COMPARISON OF FISSION PRODUCT INVENTORIES COMPUTED USING MATRIX EXPONENTIAL AND G-FACTOR TECHNIQUES

304

A Thesis

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science

in

The Department of Nuclear Engineering

by Satyendra Kumar B.S., Delhi University, 1974 M.S., Delhi University, 1976 May, 1981

Dedicated to my family

ACKNOWLEDGEMENTS

I would like to thank the following people for their advice, encouragement and understanding during my graduate work at the Nuclear Science Center, Louisiana State University.

Special thanks to Dr. R. C. McIlhenny for generating my interest in Nuclear Engineering and asking me to do graduate work in the department. I appreciate his help in and out of the classroom.

Thanks to Dr. Robert Miles and Dr. McIlhenny for guiding me during the course of this project and providing me with all possible help.

Thanks to Dr. Edward N. Lambremont, Dr. Frank Iddings and Dr. Raman to be on my thesis committee.

Thanks to Dr. J. C. Courtney for his very helpful attitude. The department has an outstanding teacher in Dr. Courtney.

Thanks to Carl Fedrowisch for his help in the computer work. He is always willing to share his knowledge of computers with graduate students.

Thanks to Priscilla Milligan for typing this thesis during the holidays and allowing me to meet the deadline.

Thanks to my wife, Chitra, for inspiring me by her letters which kept me going during difficult times.

iii

TABLE OF CONTENTS

Tal																								Page
ACK	NOWL:	EDO	GEM	EN	т.	•	•	•	•	•	•	•	•	•	•	•			•		•	٠	•	iii
LIS	T OF	Tł	ABL	ES	•	•	•	•	•	•	•	•	•	•	•	•					•		•	v
LIS	T OF	FJ	GU	RE	s.	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•		•	vii
ABS	TRAC'	r.	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•				•	viii
CHA	PTER																							
	ONE	•	In	tro	ođi	uc	tio	on	•	•	•	•	•	•	•	•	•	•	•	•		•	•	1
	TWO	•	Ma	tr	ix	E	xpo	one	∋nt	tia	al	Me	etł	nod	1.	•		÷	•	•			•	4
T	HREE	•	G-1	Fad	cto	or	Me	etł	100	1.	•	•	•	•	•	•	•		•			•	•	31
	FOUR	•	MI	KU	Pı	rog	gra	am	•	•	•	•	•	•	•	•	÷	•	•			•	•	51
	FIVE.	•	Res	su	lts	5 8	and	1 1	Dis	scι	ıs	sic	on	•	•	٠	•	•				•	•	58
REF	ERENC	ES	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•		•		•	•	•	86
APP	ENDIX	K A	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	87
APP	ENDIX	KB	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•		•	•	•	126
VIT	A			•	•	•				•	•	•	•	•						2			-	152

LIST OF TABLES

Table															Page
3.1.	List o	f Pa Radi	th Spe	cif	ic Prob Chains (ab	i1:	it	y]	Fur	nct	i	ons	5,	
5.11	Z=1 to	Z=6	Nucli	des	••••	•	•	•	•	•	•		•	•	50
5.l(a)	Growth	and	Decay	of	Cs-137	•	•	•	•	•	•	•	•	•	60
5.1(b)	Growth	and	Decay	of	Cs-137	•	•	•	•	•	•	•	•	•	60
5.2(a)	Growth	and	Decay	of	Cs-137	•	•	•	•	•	•	•	•	•	61
5.2(b)	Growth	and	Decay	of	Cs-137	•	•	•	•	•	•	•	•	•	61
5.3(a)	Growth	and	Decay	of	Cs-137	•	•	•	•	•	•	•			62
5.3(b)	Growth	and	Decay	of	Cs-137	٠	•	•	•	•	•	•	•	•	62
5.4(a)	Growth	and	Decay	of	I-131.	•	•	•	•	•	•	•	•	•	63
5.4(b)	Growth	and	Decay	of	I-131.	•	•	•	•	•	•	•	•	٠	63
5.5(a)	Growth	and	Decay	of	I-131.	•	•	•	•	•	•	•	•	•	64
5.5(b)	Growth	and	Decay	of	I-131.	•	•	•	•	•	•	•	•	•	64
5.6(a)	Growth	and	Decay	of	I-131.	•	•	•	•	•	•	•	•	•	65
5.6(b)	Growth	and	Decay	of	I-131.	•	•	•	•	•	•	•	•	•	65
5.7(a)	Growth	and	Decay	of	Cs-137	•	•		•	•	•	•	•	•	66
5.7(b)	Growth	and	Decay	of	Cs-137	•	•	•	•	•	•	•	•	•	66
5.8(a)	Growth	and	Decay	of	Cs-137	•	•	•	•	•	•	•	•	•	67
5.8(b)	Growth	and	Decay	of	Cs-137	•	•	•	•		•	•	•	•	67
5.9(a)	Growth	and	Decay	of	Cs-137	•	•	•	•	•	•	•	•	•	68
5.9(b)	Growth	and	Decay	of	Cs-137	•	•	•	•	•	•	•	•	•	68

v

LIST OF TABLES (CONT'D)

Table		Page
5.10(a)	Growth and Decay of I-131	69
5.10(b)	Growth and Decay of I-131	69
5.11(a)	Growth and Decay of I-131	70
5.11(b)	Growth and Decay of I-131	70
5.12(a)	Growth and Decay of I-131	71
5.12(b)	Growth and Decay of I-131	71
5.13	Study of Cs-137	72
5.14	Study of I-131	73
5.15	Study of Total Activity	74
5.16	Comparison of CPU Taken by G-Factor and Mexp Methods (Reactor Power 1000 MW, Fuel Enrichment 3%) for Total Activity of All Fission Products	

LIST OF FIGURES

Figure		Page
1.	Reactor Accident Analysis Model	6
2.	Matrix Form for the Six Equations	10
3.	Decay Chain for Mass 85	24
3(a).	Matrix $\overline{\lambda}$ for Decay Chain (Mass Number 85)	25
3(b).	Matrix λ^* for Decay Chain (Mass Number 85) .	27
3(c).		28
4.	Arbitrary Decay Chain with Branching	
5.	Another way of Representing Arbitrary Decay Chain with Independent Production	
б.	Illustration of Subroutine and Data Set Usage for Program MIKU	53
7.	Activity of Cs-137 for 1000 and 3000 MW Reactor Power (90% fuel enrichment) vs time.	77
8.	Activity of I-131 for 1000 and 3000 MW Reactor Power (90% fuel enrichment) vs time.	79
9.	Total Activity of all Fission Products (1000 MW Reactor Power, 3% fuel enrichment) vs time	81

ABSTRACT

Fission product data has been assembled for 192 fission product chains from mass 66 to mass 172 consisting of 798 isotopes. This data includes half life and branching factor values in addition to 3 group fission vields from Th-232, U-233, U-235, U-238, Pu-239, and Pu-241. This data was incorporated into program MIKU written by R. E. Miles which is capable of computing activities in problems involving radioactive buildup, decay, and mass transfer. This program uses either the matrix exponential method or a G-factor method developed by R. E. Miles. A modeling of the decay chain data described above was chosen which is compatible with both the matrix exponential and G-factor methods. Therefore program MIKU can be used to compute fission product activities using either method.

The matrix exponential and G-factor methods have been analyzed and compared theoretically. Both methods are capable of handling unlimited forward branching. However, in addition the matrix exponential method is capable of handling problems involving reverse branching. The Gfactor method is more efficient computationally due to the usage of recurrence relations. The G-factor method has been found to be from 2 to 5 times faster depending on

viii

the length of the time intervals used than usage of the matrix exponential method option.

Program MIKU has been used to analyze and compare results from several sample problems using both the matrix exponential and G-factor methods. These problems included runs for several isotope chains for different reactor power operating times, and various fuel enrichments. The results obtained have been found to be in perfect agreement to at least 10 significant figures. This amazing agreement is due to the accuracy of the two methods and to the usage of triple precission arithmetic available on LSU's IBM 3033 computer.

