polynomials
can cause the expansion to oscillate negatively as in Figure 1.1 . This region of the cross
section expansion would represent a negative probability of scatter, which is nonphysical. In
the discretized form used by computer programs, this can cause the angle-to—angle scatter-
ing elements to be negative. For certain classes of problems this may lead to negative flux
solutions, which are also nonphysical. This could be corrected by using an orthogonal set of
polynomials other than the Legendre polynomials to expand the cross section or by repre-
senting the cross section by some other method such as with a set of discrete values. The
disadvantage in either of these (or any other) method is that it would require development
of an entirely new set of transport codes that could use such data. The codes presently in
use require that the cross section be represented by a Legendre expansion and that the
input be the Legendre moments of the cross section . These codes are extremely versatile

and have been extensively verified. Instead of developing a set of programs to handle the
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Figure 1.1: Legendre expansion of a forward peaked cross section
small class of problems for which negative oscillations in the cross gection cause trouble,
it would be advantageous to develop a new set of Legendre moments that are modified in
some fashion to guarantee a positive discrete angular scattering operator in contemporary
discrete ordinates codes.

The objectives of this thesis are:

1. to develop a method of cross section moment modification which will guarantee pos-
itivity of the discrete angular scattering operator and be accurate for highly forward

peaked scattering, and

2. to assess the accuracy of this method by comparison against a traditional approach
which combines the Legendre moment representation with a finite difference Fokker-

Planck approximation.




1.2 Representation of a forward peaked cross section

Any piecewise continuous function of one variable can be represented by an expansion in
Legendre polynomials®. A drawback to this approach is that for increasingly hiased func-
tions, increasingly higher order expansions are required to accurately represeni them over
the full range of the expansion until, in the limiting case of a Dirac delta function, an infinite
expansion order is required to represent it correctly.

Differential scattering cross sections used in calculations are functions of the cosine of
the angle of scatter in the laboratory system and can be expanded in Legendre polynomials.
The scattering distribution may vary in form from isotropic to extremely forward peaked
for charged particles and high energy neutrons. Isotropic and slowly varying scattering
probabilities can be accurately expanded in Legendre polynomials of low order. Cross
sections typical of charged particle interactions may be difficult to accurately fit even using
a fifteenth order Legendre expansion. The accuracy of the fit is biased toward the regions of
#gmall angle scatter (regions of largest cross section ), degrading the fit in the wings (vegions
of wide angle scatter).

Since the forward peaked cross section is difficult to model over the full range, we can
separale the cross section into two components, a smooth part and a forward peaked part,
and treat each separately over the partial regions of the domain. Since it is slowly varying,
the smooth  cross section can be represented by a low order Legendre expansion vsing
moments fit over the smooth region of the domain. This partial range fit of Legendre
moments defeats the orthogonality property of the Legendre polynomials and requires
special treatment which will be discussed later.

The forward peaked region of the cross section is still rapidly varying and is not amenable

to representation by Legendre expansions. Traditional methods have umicluded treating the




forward peaked scattering with a finite difference approximation to the Fokker-Planck oper-
ator. The Fokker-Planck operator, which is derived in the Appendix, assumes that grazing
collisions are the dominant mode of scatter?. Grazing collisions incur small angular deflec-
tions and correspondingly small energy losses and are therefore forward peaked reactions.
These methods of treating the forward peaked component of the scattering have a severe
drawback. They use finite difference approximations which exclude the use of present dis-
crete ordinates codes. A more efficient way of treating the forward peaked component
would be to provide a set of moments representative of the Fokker-Planck operator as in-
put to standard discrete ordinates codes. Morel has derived an expression for such a set of
moments®. Since the Legendre polynomials are eigenfunctions of both operators, he equated
the eigenvalues of the Boltzmann integral scattering operator to the Fokker-Planck differ-
ential scattering operator as they operated on the Legendre polynomials. The expression
algebraically reduced to a polynomial expression for the moments linear in the momentum
transfer. Unfortunately, Morel’s moment representation for the Fokker-Planck operator is
not positive. Expressions using these “ Fokker-Planck equivalent” moments accurately rep-
resent the forward-peaked scattering, but oscillate about zero in the large scattering region
in much the same way that truncated Legendre cross section expansions oscillate.

These negative oscillations in the cross section expansion can cause negative elements in
the discrete Boltzmann scattering operator. This has little effect in most classes of transport
problems since the negative elements are usually small compared to the forward peaked scat-
tering elements. However, when solving certain cases of normally incident boundary sources,
the reflected source is small enough that the contributions of the negative scattering array
elements can dominate the solution at some of the discrete reflected directions. This is not

seen when the boundary source is isotropically incident, since the scattering sources nearer




the reflected directions dominate the small negative reflected fluxes caused by the normally
incident components. Thus, though there is a method of treating the Fokker-Planck com-
ponent of the angular scattering source which is compatible with contemporary discrete
ordinates computer programs, it can produce nonphysical solutions for certain classes of
problems. This thesis presents a method of preventing these nonphysical solutions by mod-

ifying the forward peaked operator.




Chapter 2

The discrete ordinates

scattering operator

2.1 Legendre expansions of cross sections

Since the Legendre polynomials form a complete basis that spans the space of all continuous
functions defined over [-1,+1], any function of one variable can be expanded in Legendre
polynomials. Scattering cross sections are isotropic in the azimuthal angle. They are a
function of only the polar angle, 8, which can be represented uniquely by its cosine, which
is defined over [-1,+1]. Therefore, scattering cross sections can be expanded in Legendre
polynomials.

The exact expansion of a cross section in Legendre polynomials is

o0

olpo) =D Ze; LoePy(ho) (2.1)
=0

where the coefficient, oy, is the £t Legendre moment. An infinite expansion, though it is



exact, is unfeasible. A more practical method is to truncate the expansion at order L and

choose the Legendre moments such that the error, ¢, defined by

1 L
o= [ lotu) -3 B oepuu e (2.2
-1 =0

is @ minimum. The error is minimized using the standard minimization technique of setting

the derivative of the error with respect to each moment to zero:

Se + Lio+1 27 + 1
o< =2 / (o) = 3 2 L Puo) 222 Py (o) dtor 3 =0...L (2.3)
o, -1 — 2 2
=0 . (2.4)
Rearranging equation 2.3 ,

+1 +1 L 2041

/ . U(l‘o)PJ (l‘o)dﬂo = / ) Z 2 Uepl(l‘o)PJ (l‘o)dﬂo ’ (2-5)
- -+ e=0

the orthogonality property® of the Legendre polynomials can be invoked to reduce the right

hand side of equation 2.5 to

L

20+ 1 2
Z 2 0‘1-2-—4_—-]?5;, =0, . (2.6)
=0 J

Thus, for the error in the expansion to be a minimum, the cross section moments must be

defined as

o= /;-Zla(l‘o)Pt(Fo)dl‘o . (2.7)

Equation 2.2 requires that the Legendre moments of the error squared go to zero.
This implies mean convergence, or that the average of the error over the full range of the
expansion be zero. The error is not constrained to uniformity over the full range. The least
squares procedure, in the absence of a weighting function, will fit the function better where
it is largest. Consequently, the relative error can, and frequently does, become very small

in some regions at the expense of the accuracy in other regions.



2.2 Discretization of the continuous scattering source

The Boltzmann scattering source for scattering from p’ to p in one dimensional slab or

spherical geometry is defined as

sW=o [ [ olwdolrintas, (2.9

where

o= pn+(1—p?)(1 - p?)cosg’ . (2.9)

By replacing the cross section with its Legendre expansion,

1 2r +1 L 2¢ 1 ) '
sw=5 [ [ > S oePuua)$ )i 4, (2.10)

and by invoking the spherical harmonics addition theorem®, the scattering can be restated

in terms of the initial and final direction cosines:

L
s = [ 3 2 Loy py(u P (2.11)
-1 ¢=0

After extracting all the elements independent of ' from the integral,

L

563 =3 25 oepi) [ P00, (212)

=0

all that remains in the integrand is the expression for the £2flux moment which is analogous
to the & cross section moment defined previously. Replacing the integral with the ££:flux

moment,

s =Y E o n(e (213)

the equation can be rearranged to group the flux and cross section moments:

L

s =3 2 Pwloetel (2.14)
£=0
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The product in brackets is the £:moment of the scattering source. The remainder of the

right hand side of equation 2.14 is the Legendre expansion that maps the source from the

moment basis to the discrete basis.