MIKU is capable at present of handling all isobaric fission product isotopes with half life greater than 1 sec, since all fission yield data, branching factors, and half life data has been included. The program input is simple and easy to use. Execution is accomplished using a simple CLIST command.

CHAPTER ONE

Introduction

The main objectives of this thesis has been to assemble fission product decay data in a form compatible with program MIKU written by R. E. Miles to analyze and compare theoretically the matrix exponential and G-factor methods for use in treating problems involving radioactive buildup, decay, and mass transfer and to test program MIKU using the above data for several sample problems.

The data assembled consist of fission product decay chain data from mass 66 to mass 172 for isotopes with half lives greater than 1 sec. Since there was no attempt in this thesis to assemble activation, actinide, transuranium, gamma ray spectra or other similar data in this thesis the discussion will center around fission buildup and decay analysis with some limited discussion of reactor accident analysis.

The linear differential equations for buildup and decay of fission products in a reactor are well known but it becomes difficult to obtain their solution as the length of the decay chain increases. If there are only two or three members in a decay chain then their solution can easily be obtained by direct integration. For more complex problems where there are seven or eight members

in a decay chain in which various branching possibilities are available, it is very tedious and virtually impossible to solve them by direct integration. Several methods exist for obtaining accurate solutions of these differential equations which avoids these difficult as well as the problem of singularities that occurs when the depletion rate constants of two or more nuclides in the same chain are equal. These methods include the matrix exponential, finite difference, and the G-factor method recently developed by R. E. Miles (Ref. 1-4).

This thesis will compare the matrix exponential and G-factor methods for the solution of fission product buildup and decay problems. These methods both have a much wider application but the discussion of this thesis is limited to the application of the fission product chain data assembled as a part of this thesis.

The matrix exponential method provides a very general approach to radioactive buildup and decay problems. It can also be used to calculate the integrated fission product releases from a reactor containment building to the environment and the activity absorbed on filters are washed from the containment building by sprays. Thus it is a useful technique for dose projections to be used in emergency response planning. This method can also accommodate reverse branching which is important in fuel burnup computation. The method makes use of matrix theory

and operators to simplify the mathematics involved and reduces the problem to setting up the differential equations or alternatively the supermatrix A. In Chapter Two, several decay chains are considered to explain clearly how supermatrix A is formed.

The G-factor method approaches the problem in a different way. Simple exponentials are computed only once and then recurrence relations are used to determine higher order terms or E-factors. The G-factor consists of various E-factor terms and can be shown to be related to the probability of atom transfers between various nuclides in a decay chain. Computationally the method is extremely efficient due to the usage of these recurrence relations. This method while allowing unlimited forward branching is not capable of treating reverse branching.

These methods can be applied to a variety of problems. Cases like simple radioactive decay transand formations, calculation of routine and accidental releases from nuclear reactors, buildup and decay of isotopes in long chains with unlimited forward branching, and for the matrix exponential method reverse branching. Singularities present no problem for either method.

CHAPTER TWO

Matrix Exponential Method

This is a powerful and elegant method for handling problems involving buildup, decay, transmutation and mass transport of radionuclides. As the name implies it uses matrix theory and solution of matrix differential equations to simplify the mathematics involved (Ref. 5). In this section the method will be developed utilizing a reactor accident analysis model. However, it should be understood that the method can be applied to other problems involving radioactive decay, buildup, transmutation and mass transport with little modification.

In a reactor accident analysis model it is simple to include the presence of cleanup filter in the containment building and in case of accidents, the leakage of arbitrary isotope of any chain from the containment building to the environment as a function of time.

There are two assumptions in this model:

a) The removal rate of the clean up filter in the containment building and the leakage rate of isotope from the containment building to the environment, are constant during short intervals of time.

b) The gas inside the containment building is well mixed.

Initial source for the isotopes is taken to be leakage from reactor vessel to the containment building. Natural deposition of gas borne isotopes on the internal surface of the containment building is neglected in order to avoid unnecessary complexity.

Reactor Accident Analysis Model

Mathematical Basis

Let us consider a system shown in Fig. 1. The system consists of a reactor vessel and a filter system inside the containment building. Before we set up the equations in matrix form, it is easier to understand them term by term for three isotopes of a chain and then generalize it for any member of long decay chain using matrix theory. We note that noble gases are not filtered by the clean up system. As an illustration consider the three member decay chain

where P₂ is a noble gas.

We assume the following:

 $N_{1}, N_{2}, N_{3} = \text{Amount of isotopes } P_{1}, P_{2}, \text{ and } P_{3}$ in the containment building at time t. $V_{1}, V_{2}, V_{3} = \text{Filter clean up rate for } P_{1}, P_{2}, \text{ and}$ $P_{3}.$ $L_{1}, L_{2}, L_{3} = \text{Leakage rate of containment building}$ to environment for $P_{1}, P_{2}, \text{ and } P_{3}.$ $F_{1}, F_{2}, F_{3} = \text{Amount of } P_{1}, P_{2}, \text{ and } P_{3} \text{ absorbed on}$ the filter. $\lambda_{1}, \lambda_{2}, \lambda_{3} = \text{Decay constants of } P_{1}, P_{2}, \text{ and } P_{3}.$ The equations governing amount of any isotope in the containment building and on the filter at any time t are: $\frac{dN_{1}}{dt} = -(\lambda_{1} + V_{1} + L_{1}) N_{1}(t) + S_{1}$ (1)

$$\frac{dN_2}{dt} = \lambda_1 N_1(t) - (\lambda_2 + V_2 + L_2) N_2(t) + \lambda_1 F_1(t) + S_2$$
(2)

$$\frac{dN_3}{dt} = \lambda_2 N_2(t) - (\lambda_3 + V_3 + L_3) N_3(t) + S_3$$
(3)

and

$$\frac{dF_1}{dt} = V_1 N_1(t) - \lambda_1 F_1$$
(4)

$$\frac{\mathrm{dF}_2}{\mathrm{dt}} = 0 \tag{5}$$

$$\frac{dF_3}{dt} = V_3 N_3(t) - \lambda_3 F_3(t)$$
(6)

All the terms are obvious except for $\lambda_1 F_1(t)$ in Eq. (2). This term accounts for the fact that isotope P_1 which is absorbed in the filter can decay to noble gas contribute to N_2 in the containment building. In Equation (5), rate of change of F_2 with time is zero because noble gas is not absorbed in the filter.

These six equations can be put in matrix form illustrated in Fig. 2.

Matrix Formulation for Long Arbitrary Chain

Equations (1) to (6) are easily modified for long decay chains including branching factors. An isotope of a decay chain can get contributions from many other members of the same chain due to branching. To take branching into account, the decay constants are multiplied by corresponding branching factors and the products are called $\bar{\lambda}_{ij}$ and they are used to replace decay constants in the previous example. Again the supermatrix A can be determined by first writing the appropriate differential equations for the decay chain and then rearranging the terms so that the differential equations can be expressed using matrix notation. An alternative approach which breaks the supermatrix up into 4 submatrices will now be presented.

In this alternative appproach another set of constants λ_{ij}^* are introduced to simplify the formulation. These are taken to be negative and defined as the product of decay constants and corresponding branching factors for only those isotopes which decay to noble gases. The generalized equations are:

$$\frac{dN_1}{dt} = (\overline{\lambda}_{21}N_2 + \overline{\lambda}_{31}N_3 + \cdots + \overline{\lambda}_{51}N_5 \cdots) - (\lambda_{12}N_1 + \lambda_{13}N_1 \cdots)$$

$$- (\lambda^{*}_{21}F_{2} + \lambda^{*}_{31}F_{3} + \cdot \cdot \cdot) - V_{1}N_{1} - L_{1}N_{1} + S_{1}$$

(8)

$$\frac{dN_{2}}{dt} = (\bar{\lambda}_{12} N_{1} + \bar{\lambda}_{32} N_{3} + \dots) - (\bar{\lambda}_{21} N_{2} + \bar{\lambda}_{23} N_{2} + \dots)$$

$$- (\lambda_{12}^{*} F_{1} + \lambda_{32}^{*} F_{3} + \dots)$$

$$- V_{2} N_{2} - L_{2} N_{2} + S_{2} \qquad (9)$$

$$\cdot \dots$$

where λ_{ij} is product of decay constants and branching factors for those isotopes which do not decay to noble gas.

A little consideration of equations (8) to (11) show that they can be put in matrix form with the following changes:

[N], [F], and [s] are taken as vectors, the elements of which are the values of the individual members of the chain.

[L] and [V] are the diagonal leak and filter clean up rate matrices. The diagonal elements of these matrices represent the leakage and clean up rates of each individual member of chain.

 $[\overline{\lambda}]$ is taken as decay chain matrix. The diagonal elements of which are positive and the negative off diagonal elements are the products of branching factors and decay constants. $[\overline{\lambda}]$ and $[\lambda^*]$ become matrices.

We note that dimension of matrices are n x n and number of elements of vector [N], [F], and [s] are n where n is the number of isotopes in a given chain.

With these changes, the equations become

and

where

 $[\Lambda] = [\underline{y}] + [\Lambda] + [\Gamma]$

From now onwards [] sign won't be used to indicate a matrix for convenience. The Eq. (12) and (13) in matrix form are then

$$\frac{\mathrm{dN}}{\mathrm{dt}} = -\Lambda N - \lambda^* F + S \tag{14}$$

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \mathrm{VN} - \lambda \mathrm{F} \tag{15}$$

Note that from definition of $\overline{\lambda}$, λ and λ^* a simple relation exist among them

$$\overline{\lambda} = \lambda + \lambda *$$

The solutions to Eq. (14) and (15) are obtained in the following manner (Ref. 1) Define

$$X = \begin{pmatrix} N \\ F \end{pmatrix}, \qquad S = \begin{pmatrix} S \\ O \end{pmatrix}$$

and supermatrix
$$A = \begin{pmatrix} -\Lambda & -\lambda^* \\ -\lambda & -\lambda^* \\ -\lambda & -\lambda \end{pmatrix}$$

Now $AX + s = \begin{pmatrix} -\Lambda & -\lambda^* \\ V & -\lambda \end{pmatrix} \begin{pmatrix} N \\ F \end{pmatrix} + \begin{pmatrix} S \\ O \end{pmatrix}$
 $= \begin{pmatrix} -\Lambda N - \lambda^* F \\ VN - \lambda F \end{pmatrix} + \begin{pmatrix} S \\ O \end{pmatrix} = \begin{pmatrix} -\Lambda N + \lambda^* F + S \\ VN - \lambda F \end{pmatrix}$

SO

$$\frac{dx}{dt} = \frac{d}{dt} \begin{pmatrix} N \\ F \end{pmatrix} = \begin{pmatrix} -\Lambda N & -\lambda *F + S \\ VN & -\lambda F \end{pmatrix}$$

$$\implies \qquad \frac{dx}{dt} = AX + s \qquad (16)$$

We assume matrices A and s are constant over time interval (0, t).

Integrated release from containment building is denoted by R(t)

 $R(t) = \int_{O}^{t} L(t')N(t')dt'$

The leakage rate L can be taken as a constant or some average value can be assigned to it.

$$\overline{L} = 1/2[L(0) + L(t)]$$

16

then

$$R(t) = \overline{L} \int_{0}^{t} N(t') dt' \qquad (17)$$

Define

$$Y(t) = \begin{pmatrix} R(t) \\ O \end{pmatrix}$$
, $B = \begin{pmatrix} \overline{L} & O \\ O & O \end{pmatrix}$

then Eq. (17) becomes

$$Y(t) = B \int_{0}^{t} X(t')dt'$$
 (18)

which is clear from

$$\begin{pmatrix} R(t) \\ O \end{pmatrix} = \begin{pmatrix} \overline{L} & O \\ O & O \end{pmatrix} \int_{O}^{t} \begin{pmatrix} N \\ F \end{pmatrix} dt'$$

The solutions of Eq. (16) and (18) gives us the value for N, F, and the integrated release. Solution of Eq. (16) is given by:

$$X(t) = e^{At} [X(0) + \int_{0}^{t} x^{-1}(t')s(t')dt']$$

where

 $X(t') = e^{At'}$

$$X(t) = e^{AT} X(0) + [e^{At} \int_0^t dt' e^{-At'}]s$$
$$= e^{At} X(0) + e^{At} [\int_0^t dt' e^{-At'}]s$$

$$= e^{At} X(0) - e^{At} A^{-1} [e^{-At} - 1]s$$

$$= e^{At} X(0) - A^{-1} [e^{At} e^{-At} - e^{At}]s$$

$$= e^{At} X(0) - A^{-1} [1 - e^{At}]s$$

$$= e^{At} X(0) + A^{-1} [e^{At} - 1]s$$
(19)

$$Define D(c) = c^{-1}[exp(c) - 1]$$

then
$$D(At) = A^{-1} t^{-1} [exp(At) - 1]$$
 (c = At)
or

$$tD(At) = A^{-1} [e^{At} - 1]$$

then

$$e^{At} = tD(At) A + 1$$

so that

$$e^{At} X(0) = tD(At)A X(0) + X(0)$$

Eq. (19) becomes

$$X(t) = X(0) + tD(At) [A X(0) + s]$$
 (20)

Now we solve Eq. (18) $Y(t) = B \int_{0}^{t} dt' X(t')$

From (19) we have

$$X(t') = e^{At'} X(0) + A^{-1} [e^{At'} - 1]s$$

SO

$$Y(t) = B \int_{0}^{t} \left\{ dt' e^{At'} X(0) + [A^{-1} e^{At'} - A^{-1}]s \right\}$$
$$= B [A^{-1}(e^{At} - 1) X(0) + A^{-1} A^{-1} [e^{At} - 1]s$$

The late

$$- A^{-1} ts$$
]

Let us take the terms inside the bracket one by one

$$A^{-1}(e^{At} - 1) X(0) = tD(At) X(0)$$

Nor

for second term we note that

$$D(At) = A^{-1} t^{-1} (e^{At} - 1)$$

or

$$tD(At) = A^{-1} (e^{At} - 1)$$

Multiply by A^{-1} on both sides, we get

$$t A^{-1} D(At) = A^{-1} A^{-1} (e^{At} - 1)$$

$$t t t^{-1} A^{-1} D(At) = A^{-1} A^{-1} (e^{At} - 1) s$$

$$t^{2} c^{-1} D(At) s = A^{-1} A^{-1} (e^{At} - 1) s$$

and

$$A^{-1}$$
 ts = t A^{-1} s = ttt $^{-1}$ A^{-1} s = t² c⁻¹s

Hence,

$$Y(t) = B [tD(At) X(0) + t^{2} \{c^{-1}D(c) - c^{-1}\}s]$$

= B [tD(At) X(0) + t² z(At)s] (21)

where

$$cZ(c) = D(c) - 1$$

...
$$Z(c) = c^{-1}D(c) - c^{-1}$$

Now matrix operators D(c) and Z(c) are given by

$$D(c) = c^{-1} [exp(c) - 1] = \sum_{n=0}^{\infty} \frac{c^{n}}{(n+1)!}$$
$$Z(c) = c^{-1} [D(c) - 1] = \sum_{n=0}^{\infty} \frac{c^{n}}{(n+2)!}$$
(22)

Direct evaluation of D(c) and Z(c) are difficult computationally because C is a matrix Take $H = 2^{-P}C$

where

p is determined by
$$|H| < 1/2$$

or

$$p > ln(|C_{ij}|^2)/2 ln2$$

.