The analytical integral expression in equation 2.12 can be replaced with quadrature

integration, giving
L

M
S = 3> Z L oePulu) Y Pelpn) (o (2.15)
=0 =1

However, two conditions must be met in order for the integration in equation 2.15 to be
exact. The first is that ¢(u) must vary as a polynomial that can be uniquely defined by
the M direction-flux (u, ) pairs. This is required because standard quadratures can only
exactly integrate polynomials. The second condition is that the quadrature order M must
be sufficiently high for the quadrature to exactly perform the integration. The choice of M
is dependent on the quadrature set. For example, Gaussian quadrature of order eight will
exactly integrate a fifteenth order polynomial®, whereas a ninth order Lobatto quadrature
is required to perform the same integration exactly. As was stated previously, the numerical

integration in equation 2.15 calculates the flux moments from the angular flux at discrete

directions.

2.3 Matrix formulation of the scattering operator

The calculation of flux moments and re-expansion of the source represented by equation 2.15
is the standard method of performing scattering calculations in discrete ordinates methods.
The summations in this equation can be represented by a series of matrix operations. Three

matrix operators can be defined as:
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1.
Dy, = Py(p,)w,, (2.16)
2.
Lo = oelek, (2.17)
and
3.
M= 2P (0). (2.18)

The first operator, Dy, , is the discrete-to-moment operator that maps the discrete fluxes
into the moment basis. The second operator, L, is the diagonal matrix formed by the
vector of cross section moments and the identity matrix, I. The third operator, M,, , is the
moment—-to—discrete operator that maps the source moments into the discrete basis. The

matrix equation for calculating the flux moment using the operator defined above would be

¢k = Dk: '/’J . (2-19)
The source calculation in the Legendre basis using matrix notation would be

se = ek k- (2.20)
The discrete angular source would be calculated from the source in the moment basis by

S, = M, ,3,. (2.21)
The discrete scattering source vector, S,, due to a discrete angular flux vector, ¢,, is

S, = M,Z¢ Dy, 9, (2.22)

or

S, = St: "/’_1; (2'23)
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where the discrete angular scattering operator for scattering from p, to p, is

S.; = My T Dy, . (2.24)




Chapter 3

A positive forward peaked

scattering operator

In this chapter, the Fokker-Planck approximation to the one group transport equation is
introduced. Then, a set of Fokker-Planck equivalent cross sections are developed as input
to standard transport codes for solving problems with highly anisotropic scattering. Since
the expansion of this type of cross section is typically not everywhere positive, a scheme
for modifying them to obtain a positive discrete angular scattering operator based on a

particular quadrature set is presented.

3.1 Historical perspective

The Fokker-Planck equation assumes that small angles of scatter and correspondingly small
energy losses are the dominant modes of scatter. Such is the case with charged particles

and high energy neutrons produced by fission and fusion. Charged particles (i.e. electrons)

13
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scatter by coulombic interaction where the probability of energy loss varies inversely as the
square of the energy loss. Small energy losses (and small angular deflections) are much
more probable, which makes coulombic interactions good candidates for modelling with the
Fokker-Planck equation.

Many methods have been developed for solving the Fokker-Planck equation in some
restricted fashion. Corman et al. (1975) used a multigroup method to handle the particle
slowing down and an ad hoc “flux limited” diffusion coefficient to approximate the angular
redistribution!®. Pomraning (1983) has formalised this approach and shown that Fokker-
Planck and transport corrected treatments of the scattering kernel are equivalent!!. The use
of a diffusion coefficient restricts this method to treatment of problems without strong source
anisotropy, which is an inherent feature of Fokker-Planck problems. Antal and Lee (1976)
calculated integral quantities, such as charge and energy deposition, using discrete ordinates
techniques!?. They derived equations that suitably modeled the slowing down but neglected
angular scattering. Similarly, Moses (1977) approximated the paths of the particles as
straight lines'®. This is suitable only for heavy charged particles. It also does not allow for
angular redistribution, which is of primary importance in some problems. Haldy and Ligou
(1977) derived a modified scheme which allowed the particles to scatter to new energies and
angles, but only in an infinite medium!%. Mehlhorn and Duderstadt (1980) derived finite
difference equations for the Fokker-Planck scattering operator which they implemented in
TIMEX. The modified program, TIMEX-FP, possessed all the versatility of the parent
codel®, The approach was somewhat awkward since it required internal modification of
the program. These methods have addressed strictly Fokker-Planck scattering. The most
complete treatment of forward-peaked scattering has been presented by Caro and Ligou

(1983) who separated the scattering operator into the smooth and singular components'®.
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They expanded the smooth operator in Legendre moments and used a finite difference
approximation to the Fokker-Planck operator for the singular component. This was the first
coupling of the Boltzmann and Fokker-Planck operators in the treatment of forward-peaked
scattering. Although this method gives a complete treatment of the scattering operator, it
requires the development of a separate set of Boltzmann-Fokker-Planck codes. Morel (1981,
1985) has derived an expression for a set of cross section moments which are “Fokker-
Planck equivalent” and can be used as input for existing discrete ordinates programs!”+8,
Within group cross sections account for angular scattering while the group to group cross
sections account for energy loss. Morel’s method, therefore, provides a complete energy
and angle representation of the Fokker-Planck equation and is still able to use the plethora
of analytical and numerical techniques developed for neutron transport and implemented
in standard Sn codes. However, as will be shown, the method can produce nonphysical

solutions for certain types of problems.

3.2 The Fokker-Planck approximation

A detailed derivation of the one group Fokker-Planck equation is given in the Appendix.
Only a brief description of it will be given here. Starting with the one group, time indepen-
dant, one dimensional slab or spherical Boltzmann transport equation for a nonmultiplying

medium,

3 2 +1
l‘a_f +op = 517?/0 ./;1 05 (o) ¥ (1) dp'de’ + Q(u), (3.1)

it can be reformulated in terms of the net inscatter,

9y

w2l + e = Doy + Ou), (3.2)




16

where

1 2 +1
Tov =g [ [ loaeolb) - onluod (e’ as (3.)

T Jo
is the net inscatter and I'g is the Boltzmann integral scattering operator. The coordinate
system is rotated, changing the integration coordinates from the laboratory system (y', ¢') to
the scattering frame (po, $o). Since the Fokker-Planck approximation applies when po & 1,
the flux is expanded in a truncated Taylor’s series about this direction and integrated over

¢o. The result is

a3
u3Y +oud =Trpi+ Olu), (3.4)

where the Boltzmann integral operator has been replaced with I'r_p, the asymptotic

Fokker-Planck differential operator , which is

a a
Trrp = 5ac(l= 13, (3.5)
where
+1
a= / os{1to)[1 — poldpto. (3.8)
-1

The coefficient, «, is called the momentum transfer in charged-particle transport literature.
It is called the transport corrected scattering cross section in neutron transport literature.

For the flux derivatives not to become inordinately large, the flux must vary sufficiently
smoothly. Since the Fokker-Planck equation evolves from a truncated Taylor’s series about
lo = 1, the approximation is only valid for u, = 1. If the scattering is indeed highly forward
peaked, the integrand in equation 3.3 will be small except near p, = 1, where the Fokker-
Planck equation is valid. In such a case, the two scattering operators, I'g and I'r—p, would

closely approximate each other.
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3.3 Fokker-Planck equivalent moments

Standard discrete ordinates codes require an excessive number of Legendre cross section
moments to correctly represent Fokker-Planck scattering. To correctly model the Fokker-
Planck region using Legendre cross sections moments requires a much larger expansion
order than a fit that ignores the accuracy in the regions of low probability scatter. Since
the asymptotic Fokker-Planck scattering operator is accurate only for scattering through
very small angles, equating it with the moment representation of the Boltzmann scattering
operator will give a means of deriving a set of cross section moments which are “Fokker-
Planck equivalent”.