We can approximate D(H) and Z(H) by taking only finite number of terms M

$$D^{M}(H) = \sum_{n=0}^{M} \frac{H^{n}}{(n+1)!}$$

$$z^{M}(H) = \sum_{n=0}^{M} \frac{H^{n}}{(n+2)!}$$

M is determined such that excluded terms are less than some ε .

$$\frac{|H|^{M+1}}{(M+2)!} < \frac{1}{2^{M+1}(M+2)!} < \varepsilon$$

Recur upwards by powers of 2 in H to find D(c) and Z(c) where $c = 2^{P}H$ and recursion relations are

$$D(2^{P+1}H) = D(2^{P}H) [1 + (\frac{1}{2}) (2^{P}H) D(2^{P}H)]$$
 (23)

$$Z(2^{P+1}H) = (\frac{1}{2}) Z(2^{P}H) + \frac{1}{4} [D(2^{P}H)]^{2}$$
 (24)

These recursion relations are very useful in computation. With these relations the solution to Eq. 16 and Eq. 18 are obtained in a manner which makes computation easier for computer. We now discuss some decay chains to illustrate how to set up the various matrices.

The differential equations for decay chain (mass number 85) 1.0 .7824 $As_{\overline{0.0}}$ $Se^{M} \rightarrow Se_{1.0} \rightarrow Br_{1.0} \rightarrow Kr^{M} \rightarrow 2176 \rightarrow Kr_{1.0} \rightarrow Rb$.77 are: $\frac{dA_{1}}{dt} = -(\lambda_{1} + V_{1} + L_{1}) A_{1}(t) + S_{1}$ $\frac{dA_2}{dt} = -(\lambda_2 + V_2 + L_2) A_2(t) + S_2$ $\frac{dA_{3}}{dt} = -(\lambda_{3} + V_{3} + L_{3}) A_{3}(t) + \lambda_{1}A_{1}(t) + \lambda_{1}F_{1}(t) + S_{3}$ $\frac{dA_{4}}{dt} = -(\lambda_{4} + V_{4} + L_{4}) A_{4}(t) + \lambda_{3}A_{3}(t) + \lambda_{2}A_{2}(t) + \lambda_{3}F_{3}(t)$ + $\lambda_2 F_2(t) + S_4$ $\frac{dA_{5}}{dt} = -(\lambda_{5} + L_{5}) A_{5}(t) + \lambda_{4}A_{4}(t) + \lambda_{4}F_{4}(t) + S_{5}$ $\frac{dA_{6}}{dt} = -(\lambda_{6} + L_{6}) A_{6}(t) + \lambda_{5}A_{5}(t) + S_{6}$

$$\begin{aligned} \frac{dA_7}{dt} &= -(\lambda_7 + V_7 + L_7) A_7(t) + \lambda_5 A_5(t) + \lambda_6 A_6(t) + S_7 \\ \text{and} \\ \frac{dF_1}{dt} &= V_1 A_1(t) - \lambda_1 F_1(t) \\ \frac{dF_2}{dt} &= V_2 A_2(t) - \lambda_2 F_2(t) \\ \frac{dF_3}{dt} &= V_3 A_3(t) - \lambda_3 F_3(t) + \lambda_1 F_1(t) \\ \frac{dF_4}{dt} &= V_4 A_4(t) - \lambda_4 F_4(t) + \lambda_2 F_2(t) + \lambda_3 F_3(t) \\ \frac{dF_5}{dt} &= 0 \\ \frac{dF_6}{dt} &= 0 \\ \frac{dF_7}{dt} &= V_7 A_7(t) - \lambda_7 F_7(t) \end{aligned}$$

These equations can be easily put in matrix form as was done in previous examples giving us supermatrix A. The supermatrix A can be obtained without writing the differential equations. Consider Fig. 3 which shows decay chain for mass number 85. The numbers above the arrow represent decay constants and below the arrow represent branching factors. Since there are seven members in the decay chain, the matrices $\overline{\lambda}$, λ , and λ^* will be seven by seven matrices.

0	0	0	0	0	0	0
0	0	0	0	0	2.047 × 10 ⁻⁹	-2.047 × 10 ⁻⁹
0	٥	0	0	4.298 x 10 ⁻⁵	-9.122 x 10 ⁻⁶	-3.387 x 10 ⁻⁵
O	0	0	4.025×10^{-3}	-4.025 x 10 ⁻³	0	0
o	0	3.648 × 10 ⁻²	-3.468 x 10 ⁻²	o	o	o
0	1.77 x 10 ⁻²	0	-1.77×10^{-2}	0	o	0
3.415 x 10 ⁻¹	-2.72 x 10 ⁻¹	o	0	0	0	o
L			1			

Fig. 3(a). Matrix $\tilde{\lambda}$ for Decay Chain (Mass Number 85)

Some of the elements of the above matrix are calculated for illustration

$$\overline{\lambda}_{21} = 3.415 \times 10^{-1} \times 0.8 = 2.72 \times 10^{-1}$$

Now $-\lambda_{21}$ means that this term is for decay of first isotope (As-85) to the second (Se-85).

$$\overline{\lambda}_{65} = 4.298 \times 10^{-5} \times 0.212 = 9.122 \times 10^{-6}$$

Again the negative sign has the same meaning.

 $\overline{\lambda}_{77}$ is taken to be zero since it is the term for stable isotope.

To set up the matrix λ^* notice that fifth and sixth members are noble gases. Now fourth member (Br-85) decays to fifth and fifth member decays to sixth. So,

$$\lambda_{54}^{*} = - (4.025 \times 10^{-3} \times 1) = - 4.025 \times 10^{-3}$$

 $\lambda_{65}^{\star} = - (4.298 \times 10^{-5} \times 0.212) = - 9.122 \times 10^{-6}$

and all other elements of λ^* are zero.

Matrix λ can easily be obtained from matrix $\overline{\lambda}$ by the relation

$$\overline{\lambda} - \lambda^* = \lambda$$

						
0	0	0	0	0	0	0
0	0	o	0	o	0	0
0	0	0	0	0	-9.122 x 10 ⁻⁶	٥
O	٥	0	0	-4.025 x 10 ⁻³	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
°	0	0	0	0	0	0
) * (

Fig. 3(b). Matrix λ^* for Decay Chain (Mass Number 85)
		•	0	0	0	0	
	ansi/						
		0	0	0	0	0	
						10	
						k 10-1	
	whic)	0	0	0	0	4.298 x 10 ⁻⁵	
					10-3		
		0	0	0	4.025 x 10 ⁻³	0	
				5			
				x 10 ⁻²	x 10 ⁻²		
		0	0	3.648	-3.648	0	
			0~2		.0~2		
1		0	1.77 x 10 ⁻²	0	-1.77 x 10 ⁻²	0	
			1.7		-1.7		
		3.415 x 10 ^{~1}	10-1				
		415 x	-2.72 × 10 ⁻¹	0	0	0	
		е Г	-2.				
					X		

Fig. 3(c). Matrix λ for Decay Chain (Mass Number 85)

 2.047×10^{-9}

 $-3.387 \times 10^{-5} -2.047 \times 10^{-9}$

After obtaining $\overline{\lambda}$, λ^* , and λ we can set up the super matrix A by taking some reasonable values for the cleanup rate and the leakage rate for each member of the decay chain. Then A will be

$$A = \begin{pmatrix} -\Lambda & | & -\lambda^{*} \\ ---- & | & -\lambda \\ -\nabla & | & -\lambda \end{pmatrix} , \Lambda = \overline{\lambda} + \nabla + L$$

which will be fourteen by fourteen matrix for this chain.

Decay Chain for Mass Number 88

We set up the various matrices for the following decay chain

and

The supermatrix A for this chain will be then a 6 x 6 matrix.

CHAPTER THREE

G-Factor Method

This technique is developed by Dr. Robert Miles, Louisiana State University, for handling radioactive decay, buildup and mass transfer problems. The procedure is simplified by introducing the concepts of path specific probability function. General solutions are obtained which include the branching factors and independent production of nuclides. Use of recurrence relations for exponential terms makes the computation fast and efficient. Singularities are also treated easily by this technique which will be discussed later in the section. The advantage of G-factor technique lies in the fact that it is easy to understand and apply to problems since very simple concepts are involved.

Let us first consider a generalized decay chain as shown in Fig. 4. We define the following:

u_i = the total removal constant of the ith nuclide. k_{ij} = the transfer rate constant from the ith to the jth nuclide (i > j, reverse branching, which means branching from daughter to ancestor, is not allowed).

There are several terms which contribute to the total removal constant u. They are

- a) Radioactive decay constant
 - b) Removal rate due to nuclear reactions
 - c) Mass transfer rate for the ith nuclide

The transfer rate constant k_{ij} is present because of various reasons. It can be just the material transfer rate from ith to jth nuclide or the production rate of jth nuclide due to nuclear reaction involving ith nuclide. Also it can be product of decay constant for the ith nuclide and the branching fraction from the ith to jth nuclide.

The analysis of radioactive decay chains is simplified by dividing it into two parts. One in which we study the decay chain when there is no independent production of any nuclide of the chain and other where we take into account independent production.

Case 1. Decay Chain with no Independent Production

In this case the system of differential equations governing the number of atoms of each nuclide as a function of time are:

$$\frac{dA_{1}(t)}{dt} = -u_{1}A_{1}(t)$$
(25)

$$\frac{dA_2(t)}{dt} = k_{12} A_1(t) - u_2 A_2(t)$$
(26)

$$\frac{dA_{3}(t)}{dt} = k_{13} A_{1}(t) + k_{23} A_{2}(t) - u_{3} A_{3}(t)$$
(27)

relat

$$\frac{dA_{z}(t)}{dt} = \sum_{m=1}^{z-1} k_{mz} A_{m}(t) - u_{z} A_{z}(t)$$
(28)

We define
$$E_i = e^{-u_i t}$$
 $i = 1, 2, 3, ... z$ (29)

and solve the first three equations. By direct integration we get

$$A_{1}(t) = A_{1}^{0} E_{1}$$
 (30)

$$A_{2}(t) = k_{12} A_{1}^{0} \left\{ E_{2} \int_{0}^{t} \frac{E_{1}dt'}{E_{2}} \right\} + A_{2}^{0} E_{2}$$
(31)

$$E_{2} \int_{0}^{t} \frac{E_{1}dt'}{E_{2}} dt'' + k_{23} A_{2}^{0} \left\{ E_{3} \int_{0}^{t} \frac{E_{2}dt'}{E_{3}} \right\}$$

$$+ A_3^0 E_3$$
 (32)

where

D.

 $A_{i}^{O} = \text{initial number of atoms (at t = 0)}$ Equations (30), (31), and (32) can be put in a simple form by defining E factors and using exponential recurrence relations. $E_{ij} = E_{j} \int_{0}^{t} \frac{E_{i}dt'}{E_{j}} = \frac{E_{i} - E_{j}}{u_{j} - u_{i}} \quad u_{i} \neq u_{j}, j = 1, 2, 3, \dots z$ (33) $E_{ijk} = E_{k} \int_{0}^{t} \frac{E_{ij}dt'}{E_{k}} = \frac{E_{ij} - E_{jk}}{u_{k} - u_{i}}$ $k = 1, 2, 3, \dots z \text{ and}$ $u_{i} \neq u_{j} \neq u_{k}$ (34)

$$E_{ijk---yz} = E_z \int_0^t \frac{E_{ijk---y}dt'}{E_z} = \frac{E_{ijk---y} - E_{jk---yz}}{u_z - u_i}$$

for
$$u_i \neq u_j \neq u_k \neq \dots u_z$$
 (35)

Now equations (30), (31), and (32) can be written as

$$A_1(t) = A_1^0 E_1$$
 (36)

$$A_2(t) = k_{12} A_1^0 E_{12} + A_2^0 E_2$$
 (37)

$$A_{3}(t) = k_{12} k_{23} A_{1}^{0} E_{123} + k_{13} A_{1}^{0} E_{13} + k_{23} A_{2}^{0} E_{23} + A_{3}^{0} E_{3}$$
 (38)

The above equations indicate a symmetry which we can exploit to write the solution for the fourth nuclide in the chain.

$$A_{4}(t) = A_{1}^{0} \left\{ k_{12}k_{23}k_{34}E_{1234} + k_{12}k_{24}E_{124} + k_{13}k_{34}E_{134} \right.$$
$$+ k_{14}E_{14} \right\} + A_{2}^{0} \left\{ k_{23}k_{34}E_{234} + k_{24}E_{24} \right\} + A_{3}^{0} k_{34}E_{34}$$
$$+ A_{4}^{0} E_{4}$$
(39)

Define

$$G_{ij} = k_{ij}E_{ij}$$

$$G_{ijk} = k_{ij}k_{jk}E_{ijk}$$

$$G_{ijk---yz} = (k_{ij}k_{jk}...k_{yz}) (E_{ijk---yz})$$
(40)

We get

$$A_{1}(t) = A_{1}^{0} E_{1}$$
 (41)

$$A_{2}(t) = A_{1}^{0} G_{12} + A_{2}^{0} E_{2}$$
(42)

$$A_3(t) = A_1^0 \left\{ G_{123} + G_{13} \right\} + A_2^0 G_{23} + A_3^0 E_3$$
 (43)

$$A_4(t) = A_1^0 \left\{ G_{1234} + G_{124} + G_{134} + G_{14} \right\} + A_2^0 \left\{ G_{234} + G_{24} \right\}$$

$$+ A_{3}^{0} G_{34} + A_{4}^{0} E_{4}$$
 (44)

Again we see a symmetry in the equations and we can write the number of atoms of any nuclide in the chain. A closer look at the G-factors indicate that if interpreted correctly, the method of solving all the differential equations reduce to tracing the possible branching paths from ith to jth nuclide.

Identifying $G_{ijk--yz}$ as path function which represents the probability that an atom of the ith type will be transformed into z atom by a specified path jk---y in time t, considerable simplification in mathematics is achieved. Note also that function $G_{ijk--yz}$ occurs in the solution of z^{th} differential equation.

There are two ways to calculate the total number of possible paths from nuclide i to nuclide z. Note that there are (z-i-1) nuclides which occur between i and jth nuclide and there are only two possibilities for any nuclide between i and j, either to be included in the branching path or excluded. Considering (i + 1)th to (j - 1) nuclide together the total number of possible paths are obtained simply by multiplication.

$$(2)_{i+1} (2)_{i+2} (2)_{i+3} - - (2)_{z-1} = (2)^{z-i-1}$$

Same result will be obtained by considering the number of ways in which intervening nuclides can be included or excluded in branching paths.

There are $z-i-l_{C_0}$ ways which exclude all nuclides between i and j.

There are $z-i-l_{C_1}$ ways which include only one nuclide between i and z.

z-i-l_{C2} ways which include two nuclides between i and z.

z-i-l ways which include all (z-i-l) z-i-l nuclides between i and z.

So the total number of ways is just the sum of all the terms above

 $z - i - 1_{C_0} + z - i - 1_{C_1} + z - i - 1_{C_2} + \dots z - i - 1_{C_{z-i-1}} = \sum_{k=0}^{z-i-1} c_k^{z-i-1}$

which is

$$1 + (z-i-1) + (z-i-1) (z-i-2) + (z-i-1) (z-i-2) (z-i-3) + \dots$$
$$= (1 + 1)^{z-i-1} = 2^{z-i-1}$$

The total number of terms required in the solution for any nuclide z is given by

 $1 + \sum_{i=1}^{z-1} (2)^{z-i-1}$

The reason for adding one is due to the fact that we have term $A_z^O E_z$ which is present because of initial atoms of z^{th} nuclide.