Since the Legendre polynomials form the basis of the flux expansion, they can be

operated on with the Boltzmann scattering operator, giving

tarl) = [ [ bl Pu) - Pulu)ldn'as' (37)

After expanding the cross section in Legendre polynomials , equation 3.7 can be written

2r +1 ©° n
ToPols) = o / [ 1 2_302 o P (o) Pe(K) — Peli)ld (3.8)

where the cross section moments are defined as:

+1
on=[ (40 Pa (o) (3.9)

Using the spherical harmonics addition theorem to expand P,(u,) and performing the in-

tegration in equation 3.8 yields

PB PL([I.) = [0¢ - O’o]Pg(ﬂ). (3.10)

Similarly operating on the Legendre polynomials with the Fokker-Planck scattering oper-

ator,

33

Tr-pPe(p) = 5 a{ll - #2]%1(1“)% (3.11)
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the outer derivative operation can be distributed to provide the following expression,

a 29%Pe(p) _, 9P(p)
— % = , 3.12
Tr_pPe(p) 2{[1 T a2 2 B } (3.12)
Using the recurrence relation for Legendre polynomials!?,

Pu) _, 3P(n)

2 (AN [AV
— - =0 3.13
(1w a2 P o, + £[e+ 1) Pe(p) = O, (3.13)

the right hand side of equation 3.12 can be replaced, providing the following simple expres-
sion:

Tr_pP(n) = —%e[e + 1] Py (n). (3.14)

Since I'g and T'p_p are to be equivalent operators, they are equated as they operate on the

Legendre polynomials :

I‘BPC(;L) = I‘F_ppg(/.l.). (3.15)

Substituting in equations 3.10 and 3.14 for I'p Py(u) and T'r_ p Py(p), respectively:
oe — 00 Pe(p) = —ge[u 1)Py(u), £=0,...,00 , (3.16)
a simple expression for o9 can be derived algebraically:
ao=ag+%£[£+1], £=0,...,00 . (3.17)

As the expansion order increases, og increases without limit. Truncating the expansion at

order L and setting o7, = 0 to minimize o9, it is found that
o
gg = EL[L -+ 1], (3.18)

and

™

or =00~ %e[u 1], ¢=0,.. (3.19)
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which can be rewritten
oy = %{L[L+ 1) — gle + 1]}, £=0,...,L . (3.20)

Selection of the expansion order, L, and determination of the momentum transfer, «, from
the cross section data determines the cross section moments representative of Fokker-
Planck scattering. When using an expansion of order L, the Boltzmann integral operator
is equivalent to the Fokker-Planck differential operator when operating on polynomials of
order L or less.

An obviously desirable characteristic of the Fokker-Planck operator is that it be spherical
harmonic equivalent. This property can be insured by applying certain restrictions to its
usage. Having established the equivalence of I'p and I'r—p when operating on polynomials
of order L or less with cross section expansions of order L, it logically follows that if T'p is
somehow made spherical harmonic equivalent, then I'r_ p must also be spherical harmonic
equivalent under the same conditions. The spherical harmonic form of I's in one dimensional

slab or spherical geometry is

N-1,,
Totpp(u) = Z 2 ;- 10¢¢¢Pe(#) — oovp(n), (3.21)
=0
where ¢, is defined as
+1
$e = Yp(n) Pe(p)dy, £=0,N-—1. (3.22)

-1
If ,(p) is a polynomial of order N —1 or less, the integrand in equation 3.22 is a polynomial

of order 2N — 2 or less which can be exactly integrated using the quadrature approximation

N
$e = Z ¢p(#t)Pt(l‘-a)wt (3.23)

1=1

if {u,}¥, and {w,}L, are the Gauss quadrature zeroes and weights. Substituting equa-
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tion 3.23 into equation 3.21 , we obtain the discrete ordinates form of I'p:

N-1 N
Totpls) = Y oa Loy $lom) Pelp)on]Pelt) — cohp(s), (3.2

where the expression in brackets exactly calculates the Legendre moment of the flux if u,
and w, correspond to the Gaussian zeroes and weights. Using cross section expansions of
order N — 1 insures an expansion order equal to that of the spherical harmonics equations
of order N — 1. Thus, using Gauss quadrature of order N and cross section expansions or
order N — 1 when operating on polynomials of order N — 1, the spherical harmonics form
is equivalent to the discrete ordinates form of the Boltzmann scattering operator in one
dimensional slab or spherical geometry and, hence, also to the Fokker-Planck operator.
Some final comments on the Fokker-Planck equivalent cross sections are warranted be-
fore continuing to the final section of this chapter. Recalling the definition of the momentum

transfer,
+1
a= [ olua)l1 = wldue (3.25)

and substituting the appropriate Legendre polynomials ,
+1
a= [ o) Polho) = Ps(so) o (3.26)
-1
the following simple expression for the momentum transfer results:
a=[og — g1 (3.27)
Substituting the derived expressions for the Fokker-Planck moments into equation 3.27 :

a = %L[L +1]— %{L[L +1] -2} (3.28)

= a,

it is shown that the momentum transfer is exact and independant of the expansion order.
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Expressing the average cosine of the scattering angle as

Po=—, (329)

and substituting the expressions for o¢ and oy,

S{LIL+1]-2}

Po = "ol +1] (3-30)
_ LIL+1]-2
= (3.31)

it is readily seen that i; goes to one as the expansion order goes to infinity. The expression

for the momentum transfer can be rewritten in terms of oo and 5ig:

a = [oo—oi]
= ool- gl] (3.32)
= ool -l (3.33)

If the momentum transfer is to remain constant as the expansion order increases (and %,
approaches one) the scalar cross section must approach infinity. Upon examination of the

expression for the scalar cross section ,
a
gp = EL[L'F 1], (334)
oo obviously varies as L? . The conclusions of this analysis are:

1. as the expansion order increases, the approximation made in deriving the Fokker-

Planck equation (g, &~ 1) becomes more accurate, and

2. in the Fokker-Planck limit, the scattering cross section becomes infinite, causing
the particles to scatter continuously, but through a differentially small angle in each

collision.
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3.4 Approach to ensuring positivity

The Fokker-Planck equation is derived under the assumption of predominantly forward
peaked scattering. No other assumptions are made regarding the angular distribution of the
scattering. Hence, an expansion using the moments which represent a least squares fit to
the Fokker-Planck scattering operator will produce a cross section that is forward peaked,
but since it is a least squares fit, the accuracy will not necessarily be uniform. The regions of
large cross section have a least squares weighting that is implicitly larger than the regions
of small cross section . This heavier weighting causes the least squares fit to be better in the
regions of larger cross section . To minimize the square of the average error, the moment
expansion will oscillate about the actual function. In the region of large angle scatter of
a forward-peaked cross section , the magnitude of the cross section is small enough that
the oscillations can dominate the fit. Thus, this approach suffers from the same negative
oscillations as in any forward peaked expansion. Recalling the Legendre expansion of the

scattering source:
220 +1 ad
S(w) =Y ———0ePeln) Y Pe(w)b(m)wn, (3.35)

€=0 z 1=1

truncation of the expansion at an order L that is insufficiently high for properly representing
the scattering cross section can cause S(u) to oscillate negatively over part of the expansion.

In the matrix formulation of equation 3.35 used by discrete ordinates,

S, = S,,v;, (3.36)

where

S,J = M,gZuchJ, (337)

negative oscillations in the Legendre expansion of the cross section may cause elements of

this matrix operator to be negative. These negative elements, when folded with a positive
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angular flux vector, may introduce a negative scattering source in some directions which may
lead to a negative flux solution. The scheme presented in this section attempts to generate
a set of modified cross section moments that will produce an angle-to—angle scattering
operator that is positive at all the quadrature directions.

The negative elements in the scattering matrix have a complicated origin. The elements
themselves are discrete values of a continuous product of two functions corresponding to
the moment expansion of the cross section and the expansion basis of the flux. The flux
expansion basis is inherent in the quadrature data which defines the discrete angular direc-
tions of the solution. Since the directions are chosen by the quadrature, which determines
the accuracy of the flux solution, they are necessarily fixed. The flexibility in generating a
positive scattering matrix lies in the option of modifying the moment representation of the
cross section, which must be done with caution.

The method presented in this thesis attempts to modify the Fokker-Planck equivalent

cross section moments subject to the following constraints:

1.
Si; = My Ty Di; 20, (3.38)

2.
oy = 0o, (3.39)
oy = o1, (3.40)

and
3.
L

minimize Z[O’; — ae]?, (3.41)

=2
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where, oy is the 22 modified cross section moment. The first constraint is the ultimate goal
of the moment modification, that is the required positivity of the scattering operator which
represents a system of N x N constraints where N is the quadrature order. The second
constraint is the preservation of the momentum transfer via the preservation of the first
two cross section moments. This supplies two additional constraints. The third constraint
preserves the remaining moments in a least squares fashion. This constraint minimizes the
deviation of the modified moments from the original moments over the full range of the
expansion. The moment modification problem, then, is to solve the minimization in the
third constraint subject to the N? + 2 conditions proposed by the first two constraints.

The solution of this problem requires use of an optimization computer code tailored to
solve exactly such a problem. Lawson and Hanson have done extensive work in the area
of linear optimization with constraints, and we have capitalized on their work in solving
this problem??, Given the M and D operator matrices described previously and the cross
section moments, the intended scheme is to generate a new set of moments, subject to the
prescribed constraints, using one of Lawson and Hanson’s techniques.

Hanson and Haskell have written an appropriate program called WNNLS?!. It solves
two simultaneous sets of linear equations: one set which is exactly satisfied and constrained
to positive solutions and another set which is approximately satisfied in a least squares
sense. This particular problem requires the definition of the scattering array elements given
by equation 3.37 be exactly satisfied and that the elements be positive. Equation 3.37 can

be written

L
> M, D07 - S,; =0. (3.42)
=0

This satisfies the first constraint of the moment modification. The preservation of the
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zeroeth and first cross section moments as exactly satisfied constraints can be written

*

oh — 0o =0 (3.43)

and

o] —o1=0. (3.44)

This completes the first set of equations mentioned above. Preserving the remaining mo-
ments in a least squares fashion as described by equation 3.41 comprises the second set of

equations mentined above and is formulated as

oy —o¢=0. (3.45)

Setting up the constraints in this way fits the equation format required by WNNLS.




Chapter 4

Construction of the scattering

operator

4.1 Extraction of low order scattering

A forward peaked cross section can be broken into two parts labelled the smooth cross
section and the forward peaked cross section which are defined over the regions of wide

angle scatter and small angle scatter, respectively. Such a cross section could be written as

o(po) = UGmomh(#O)[U (Bo + 1) = U(po — mo)] + UF—P(#O)W(P'O — o) — U(po— 1)] (4.1)

where 3 is the point where the cross section is broken and U is the unit step function

defined as

Uz) =0 ,z<0 (4.2)

26
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Figure 4.1: Legendre fit of a truncated cross section
The smooth cross section can be expanded in Legendre polynomials of low order, unlike

the forward peaked cross section . To expand the smooth cross section in Legendre

polynomials , the moments could be calculated in the usual manner:

]

Je

+1
/_ i) Plc) i

/_ +11 ™0t (o) U (o + 1) — Ullo — )| Pelbio)dbto - (4.3)

This is equivalent to fitting a cross section similar to the one depicted in Figure 4.1 .
Attempting to fit the discontinuity at up will degrade the fit over the regions where the
quality of fit is important. This is the same problem that is encountered when the smooth
and forward peaked regions of the cross section are to be fit simultaneously.

Alternatively, fitting the cross section over the partial range from —1 to y, by integrating
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over only the partial range:

L

olw) = Y 0Py (44)
=0
113 L b
/ o) Py (oo = 3 EF Lo, / Py (o) Pelo)dio  »  (45)
-1 ¢=0 -1

defeats the orthogonality property of the Legendre polynomials since the integral on the
right hand side of equation 4.5 does not reduce to ﬂ?ﬁ&a as when the integral is performed

over the full range. This results in a system of simultaneous equations which can be written

[N

g=B . (4.6)

A is the matrix operator whose elements are the partial range integrals of the products
of Legendre polynomials. B is the “source” vector defined as the partial range integrals
of the cross section and the Legendre polynomials (the left hand side of equation 4.5 ).
The solution vector, g, is the desired set of Legendre moments. The drawback to this
method lies in the fact that A approaches singularity as u; decreases. When the integral is
performed over the full range, A becomes the identity matrix with a condition number of
1.0 and no inversion of 4 is necessary?2. As the upper limit of the integral is reduced, the
condition number increases rapidly to 104 for uy = 0.9 and 107 for up = 0.8. The inversion
of A necessary in solving the matrix equation would entail incurring a loss of four digits of
accuracy in the first case and seven digits in the second. This is an unacceptable loss of
accuracy, particularly in single precision (8-digit) operations.

A variation on the second method which is still based on a partial range fit would be
to transform the Legendre polynomials from the space defined over (—1,+1) to (—1, up),
which effectively defines a set of polynomials orthogonal over (—1, up). The transformation
is performed by evaluating the linear relationship of the two spaces:

us+1
5 Ju

»— 1
#I___[l‘

. (4.7)

I+
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and substituting it into the Legendre polynomials to define the new orthogonal set, P,(u'):

sy —1 +1
Py(i) = P{[=—=]+ (2= lu} (4.8)
The definition of the moments in the transformed basis would be

ci= [ oW B (4.9)

The moments are orthogonal on (—1, up). The discrete ordinates expansion is defined over
(—1,+1), so the moments must be transformed back to this space. This can be done by
calculating a matrix of projection operators, £, which relates components of o, to o¢. The

projection operators would be

+1
PLJ = . PLI("")PJ (”’)df‘ ) (4‘10)
and the transformation would be
L
oy =Y Pyoi . (4.12)
=0

The Legendre expansion using these moments would represent the Legendre fit of o*™°%" (u,,)
over the range (—1, up). If the cross section behaves regularly, it should be easy to fit it
accurately. Since it is only fit over the partial range, the cross section expansion is not
required to behave in a particular way outside the partial range. However, since the smooth
region is monotonically increasing, it is not unreasonable to expect the expansion to also
be monotonically increasing outside the region of fit similar to the cross section in Figure
4.2 and Figure 4.3. Although, if it is not monotonically increasing, the expansion is still

acceptable if it does not oscillate negative.
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4.2 Evaluation of the forward peaked scattering com-

ponent

Though the smooth cross section generation technique presented in the preceding section
performed the fit over only a partial range, the discrete ordinates scattering operator uses
these moments in a full range expansion. The full range behavior of the smooth cross
section expansion must be accounted for in calculating the forward peaked cross section
moments. Since the momentum transfer is a property of the cross section (see §3.3), it

should be preserved in the expansion. If the expansion is written as

L
olio) = Y 2L o) (4.12)
=0
where
o¢ = opmooth 4 af'_P , (4.13)
then
oo = g§™oth 4 oF-F (4.14)
and
0y = gjmooth 4 oF-P (4.15)
should be true. The momentum transfer of the cross section is
a =09 -0 , (4.16)
which, when the substitution for oy and o; are made, is :
a = [ogmo +af F] - [ofmo 1 oF ] (417)

The terms can be rearranged to give

a = [aamooth _ U;mooth] + [o,g‘—P _ o,f—P] (4.18)
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— aamooth + aF'—P . (4 19)

Thus, to preserve the momentum transfer of the cross section , the momentum transfer
of the forward peaked expansion should be the difference between the exact and smooth
expansion momentum transfers.

The forward peaked cross section is represented as the Legendre expansion using the
Fokker-Planck equivalent moments. Since the moments are linear in the momentum transfer,
they can be calculated by

oe(a) = aoe(a=1) (4.20)

where o¢(a = 1) are the values given in Table 1 in the following chapter.