The path specific probability function G defined can be calculated by the simple recurrence relation

$$G_{ijk--yz} = \frac{k_{yz} G_{ijk--y} - k_{ij} G_{jk--yz}}{u_z - u_i}$$

or from the E factor

$$G_{ijk---yz} = k_{ij} k_{jk---} k_{yz} E_{ijk---yz}$$

It is clear from Eq. (34) that for $u_z = u_i$, the E factors are not defined. An alternate expression can be developed for such cases. These will be considered in the next section.

The general solution to the zth differential equation can now be written as $A_z^0 E_z$ plus the sum of all the path specific probability functions multiplied by initial amount of the originating nuclide. Thus, the solution of zth differential equation reduces to the problem of determining all possible paths to the zth nuclide. For further simplicity we introduce cummulative transfer function G(t, i+z) which is defined as the probability that an atom of the ith nuclide will be transformed into nuclide z through all possible paths in time t. From definition it is clear that cummulative transfer function G(t,i+z) is the sum of all the path specific probability functions for transformation of nuclide i to z and can be represented by:

$$G(t, i \rightarrow z) = \sum_{all G} G_{ijk---z}$$

The solution in terms of $G(t, i \rightarrow z)$ becomes

$$A_{z}(t) = \sum_{i=1}^{z-1} A_{i}^{0} G(t, i \neq z) + A_{z}^{0} E_{z}$$
(45)

We note that in many cases branching factors are zero which makes probability function $G_{ijk---yz}$ zero for the simple reason that $G_{ijk---yz}$ depends on k_{ij} which is clear from Equation (40). Hence if a particular branching fraction k_{ij} is zero then there is no need of computing G factors which include k_{ij} .

Case 2. Independent Production of Radionuclide Included

Assuming initial amount of each nuclide to be zero, the general differential equations, including independent production are:

$$\frac{dA_{1}(t)}{dt} = P_{1} - u_{1} A_{1}(t)$$

$$\frac{dA_{2}(t)}{dt} = k_{12} A_{1}(t) + P_{2} - u_{2} A_{2}(t)$$

$$\frac{dA_{3}(t)}{dt} = k_{13} A_{1}(t) + k_{23} A_{2}(t) + P_{3} - u_{3} A_{3}(t)$$

$$\frac{dA_{2}(t)}{dt} = \sum_{m=1}^{z-1} k_{mz} A(t) + P_{z} - u_{z} A_{z}(t)$$
(46)

The solution of these differential equations are developed in similar manner. We define

Another Way of Representing Arbitrary Decay Chain with Independent Production. Fig. 5.

$$E_{i} = e^{-u_{i}t}$$

$$E_{ij} = E_{j} \int_{0}^{t} \frac{E_{i}dt}{E_{j}} = \frac{E_{i} - E_{j}}{u_{j} - u_{i}} \quad j = 1, 2, ... z$$

$$u_{i} \neq u_{j} \quad (47)$$

 $E_{ijk---yz} = E_z \int_0^t \frac{E_{ijk---y}dt}{E_z} = \frac{E_{ijk---y} - E_{jk---yz}}{u_z - u_i}$

for
$$u_i \neq u_j \neq u_k \neq u_z$$

and take $u_0 = 0$

Further, we define new E terms. They are

$$E_{oi} = E_{i} \int_{0}^{t} \frac{E_{o}dt}{E_{i}} = \frac{E_{o} - E_{i}}{u_{i} - u_{o}} \quad i = 1, 2, ..., z, u_{i} \neq 0$$

$$E_{oij} = E_{j} \int_{0}^{t} \frac{E_{oi}dt}{E_{j}} = \frac{E_{oi} - E_{ij}}{u_{j} - u_{o}} \quad j = 1, 2, 3.... z,$$

$$E_{\text{oij}--yz} = E_{z} \int_{0}^{t} \frac{E_{\text{oij}--y}^{dt}}{E_{z}} = \frac{E_{\text{oij}--y}^{-} E_{\text{ijk}--z}}{u_{z}^{-} u_{0}}$$
(48)

 $z = 1, 2, 3, \dots z, u_2 \neq 0.$

Similarly we define path specific probability function. Subscript zero is used to distinguish from the previous case (with no independent production)

```
G<sub>oij</sub> = k<sub>ij</sub> E<sub>oij</sub>
```

 $G_{oijk} = k_{ij} k_{jk} E_{oijk}$

 $G_{oijk---yz} = (k_{ij} k_{jk---} k_{yz}) E_{oijk---yz}$

As in the previous case G_{oijk---yz} represents the probability that an atom of the ith nuclide will be produced and then transformed into the nuclide specified by the last subscript by the path indicated by the intervening subscripts in time t. Using the recurrence relation

$$G_{\text{oijk}--yz} = \frac{k_{yz} G_{\text{oijk}--y} - G_{\text{ijk}--yz}}{u_z - u_0}$$

the function G can be calculated again in similar manner. The cummulative transfer probability function in this case is written G(t, o i \rightarrow z) with the same definition as before. The general solution (without initial atoms) is

$$A_{z}(t) = \sum_{i=1}^{z-1} P_{i} G(t, oi \rightarrow z) + P_{z} E_{oz}$$
(49)

If we include the initial atoms present with independent production, the general solution is then sum of Eq. (45) and Eq. (49)

$$A_{z}(t) = \sum_{i=1}^{z-1} \left\{ A_{i}^{0} G(t, i \neq z) + P_{i} G(t, \neq oi z) \right\} + A_{z}^{0} E_{z} + P_{z} E_{oz}$$
(50)

<u>Treatment of singularities</u>. Two classes of singularities exist which must be treated separately. They are encountered when

 a) The total removal constant for the first and last nuclide in a given transformation path containing at least three nuclides are equal. There should be at least one intermediate nuclide with unique removal constant.

b) The total removal constant for all nuclides in a given transformation path are equal.

These singularities can be treated by noting the symmetry of E factors which were developed earlier. E factors are symmetric functions of their arguments. This can be shown easily.

$$E_{123} = \frac{e^{-u_1 t}}{(u_2 - u_1)(u_3 - u_1)} + \frac{e^{-u_2 t}}{(u_1 - u_2)(u_3 - u_2)} + \frac{e^{-u_3 t}}{(u_1 - u_3)(u_2 - u_3)}$$

which implies

$$E_{123} = E_{132} = E_{213} = E_{231} = E_{312} = E_{321}$$

The equivalence of E factors can be utilized in the treatment of singularities.

$$E_{ijk} = E_{ikj} = \frac{E_{ik} - E_{kj}}{u_j - u_i} = \frac{E_{ik} - E_{jk}}{u_j - u_i} \text{ for } u_i = u_k \neq u_j$$

$$E_{ijkl} = E_{ijlk} = \frac{E_{ijl} - E_{jlk}}{u_k - u_i} = \frac{E_{ijl} - E_{jkl}}{u_k - u_i} \quad \text{for } u_i = u_j \neq u_k$$

$$E_{ijkl} = E_{iklj} = \frac{E_{ikl} - E_{jkl}}{u_j - u_i} \quad \text{for } u_i = u_l \neq u_j$$

$$E_{ijk---yz} = E_{ik---yzj} = \frac{E_{ik---yz}-E_{jk---yz}}{u_j-u_i}$$

for
$$u_i = u_z \neq u_j$$

where j is any integer between i and z.