4.3 Composition of full range expansion

The moment representation of the entire cross section is formed by assembling the partial

range expansions. If the partial range expansions are

L

20+1
Tomooth (o) = 3 _ —=—=0¢™ " Po( o) (4.21)
=0
and
Lo2t+1
Upeaked(ﬂ'o) = Z 2 af—Ppt(llo), (422)
=0
then the full range expansion is
U(ﬂ'o) = Uamao‘lh(p’o) + Upeakcd(ﬂ'o)- (4‘23)

Substituting in the above expansions for the cross sections ,

L L
2041 , 20+1 p_
o(po) = Y :—2 5™ Py(o) + ) —5—0¢ ¥ Pe(po), (4.24)
=0 =0
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the common terms can be brought inside a single summation, giving

L

20+1, . _
olto) = 3 ZE L (o3 + 0F ~F) Pu(ho) (4.25)
=0

Therefore, the £:moment of the full range expansion is the sum of the £moments of the
partial range expansions. This assumes that the relevant regions of each cross section will
dominate the other in that region of the expansion. This piecewise generated set of moments

is the cross section data supplied to the discrete ordinates computer program.




Chapter 5

Computational results and

analysis

This chapter presents two sets of examples as proof of the validity of the modification scheme.
First the unmodified and modified Fokker-Planck equivalent moments are presented. Angle-
to-angle scattering matrices for two sets of moments of equal order are compared against
a finite differences generated scattering matrix. Sample cases using the three matrices
show the different results obtained for different dominance ratios. Second, two examples
of normally incident electrons on a slab of aluminum are presented. A one MeV incidence
case compares results obtained using several variations on the modification technique. A

one hundred keV incidence case presents similar results for comparison.

34
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5.1 Comparison of representations of the Fokker-Planck

scattering operator

The Fokker-Planck equivalent moments of odd orders are listed in Tables 5.1 and 5.2 for
expansion orders three through fifteen. They were generated using equation 3.20 with the
momentum transfer normalized to one. Since equation 3.20 was derived by equating the
Boltzmann operator and the Fokker-Planck operator, which is only valid for one dimensional
slabs or spheres, the moments of order N — 1 were modified for positivity when used with
Gaussian quadratures of order N. Gaussian quadrature sets were chosen since they are the
“hest” one dimensional integration quadratures. The modified moments are listed with the
original moments. Either set can be used by multiplying the moments by the appropriate
momentum transfer.

Figure 5.1 shows the cross section expansions using the unmodified and modified Pis
moments from Table 5.2. Both expansions represent extremely forward peaked scattering
probabilities with small wide angle scattering probabilities. Though the scale suppresses it,
both expansions oscillate about zero. Upon examining Figure 5.1, one might be led to believe
that the original moments would give a positive scattering matrix with an S;¢ Gaussian
quadrature since it oscillates less wildly about zero. However, some of the scattering angles
lie at points where the expansion oscillates negative. As was required by the least squares
modification, none of these scattering angles lie at negative modified expansion points. This
can be seen in Figures 5.2 and 5.3 which depict the angle-to-angle scattering matrices
using the original and modified moments, respectively. The original discrete scattering
operator (Figure 5.2) has negative elements as close as two elements off the diagonal. The

flux in this region, even if it is extremely forward peaked, is large and can contribute a large
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Table 5.1: Original and modified Fokker-Planck equivalent moments of orders 3 through 11

Moment | Unmodified Modified Moment | Unmodified Modified

By 6.0 6.000000000000 Py 45.0 45,00000000000
P 5.0 5.000000000000 Py 44.0 44,00000000000
Py 3.0 3.466269038561 P 42.0 42.08887236504
Py 0.0 2.115220398218 Py 39.0 39.43640494325
By 15.0 15.00000000000 P, 35.0 36.27816672964
Py 14.0 14.00000000000 Py 30.0 32.89458669598
P, 12.0 12.22869048575 Ps 24.0 29.58611341780
P 9.0 10.09122757042 Py 17.0 26.64662271351
P, 5.0 8.076794615800 Py 9.0 24.33739270566
P 0.0 6.647047639147 Py 0.0 22.86393289807
Py 28.0 28.00000000000 Py 66.0 66.00000000000
P 27.0 27.00000000000 P, 65.0 65.00000000000
P, 25.0 25.13497797284 P, 63.0 63.06288071623
P 22.0 22.65661842251 Ps 60.0 60.31040270243
P, 18.0 19.89933392372 P, 56.0 56.91550239036
Py 13.0 17.23523099703 Py 51.0 53.09140484998
B 7.0 15.02405724151 P 45.0 49.07824755988
Py 0.0 13.56478190200 Py 38.0 45.12803882902

Py 30.0 41.48888251736

P, 21.0 38.38944455697

Py 11.0 36.02461727527

Py, 0.0 34.54327206652
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Table 5.2: Original and modified Fokker-Planck equivalent moments of orders 13 and 15

Moment | Unmodified Modified Moment | Unmodified Modified

Py 91.0 91.00000000000 P, 120.0 120.0000000000
Py 90.0 90.00000000000 Py 119.0 119.0000000000
Py 88.0 88.04681279504 Py 117.0 117.0361955013
Py 85.0 85.23183677133 Py 114.0 114.1796399919
Py 81.0 81.68673624660 Py 110.0 110.5336401280
Py 76.0 77.57725779289 Py 105.0 106.2299951783
Py 70.0 73.09547872832 Pg 99.0 101.4242242841
Py 63.0 68.45084431652 Py 92.0 96.28994971051
Py 55.0 63.86040646039 Py 84.0 91.01263719530
Py 46.0 59.563871227639 Py 75.0 85.78291506193
Pyg 36.0 55.68780730776 Py 65.0 80.78970976209
Py 25.0 52.48781376760 P,y 54.0 76.21344174388
Pyq 13.0 50.08851589878 P 42.0 72.21952335153
Py; 0.0 48.60234020080 Py 29.0 68.95239059365
Py 15.0 66.53027902308

Pyg 0.0 65.04093176330
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Figure 5.4: Scattering matrix generated using a finite difference technique

component to a negative scattering source. The modified scattering operator (Figure 5.3)

has no negative elements and is very nearly tridiagonal. The off-diagonal elements are not

zero, but of orders varying from 10~° to 10~1%, which allows some wide angle scattering. The

traditional treatment of the Fokker-Planck operator is a finite difference approximation used

to generate the angle-to-angle scattering operator. One of the assumptions in calculating it

is that particles can only scatter to the nearest quadrature direction. This causes the finite

difference approximation to generate a tridiagonal scattering matrix like the one shown

Comparison of Figure 5.3 and Figure 5.4

in Figure 5.4 for an S;5 Gaussian quadrature.

show that the modification caused the discrete scattering operator to approach the finite
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Table 5.3: Material properties for three Fokker-Planck scattering problems

Case @ Oa

3 0.01 | 0.99

differences representation.

Three normal incidence slab problems were set up to compare the results obtained using
the three methods. The medium was a 0.5 centimeter slab with the different properties
listed in Table 5.3 for the three different cases. A Pj5 expansion was used with S;¢ Gauss
quadrature. A source current of 100% was approximated as normally incident by the
most forward peaked direction, x = 0.9894. The reflected angular fluxes for the unmodified,
modified, and finite differences scattering matrices are listed in Tables 5.4 through 5.6 for
the three cases. Table 5.7 lists the percent reflections.

The first case typifies a highly scattering medium. Sufficient scattering is present to allow
significant angular redistribution of the particles. This causes the flux to vary more smoothly
in angle, minimizing the importance of the higher order cross section moments. Since the
particles scatter more, enough are reflected to prevent a negative reflected angular flux
solution (See Table 5.4, column 2). The similarity of the scattering matrices generated with
the modified Fokker-Planck equivalent moments and the finite differences approximation
causes the flux solutions to be essentially identical. Examination of Table 5.4 shows the
differences to be on the order of 0.005 % . This is because the particles scatter frequently

enough to overcome the small differences in the wide angle scattering elements.
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Table 5.4: Reflected angular fluxes for the first Fokker-Planck scattering problem

Direction | Unmodified | Modified Finite
Cosine Moments | Moments | Difference
-0.09501 14.429 18.532 18.530
-0.28160 31.855 31.261 31.259
-0.45802 36.902 38.795 38.793
-0.61788 41.416 41.583 41.582
-0.75540 39.401 40.033 40.033
-0.86563 36.282 35.747 35.747
-0.94458 31.215 30.976 30.977
-0.98940 28.304 27.666 27.667

Increasing the amount of absorption causes the different solutions to begin diverging.
The results of the second case (Table 5.5) show this. Since the absorption removes a larger
number of particles, the wide angle scattering contributes a larger component to the reflected
flux. The negative wide angle scattering elements generated with the unmodified moments
produced a negative, oscillatory reflected flux solution. The solutions obtained using the
modified moments or finite difference scattering matrix are strictly positive and similar,
though not as close as for the first case. The nonzero wide angle scattering elements produced
by the modified moments are beginning to contribute significantly to the reflected angular
flux, causing the solution obtained using this method to be somewhat larger than that of
the finite differences technique.

The results of the third case, listed in Table 5.6, show completely divergent sets of results.
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Table 5.5: Reflected angular fluxes for the second Fokker-Planck scattering problem

Direction | Unmodified | Modified Finite

Cosine Moments Moments | Difference

-0.09501 -2.76250 1.2955E-31 | 1.2426E-3
-0.28160 1.32580 2.6187E-3 | 2.5613E-3
-0.45802 -0.79044 2.7333E-3 | 2.6923E-3
-0.61788 0.53879 1.4862E-3 | 1.4686E-3
-0.75540 -0.38398 4.8319E-4 | 4.7799E-4
-0.86563 0.27983 1.0885E-4 | 1.0737E-4
-0.94458 -0.20054 2.0539E-5 | 1.9180E-5

-0.98940 0.12554 4.6186E-6 | 3.5017E-6

tRead as 1.2955 x 102
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Table 5.6: Reflected angular fluxes for the third Fokker-Planck scattering problem

Direction | Unmodified | Modified Finite

Cosine Moments Moments | Difference

-0.09501 -1.60910 5.2983E-6 | 1.2942E-10

-0.28160 0.79383 5.3258E-7 | 1.8885E-10

-0.45802 -0.49139 2.2953E-7 | 2.5975E-11

-0.61788 0.32717 1.1130E-8 | 1.3743E-12

-0.75540 -0.22868 2.1805E-9 | 4.0908E-14

-0.86563 0.16407 7.9963E-9 | 8.3631E-16

-0.94458 -0.11633 1.6679E-7 | 1.3686E-17

-0.98940 0.07239 9.2800E-8 | 2.2714E-19

Table 5.7: Percent reflections for the three Fokker-Planck scattering problems

Case | Unmodified | Modified Finite

Moments Moments | Difference

1 8.9394 9.0343 9.0341

2 -7.2545E-3 | 2.8145E-4 | 2.7674E-4

3 -4.4417E-3 | 7.7367E-8 | 7.0904E-12
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The unmodified moment representation again produced negative results. The modified mo-
ment and finite difference techniques have now produced completely different results. Both
are positive, but the moment representation produced results several orders of magnitude
larger than the finite difference representation. As stated previously, this is due to the wide
angle scattering contribution which, in cases of strongly absorbing media, constitutes al-
most the entire source of reflected particles. When coupled with a smooth scattering cross
section expansion, which should dominate the small wide angle scattering elements, these
differences between the two positive representations should disappear.

Perhaps the single parameter which best illustrates the differences in all the cases is the
reflection, which is listed in Table 5.7 for each case and method. For the first case (highly
scattering medium), the three methods produced similar, positive reflections. For the second
case (moderately absorbing medium), the unmodified moment representation results in a
negative reflection. The modified moment and finite difference representations produce
positive reflections which differ by a few percent. For the last case (strongly absorbing
medium), the unmodified moment representation again causes a negative reflection. The
two positive representations have now diverged, the reflection obtained using the modified

moments being larger due to the wide angle scattering.

5.2 Two Rutherford scattering problems

Two similar cases of Rutherford scattering were examined to test the partial range expansion
technique coupled with the positive moment representation. The problem was near normally
incident (u; = 0.98940) high energy electrons on a slab of aluminum. There were two
essential differences in the two cases. The first is the incident energy of the electrons. The

incident energy was 1.0 MeV in the first case and 0.1 MeV in the second case. This led
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to different scattering and effective absorption parameters. The second difference was the
slab thickness. The thickness was 25 mils (0.0635 cm) in the first case and 2.5 mils in the
second. The thinner slab allowed some discernable transmission. The scattering model was

the Rutherford scattering cross section of the form

c

7o B = )

(5.1)

where C is a material/density factor and 5 is the so-called “screening factor” due to the
orbital electrons in the transport medium. Since there is no absorption in Rutherford
scattering, it was mocked up from the removal due to downscatter in energy. The absorption
was approximated as

=P8 (52)
where B(E) is the stopping power and AE is determined by the energy grid. Using aluminum

with parameters:

z = 13 )

A = 269815 )

p = 2.71 ,
ce

and an energy grid corresponding to fifty groups between 1.0 and 0.1 MeV, the coefficients
in Table 5.8 were calculated and used.

The scattering was treated five different ways in both cases. The full range Legendre
moments calculated according to equation 2.7 were used to verify a negative flux solution.
These moments were modified according the the technique described in section 3.4 and
used to determine the solution using modified full range moments. The scattering cross

section was fit between —1.0 and 0.8 and these moments were used with three different
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Table 5.8: Rutherford cross section parameters

Parameter \ Energy 1.0 MeV 0.1 MeV
C 0.3902674054cm™" | 0.3902674054cm ™!
n 1.41808402E-5 2.718565583E-4
B 4.0310539634<L | 8746208032
0a 223.9474424cm™ | 4859.004462cm ™!

approximations to the Fokker-Planck differential operator in the remaining three cases.

The different approximations were
1. Morel’s moments, calculated according to equation 3.20,
2. Morel’s moments modified for positivity, and
3. the traditional three point finite difference operator.

The smooth range fits for the two cases are listed in Table 5.9. The different sets of moments
for the 1.0 MeV and 0.1 MeV cases are listed in Tables 5.10 and 5.11, respectively. The
smooth region moments corresponding to the partial range fit to the cross section are less
than 1% of the full range moments or 3% of the piecewise generated moments for the 1.0
MeV cross section and 1.5% and 6%, respectively, for the 0.1 MeV cross section. This shows
that the scattering is occurring mainly through angles smaller than 36.87°, indicating that
the scattering is probably forward peaked enough to warrant the Boltzmann-Fokker-Planck
treatment. The reflected angular flux solutions, listed in Tables 5.12 and 5.13 and plotted in
Figures 5.5 and 5.6, substantiate this claim since the solution obtained with the full range

Legendre moments oscillates wildly about zero.




Table 5.9: Smooth region moments of the Rutherford cross section

Moment 1.0 Mev 0.1 MeV
0 10.77560335111 | 10.68823529807
1 9.3475425386 9.266212240137
2 7.624624279332 7.553407593918
3 5.924741890275 5.865712010444
4 4.406032269297 | 4.359552453886
5 3.138798128016 | 3.103983452977
6 2.139361259179 2.114564870424
7 1.391030254064 | 1.374271639012
8 0.8588198722686 | 0.848113792851
9 0.5000994544624 | 0.4936734985579
10 0.2720293838251 | 0.2684382378124
11 0.1362840991039 | 0.1344407588309
12 6.1526119624E-2 | 6.0675442700E-2
13 2.4121883427E-2 | 2.3781600195E-2
14 7.6365609904E-3 | 7.5268179769E-3
15 1.6058624069E-3 | 1.5823787320E-3
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Table 5.10: Cross section moments for the 1.0 MeV Rutherford problem