For the second class of singularities, we integrate directly.

$$E_{ij} = E_{j} \int_{0}^{t} \frac{E_{i}dt}{E_{j}} = t E_{j} = t E_{i} \text{ for } u_{i} = u_{j}$$

$$E_{ijk} = E_{k} \int_{0}^{t} \frac{t E_{i}}{E_{k}} = \frac{t^{2} E_{k}}{2!} = \frac{t^{2} E_{i}}{2!} \text{ for } u_{i} = u_{j} = u_{k}$$

$$E_{ijkl} = E_i \int_0^t \frac{t^2 E_i dt}{2!E_i} = \frac{t^3 E_i}{3!} \text{ for } u_i = u_j = u_k$$

$$E_{ijk--z} = E_{z} \int_{0}^{t} \frac{t^{(z-i-1)}E_{i}dt}{(z-i-1)!E_{z}} = \frac{t^{(z-1)}E_{i}}{(z-i)!}$$

for $u_i = u_j = u_k = \dots u_z$

These expressions easily remove the singularities when encountered. Some useful relations involving derivatives and integrals of E factors can be developed.

Define

$$D_{i} = \frac{dE_{i}}{dt} = -u_{i} E_{i}$$

and

$$I_{i} = \int_{0}^{t} E_{i} dt = \frac{1 - E_{i}}{u_{i}}$$

The recurrence relation are

$$D_{ij} = \frac{dE_{ij}}{dt} = \frac{D_i - D_j}{u_j - u_j} \quad \text{for } u_i \neq u_j$$

$$D_{ijk} = \frac{dE_{ijk}}{dt} = \begin{cases} \frac{D_{ij} - D_{jk}}{u_k - u_i} & \text{for } u_i \neq u_k \\ \\ \frac{D_{ik} - D_{jk}}{u_j - u_i} & \text{for } u_i = u_k \neq u_j \end{cases}$$

and

$$I_{ij} = \int_{0}^{t} E_{ij} dt = \frac{I_{i} - I_{j}}{u_{j} - u_{i}} \qquad \text{for } u_{i} \neq u_{j}$$

$$I_{ijk} = \int_{0}^{t} E_{ijk} dt = \begin{cases} \frac{I_{ij} - I_{jk}}{u_k - u_i} & \text{for } u_i \neq u_k \\\\ \frac{I_{ik} - I_{jk}}{u_j - u_i} & \text{for } u_i = u_k \neq u_j \end{cases}$$

Also for the class two singularities

$$D_{ij} = \frac{dE_{ij}}{dt} = E_i(1 - u_it) \qquad \text{for } u_i = u_j$$

$$D_{ijk} = \frac{dE_{ijk}}{dt} = tE_i(1 - \frac{u_it}{2}) \qquad \text{for } u_i = u_j = u_k$$

$$\vdots$$

$$D_{ijk---z} = \frac{dE_{ijk---z}}{dt} = \frac{t^{(z-i-1)}E_i}{(z-i-1)!} = E_i(1 - \frac{u_it}{z-1})$$

for
$$u_i = u_j = u_k = u_z$$
.

and

$$I_{ij} = \int_{0}^{t} E_{ij} dt = \int_{0}^{t} tE_{i} dt = \frac{1}{u_{i}} (E_{0i} - tE_{i})$$
$$u_{i} = u_{j}$$

$$I_{ijk} = \int_{0}^{t} E_{ijk} dt = \frac{2!}{u_{i}^{2}} E_{0i} - E_{i} (\frac{t^{2}}{u_{i}} + \frac{2t}{u_{i}^{2}})$$
$$u_{i} = u_{j} = u_{k}.$$
$$\vdots$$
$$I_{ijk---z} = \frac{(z-i)!}{u_{i}^{(z-1)}} E_{0i} - E_{i} \left\{ \sum_{Y=0}^{z-i-1} \frac{(z-i)!t^{(z-i-Y)}}{(z-i-Y)!u_{i}^{Y+1}} \right\}$$

for
$$u_i = u_j = u_k = u_z$$

Ta	Ь1	e	3	•	1

Z=1 Z=2	Z=3	Z=4	r Z=5	Z=6	
None G ₁₂	G ₁₂₃	G ₁₂₃₄	G ₁₂₃₄₅	G123456	G ₁₅₆
pres	G ₁₃	G ₁₃₄	G ₁₂₃₅	G12346	G ₁₄₆
ik-	G ₂₃	G ₁₃₄	G ₁₂₄₅	G ₁₂₃₅₆	G 136
aine		G ₂₃₄	G ₁₃₄₅	^G 12456	^G 126
		G ₁₄	G ₂₃₄₅	G13456	^G 256
are		G ₂₄	G ₁₂₅	^G 23456	^G 246
1 11		G ₃₄	G ₁₃₅	G ₁₂₃₆	G ₂₃₆
			G ₁₄₅	G ₁₂₄₆	G ₃₅₆
1.1			G ₂₃₅	G ₁₃₄₆	G ₃₄₆
			G ₂₄₅	G ₁₂₅₆	G ₁₆
			G ₃₄₅	G ₁₃₅₆	^G 26
			G ₁₅	G ₁₄₅₆	G ₃₆
			G ₂₅	^G 2346	G ₄₆
			G ₃₅	G ₂₃₅₆	G ₅₆
			G ₄₅	G ₂₄₅₆	

List of the Path Specific Probability Functions, G for Radionuclide Chains Containing from Z=1 to Z=6 Nuclides

CHAPTER FOUR

MIKU Program

The block diagram of program MIKU which was written by R. E. Miles (Ref. 7) is shown in Fig. 6. This program consists of the various subroutines indicated in Fig. 6. Some of the subroutines like GSPEC do not exist at the present time but will be developed later. GSPEC will make it possible to compute the gamma spectrum as a function of time.

Input instructions for MIKU are also given and they are self-explanatory. Decay chains and isotope I.D. numbers are given in Appendix A. Fission yield data for all isotopes is given in Appendix B. This program takes little CPU time and input instructions are such that a beginner can run the program without any difficulty.

Some of the subroutines are briefly discussed. Power - this subroutine determines fission rate CDATA - calls input

- DECAY this subroutine converts half life into decay constant
- SCALER this subroutine multiplies a matrix by a scaler

MULTI - multiplies two matrices

EQUAL - sets one matrix equal to other

MVMUL - this subroutine gives the product of matrix times a vector

VADD - it adds two vectors

OUTPUT - this subroutine is used to control the printed output.

Illustration of Subroutine and Data Set Usage for Program MIKU .9 Fig.

Card 1

NPROB = The number of separated unrelated problems to be run as stacked cases.

Card 2

Card 3

NC = Number of chains

 $CLC = \begin{cases} 0 \text{ First NC library chains to be used} \\ 1 \text{ NC selected library chains are to be used} \\ METHOD = \begin{cases} 0 \text{ Matrix exponential method is used to solve} \\ \text{the decay equations,} \end{cases}$

(1 GFAC method is used to solve the decay equations.

```
NTI = The number of separate time intervals for
the problem.
```

VOL = The volume of the Fission Product or Neutronic System

- FXSEC(2) = U-235 fast fission cross section in barns
- FXSEC(3) = U-235 high energy fission cross section in barns

FXSEC(4) = U-238 thermal fission cross section in barns

FXSEC(5) = U-238 fast fission cross section in barns
FXSEC(6) = U-238 high energy fission cross section in
barns

FXSEC(7) = Pu-239 thermal fission cross section in barns

FXSEC(8) = Pu-239 fast fission cross section in barns

FXSEC(10) = Pu-24l thermal fission cross section in barns FXSEC(11) = Pu-24l fast fission cross section in barns

FXSEC(12) = Pu-241 high energy fission cross section in barns

FXSEC(13) = U-233 thermal fission cross section in barns FXSEC(14) = U-233 fast fission cross section in barns FXSEC(15) = U-233 high energy fission cross section in barns

FXSEC(16) = Th-232 thermal fission cross section in barns FXSEC(17) = Th-232 fast fission cross section in barns FXSEC(18) = Th-232 high energy fission cross section in barns

<u>Card 4</u> (Required if CLC = 1)

CN(I) = NC chain ID numbers

Card 5

FRATIO(1) = Thermal Flux Ratio

FRATIO(2) = Fast Flux Ratio

FRATIO(3) = High Energy Flux Ratio (10.0 to 20.0 MeV)

The above flux ratio values can be entered as ratios or as the actual flux values. For a decay interval with no buildup these ratio should be specified as zero. If the actual flux values used and P is specified as 1.0 then the Power is computed from the fission rate. If P is specified as 0.0 then the Flux ratios are set to zero. Otherwise the FR is computed from the specified reactor power. ARATIO(1) = U-235 atom ratio ARATIO(2) = U-238 atom ratio ARATIO(3) = Pu-239 atom ratio ARATIO(4) = Pu-241 atom ratio ARATIO(5) = U-233 atom ratio ARATIO(6) = Th-232 atom ratio P = Reactor Power in Megawatts thermal T = Length of the time interval in hours DBUG = 0 - Standard output is printed 1 Special debug information is printed 2 GFAC factors are printed 3 Triple precision results are printed 4 Special TSO output is requested

Repeat CARD 5 for each of the NTI time intervals Repeat CARDS 2, 3, 4, and 5 as necessary for each additional problem.