Moment Legendre Modified Unmodified Modified
Legendre Fokker-Planck | Fokker-Planck
0 13760.62153659 | 13760.62153659 | 315.3931328737 | 315.3931328737
1 13756.65496695 | 13756.65496695 | 311.4265926485 | 311.4265926485
2 13749.82123209 | 13748.87377478 | 304.6267155638 | 304.7185970988
3 13740.60473474 | 13737.56446078 | 295.3113949367 | 295.7674073578
4 13729.19245164 | 13723.14903750 | 283.6387676650 | 284.9934021435
5 13715.84644502 | 13706.15320256 | 269.6791364602 | 272.8014538978
6 13700.68597485 | 13687.19595839 | 253.4488231153 | 259.6026665521
7 13683.86957645 | 13666.95797650 | 234.9311362214 | 245.8210852427
8 13665.50901853 | 13646.16365405 | 214.0910905381 | 231.8925256867
9 13645.69235018 | 13625.55428083 | 190.8860554061 | 218.2582632992
10 13624.53334647 | 13605.86499786 | 165.2731912085 | 205.3550443715
11 13602.07403769 | 13587.80309275 | 137.2141723843 | 193.6025369356
12 13578.42235004 | 13572.01963207 | 106.6776614525 | 183.3892993411
13 13553.59782372 | 13559.09323017 | 73.64002485138 | 175.0583458605
14 13527.69278088 | 13549.49752340 | 38.08482775131 | 168.8933801809
15 13500.71882667 | 13543.59363999 | 1.605862407E-3 | 165.1066721250
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Table 5.11: Cross section moments for the 0.1 MeV Rutherford problem

Moment Legendre Modified Unmodified Modified
Legendre Fokker-Planck | Fokker-Planck
0 717.6056358334 | 717.6056358334 | 177.7413391577 | 177.7413391577
1 714.7915066311 | 714.7915066311 | 174.9272069009 | 174.9272069009
2 710.3260824863 | 710.8431285535 | 170.4301838570 | 170.4805719474
3 704.5960075569 | 704.4834663510 | 164.5661606770 | 164.8162391622
4 697.8483668911 | 697.4645594296 | 157.4915643252 | 158.2344496562
5 690.2693802713 | 689.4103548904 | 149.2754493301 | 150.9877369323
6 682.0002186788 | 681.1504456061 | 139.9333755546 | 143.3081604805
7 673.1575288660 | 672.7403905181 | 129.4483179314 | 135.4203963859
8 663.8370332500 | 664.2261961913 | 117.7852864946 | 127.5476432422
9 654.1191277269 | 655.8118831705 | 104.9018634109 | 119.9128586587
10 644.0741099921 | 647.4081164490 | 90.75553616176 | 112.7365363684
11 633.7601758604 | 639.1437249947 | 75.30833749565 | 106.2318740849
12 623.2309422903 | 631.6533281311 | 58.52926179356 | 100.5981382354
13 612.5300884007 | 624.6524551128 | 40.39494836627 | 96.01303882687
14 601.6990048714 | 619.6903417455 | 20.88916480043 | 92.62494024666
15 590.7716560237 | 615.9246338900 | 1.582378732E-3 | 90.54566178682
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Figure 5.5: Reflected angular fluxes for the 1.0 MeV Rutherford problem
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Figure 5.6: Reflected angular fluxes for the 0.1 MeV Rutherford problem
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The results obtained for the 1 MeV and 0.1 MeV cases will be discussed together since
they are very similar, with the exception of the full range modified moment solutions, which
will be explained. As was stated, the solution obtained using the full range Legendre
moments oscillates about zero. This proves that the expansion order was too low for the
anisotropy of the cross section . Further proof is Figure 1.1 which depicts the exact
Rutherford cross section and its full range P;5 Legendre expansion for the 1 MeV case.
The fit is obviously poor for s, < 0.97. A first impulse in correcting this might be to simply
apply the least squares modification to the full range moments. However, modifying a poor
fit for positivity at certain points does not guarrantee a good representation. Depending
on the particular features of the poor fit, the expansion may be altered to give almost any
result. This is obvious in Figures 5.5 and 5.6. While the plots of the other solutions behave
similarly between the two figures, the results using the full range modified moments are
markedly different, owing to the different modified scattering matrices. The 1 MeV solution
might have been acceptable since it is essentially zero. The 0.1 MeV solution is obviously
unrealistic since it oscillates about a solution that is forward peaked in the reverse direction.
This reversed peak runs contrary to what is known to be the correct behavior of the solution
for the physics of the problem.

The three curves labeled BFP1, BFP2, and BFP3 correspond to partial range moment
fits with unmodified Fokker-Planck equivalent moments, modified Fokker-Planck equivalent
moments, and the finite differences Fokker-Planck operator, respectively. Comparison of
all three curves shows the importance of modifying the Fokker-Planck equivalent moments.
The solution obtained using the unmodified moments oscillates more wildly than that of
the full range Legendre moments. The off-diagonal scattering elements similar to those

in Figure 5.2 (normalized for the appropriate momentum transfer) dominated the elements
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of the smooth scattering matrix, causing the solution to oscillate as in the Fokker-Planck
scattering problem in the previous section. Modifying the matrix for positivity removes
the erratic behavior of the wide angle scattering elements (compare Figure 5.3). Since
these elements are small they are dominated by the smooth expansion scattering elements
and the Boltzmann-Fokker-Planck operators using the modified moment operator and the
finite difference operator become essentially identical, since the majority of the wide angle
scattering comes from the smooth cross section expansion. The colinear BFP2 and BFP3
curves in Figures 5.5 and 5.6, being the reflected flux solutions using these two operators,
show this. Tables 5.12 and 5.13 show the solutions are identical to five significant digits. A
slab geometry Monte Carlo calculation was performed using the 1.0 MeV absorption and
scattering cross sections. Due to the extreme forward biasing of the scattering function,
one million histories were required to converge the reflected fraction to 2.35E-4 within five
percent. This value differs by less than one percent from the one obtained using the modified

moments.

5.3 Summary and Conclusions

The full range Legendre fit to a cross section has been shown to be unsatisfactory for
extremely anisotropic cross sections and to give inaccurate or nonphysical flux solutions
when it is used in transport calculations. Traditional methods of circumventing this problem
include expanding the smooth component of the cross section in Legendre polynomials and
using a finite difference approximation to the Fokker-Planck continuous slowing down oper-
ator to treat the forward peaked scattering. This technique is incompatible with standard
discrete ordinates codes which calculate the scattering source based strictly on Legendre

expansions. The Boltzmann integral operator using a moment expansion derived by Morel




Table 5.12: Reflected angular fluxes for the 1.0 MeV Rutherford problem
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Direction | Legendre Modified Unmodified Modified Finite
Cosine Legendre | Fokker-Planck | Fokker-Planck | Difference

-0.09501 -0.99303 | 2.67015E-5 -1.4125 0.25445 0.25445
-0.26160 0.81643 6.4241E-6 1.0056 0.17886 0.17886
-0.45802 -0.28352 7.2790E-6 -0.40109 0.12140 0.12140
-0.61788 0.36876 3.2172E-5 0.44386 0.08800 0.08800
-0.75440 -0.12590 1.9234E-4 -0.18530 0.06833 0.06833
-0.86563 0.18778 4.1436E-4 0.24118 0.05658 0.05658
-0.94458 -0.09708 2.3092E-3 -0.08245 0.04977 0.04977
-0.98940 | 0.083282 1.8452E-3 0.12908 0.04638 0.04638
Reflected

Fraction | 1.8185E-4 | 1.2097E-6 1.8637E-4 2.3292E-4 2.3292E-4




Table 5.13: Reflected angular fluxes for the 0.1 MeV Rutherford problem

Direction | Legendre | Modified Unmodified Modified Finite
Cosine Legendre | Fokker-Planck | Fokker-Planck | Difference
-0.09501 | -0.029904 | 7.8355E-5 -0.075258 0.012666 0.012666
-0.26160 0.033649 | 4.1708E-5 0.060909 0.007875 0.007875
-0.45802 | -0.011454 | 0.0024021 -0.029162 0.0053228 0.0053228
-0.61788 0.015398 | 0.0010589 0.02755 0.003881 0.003881
-0.75440 | -0.0051848 | 0.0019159 -0.013859 0.0030305 0.0030305
-0.86563 | 0.0084657 | 0.013791 0.014808 0.0025197 0.0025197
-0.94458 | -0.0021748 | 0.0082238 -0.0065693 0.0022224 0.0022224
-0.98940 | 0.0046913 | 0.034103 0.0075713 0.0020742 0.0020742
Reflected
Fraction | 9.6761E-6 | 1.5018E-5 8.9835E-6 1.0417E-5 1.0417E-5
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has been shown to give equivalent solutions to the Fokker-Planck operator. Since the mo-
ment expansion is not everywhere positive, it can lead to negative flux solutions of certain
transport problems.

The moments may be modified for an arbitrary quadrature to guarantee a positive flux
solution to the transport equation using the modified moments with that quadrature. Sam-
ple modifications using Gauss quadratures and Morel’s Fokker-Planck equivalent moments
have shown that the modification causes the moment generated discrete scattering matrix to
approach the finite difference approximation to the Fokker-Planck operator. Sample calcu-
lations using the full range Legendre moments, least squares modified Legendre moments,
and partial range Legendre moments with Morel’s Fokker-Planck equivalent moments, mod-
ified sets of Morel’s moments, and the finite difference operator have shown that the best
results are obtained with the latter two methods and that they are essentially identical.

The smooth region moment expansion coupled with the modified Fokker-Planck equiv-
alent moment expansion is obviously the preferred representation for strongly anisotropic
cross sections for use in standard discrete ordinates codes because it is acceptable as input
and it guarantees a positive flux solution. However, there are drawbacks associated with
both components of the cross section representation. The smooth region expansion requires
a partial range fit, which is not always available or easily determined. Extremely complex
functions or nonanalytic expressions for the cross section may make a partial range fit
difficult. The modification of the moment representation of the Fokker-Planck component
of the cross section is quadrature dependent. Moments modified with one quadrature set
are only guaranteed to give positive results with that quadrature. They may or may not
give positive results with another quadrature and the approximation to the finite difference

scattering operator could degenerate. Furthermore, the least squares modification technique
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is not guaranteed to give a reasonable solution. Quadratures with a number of directions
much larger than the number of moments to be modified (i.e. cylindrical or two dimensional
quadratures) may overconstrain the modification, generating a set of nonphysical moments
(i.e. o¢ > 09). However, once the moments have been successfully modified for a particular

quadrature, they need only be normalized to the appropriate momentum transfer for any

subsequent calculations with that quadrature.
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Appendix A

The Boltzmann transport

equation

The general Boltzmann transport equation describes a differential balance of particles in
phase space(shown in Figure A.1) described by the position vector, ¥, the particle energy,
E, the direction vector, {1, and the time, t. A simplified version of it describing one group,
time independent, one dimensional slab or spherical geometry transport in a nonmultiplying

medium 1is

2 1
#‘a¢§; B) 4 oy(a)b(z,m) = %/o /: T (3, o) ¥(z, #')dp'de’ + Q(z,u) 5 (A1)

where y is the cosine of the angle of travel with respect to the x-axis, y, is the cosine of the

angle of scatter from ﬁ’(tﬁ',p.’) to ﬁ(qS,p), given by

bo= it + VI )L - i) cos(d' —9) (A.2)

particles
em3I—gec—steradian

and ¥(x,u) is the particle angular flux density in units of at position x,

traveling along direction cosine .
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Figure A.1: Standard phase-space coordinate system

The left hand side of equation A.l represents the loss mechanisms and the right hand

side represents the source mechanisms. The first term on the left is the leakage loss per unit

volume per second per direction interval. In the next term, o is the macroscopic differential

total cross section at position x in units of inverse centimeters. The total loss via collisions

with the medium in the angular interval du is o¢ (z)¥(z, u)dp. The coefficient, 0,(Z, to), in

the integrand is the macroscopic gcattering cross section differential in the initial and final

direction cosines, u' and p. The integral represents the total number of particles scattering

to u from all directions. The final term represents the fixed source of particles at x about

L.




Appendix B

Derivation of the

Fokker-Planck equation

Figure B.1 shows the direction-space coordinate system. If 8, is the angle between the initial

and final directions, {1 and (¥, then the cosine of the scattering angle, u,, is

po = pp' + /(1 p?)(1— p2)cos(¢' —¢) . (B.1)

If the coordinate system were rotated to align the z-axis and the final direction, £, as in

Figure B.2, the initial direction cosine can be shown to be

= ppo +V/(1— p2)(1 - p2)cos(¢' — ¢) . (B-2)

These important relationships having been established, the actual derivation follows.
The Boltzmann transport equation restricted to a one dimensional slab or sphere, single

energy group, time independent, fixed source problem is

3 1 2 p+l
l"a_f' +op = 5/0 /.—1 s (o) ¥ (1')du'dg' + O : (B.3)
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Figure B.2: Rotated direction-space coordinate system
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The scattering cross section can be represented by

O, (/‘o) = 0’,5([1,0 - ll'a) . (B4)

The associated total scattering cross section, cosine of the scattering angle, and momentum
transfer are o,, p,, and a = o,(1 — y,). In the limit as o, goes to infinity and u, goes to
one, « is required to be a constant. This is achieved by defining a new o, and u, using a
dimensionless parameter, €. Since u, approaches one, m approaches zero and a new

15 consistant with this behavior is defined as

V1—p2 — e/1-p2 . (B.5)

Since « is required to be constant, the scattering cross section is redefined as

Ua(l - [L,)
I—Vi-e(-5) 59

Using these definitions, the assumed form of the cross section becomes

Ua(l‘ ) — 0’,(1—#,)5([1,0 Y 1- 62(1 - ”g)) . (B.7)
’ (1-v1-€(1-pd)

Og *

Defining
§=v1-u? (B.8)

for simplicity and recalling the definition of «,
a=o0,(1—p,) , (B.9)

then equation B.7 becomes

/1= e2¢2
Sluo = V1 - 2¢%) (B.10)
(1-+v1-€2£2)

Using these new expressions for o, and o,(1,), the Boltzmann transport equation becomes

a9y oy _ o
“az + Ua¢ + 1-— \/1 — 6262 - 2#(1—\/1—5363) x

o S (ko — V1= @E)p(u!)du'dg’ + Q

O, (ll'o) = 2

(B.11)
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Since the 6-function is in terms of o, the variables of integration must be changed from
(&', ¢") to (ko $o). This is done by transforming from the laboratory system to the scattering
system(shown in Figure A.3). This corresponds to the coordinate rotation described earlier.

Making this substitution and integrating over o, the form of the transport equation becomes

) ay @ =
— + a + = d + Q ) B12
Koz 77 v 1—v1—-€262  2r(1-+/1-¢€2£2) Jo V(e (B12)
where the previous definition of u’,

g = ppo+ V(1 — p2)(1— p2)cos(¢' —4) (B.13)

becomes
g = pV/1— €262 4 Een/1 — p? cos(¢’ — @) (B.14)

using the new, asymptotic definition of u,.
To perform the integration over @,, the flux, y(u'), is expanded in a Maclaurin series in
ay 3%y €

Y(p') = ¥(p) + et 302

+0(¢) (B.15)
where the derivatives can be evaluated using the chain rule:

o0 _ 2% ou o'

= B.16
de dpdu' Oe ( )

Evaluating the derivatives and substituting them into equation B.15 , the flux expansion

becomes

Y(e') = $(p)+ Leev/1— p2cosdo+ (B.17)

HS$ (1 — u2) cos? o — GLue?)e + O(<)
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Substituting this expression into equation B.12 and integrating over ¢, the following equa-

tion results:

¢ ay a .
—_— —_— = 12
Wag oo + 1—+/1— e2¢2 2m(1-4/1-€3€3) % (B-18)

(2rp + S8 62(1 - w?)m — §Ene?2m] + O()} + 0
Subtracting —17“;5‘;?—-; from both sides, cancelling common factors of m, and noting that
—4/1—€3%¢

g 2
—_— L = — 20 B.lg

the expression in curly braces can be rewritten, giving

_?i _ kot 94 2%22 3 B
pa, +oad 4(1_\56252)[3“(1 M +0(E)N+2 - (B-20)

In the required limit (¢ = 0), the following holds true:

lim 1

2
= — B.21
co01_Vi_pe &e (B.21)
Then in the Fokker-Planck limit, equation B.20 becomes
ay 2a 0 0 OY 2 2 3
Lt = —(1-p*)— . B.22
W2 tou = poaplan (L= w5, € + O+ 0 (B.22)

Cancelling £2¢2 in the numerator and denominator reduces the order of error from third to

first, resulting in the final form of the Fokker-Planck approximation to equation B.3 :

il _ed ¥
uaz+aa¢—2ap(l u)ap+Q+0(e) . (B.23)
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