CHAPTER FIVE

Results and Discussion

The MIKU program was run for the following cases:

a) Detailed study of Cs-137 and I-131 activities
for 1000, 2000, and 3000 MW reactor power as
function of reactor operation time and for
different fuel enrichments (3% and 90%).
Results were obtained for both Mexp and G-factor
methods.

- b) Total activity of all fission products for 1000 MW reactor power with 3% enriched fuel as function of reactor operation time using Mexp method.
- c) Comparison of CPU time for Mexp and G-factor methods for 1000 MW reactor power with 3% enriched fuel as function of reactor operation time.
- d) Total activity of all fission products as a function of time when 1000 MW reactor with 3% enriched fuel is periodically shut down and operated again.

It should be noted that when MIKU program is run with stacked cards (for different time intervals) the activity is given for the total time. For example, if three cards

are stacked together with one year time on each for some reactor power, the first result for the activity will be after one year, the second value of activity will be after two years and third value of activity will be after three years. Only in case (a) where activities of Cs-137 and I-131 are studied, the program was run with stacked cards and the time shown in the column is time punched on individual cards. Therefore the previous time intervals should be added to get correct value for time. The activity shown for one minute is therefore activity after one minute and thirty-one seconds. In cases (b) and (c) the program was run separately for different time intervals and therefore the tables for them show time without any ambiguity. In case (d) the program was run with stacked cards because of the nature of the problem.

The data used in MIKU program is given in Appendices A and B. The half lives, branching factors and fission yields for 192 chains having 798 isotopes were collected and stored in the computer.

All the results are presented in tabular form.

Table 5.1(a). Growth and Decay of Cs-137

Reactor Power 1000 MW

Fuel enrichment 3%

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
1 sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	6.101Q+25 5.515Q+26	0.0 1.484Q+17 1.074Q+19 1.769Q+20 3.7Q+21 1.075Q+22 1.795Q+23 5.128Q+24 5.257Q+25 6.455Q+16 1.553Q-06	8.249E-04 5.617E-02 3.881E-01 5.966E+01 1.983E+02 3.525E+03 1.032E+05 1.301E+06 1.189E+07 5.289E+07 5.289E+07

Mexp Method

Table 5.1(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	6.101Q+25 5.515Q+26	0,0 1.484Q+17 1.074Q+19 1.769Q+20 3.70Q+21 1.075Q+22 1.795Q+23 5.128Q+24 5.257Q+25 6.455Q+16 0.0	8.249E-04 5.617E-02 3.881E-01 5.966E+01 1.983E+02 3.525E+03 1.032E+05 1.301E+06 1.189E+07 5.289E+07 5.289E+07

Reactor Power 2000 MW Fuel enrichment 3%

Mexp Method

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
1 sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	1.220Q+26 1.103Q+27	0.0 2.968Q+17 2.148Q+19 3.538Q+20 7.401Q+21 2.149Q+22 3.590Q+23 1.026Q+25 1.051Q+26 1.291Q+17 3.106Q-06	1.650E-03 1.123E-01 7.762E-01 1.193E+02 3.965E+02 7.051E+03 2.065E+05 2.603E+06 2.377E+07 1.058E+08 1.058E+08

Table 5.2(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	1.220Q+26 1.103Q+27	$\begin{array}{c} 0.0\\ 2.968Q+17\\ 2.148Q+19\\ 3.538Q+20\\ 7.401Q+21\\ 2.149Q+22\\ 3.590Q+23\\ 1.026Q+25\\ 1.051Q+26\\ 1.291Q+17\\ 0.0 \end{array}$	1.650E-03 1.123E-01 7.762E-01 1.193E+02 3.965Q+21 7.051E+03 2.065E+05 2.603E+06 2.377E+07 1.058E+08 1.058E+08

Reactor Power 3000 MW Fuel enrichment 3%

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec	1.258Q+17	0.0	2.475E-03
30 sec	8.199Q+18	4.452Q+17	1.685E-01
1 min	2.695Q+19	3.222Q+19	1.164E+00
30 min	8.566Q+21	5.307Q+20	1.79E+02
1 hr	1.913Q+22	1.110Q+22	5.948E+02
24 hr	5.052Q+23	3.224Q+22	1.058E+04
1 month	1.520Q+25	5.385Q+23	3.097E+05
1 yr	1.830Q+26	1.539Q+25	3.904E+06
10 yr	1.654Q+27	1.577Q+26	3.566E+07
1000 yr	8.064Q+27	1.936Q+17	1.587E+08
10 ⁵ yr	8.064Q+27	4.659Q-06	1.587E+08

Mexp Method

Table 5.3(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	1.830Q+26 1.654Q+27	0.0 4.452Q+17 3.222Q+19 5.307Q+20 1.110Q+22 3.224Q+22 5.385Q+23 1.539Q+25 1.577Q+26 1.936Q+17 0.0	2.475E-03 1.685E-01 1.164E+00 1.79E+02 5.948E+02 1.058E+04 3.097E+05 3.904E+06 3.566E+07 1.587E+08 1.587E+08

Table 5.4(a). Growth and Decay of I-131

Reactor Power 1000 MW

Fuel enrichment 3%

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
1 sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	8.879Q+23 8.879Q+23	0.0 1.92Q+15 9.495Q+16 1.677Q+19 9.506Q+20 4.160Q+21 6.014Q+21 1.831Q+10 0.0 0.0 0.0	3.474E-02 1.338E+00 5.668E+00 3.978E+03 4.365E+04 1.821E+06 2.226E+07 2.395E+07 2.395E+07 2.395E+07 2.395E+07

Mexp Method

Table 5.4(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	8.879Q+23 8.879Q+23	$\begin{array}{c} 0.0\\ 1.920Q+15\\ 9.495Q+16\\ 1.677Q+19\\ 9.506Q+20\\ 4.160Q+21\\ 6.014Q+21\\ 1.831Q+10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	3.474E-02 1.338E+00 5.668E+00 3.978E+03 4.365E+04 1.821E+06 2.226E+07 2.395E+07 2.395E+07 2.395E+07 2.395E+07
Reactor Power 2000 MW Fuel enrichment 3%

	Mexp Method			
Time	Buildup (atoms)	Decay (atoms)	Activity (Curies)	
1 sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 100 yr 10 ⁵ yr	1.776Q+24 1.776Q+24	$\begin{array}{c} 0.0\\ 3.841Q+15\\ 1.899Q+17\\ 3.354Q+19\\ 1.901Q+21\\ 8.32Q+21\\ 1.203Q+22\\ 3.662Q+10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	6.947E-02 2.677E+00 1.134E+01 7.955E+03 8.730E+04 3.642E+06 4.451E+07 4.789E+07 4.789E+07 4.789E+07 4.789E+07	

Table 5.5(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 100 yr 10 ⁵ yr	9.542Q+16 2.304Q+17 2.615Q+20 1.336Q+21 1.267Q+23 1.639Q+24 1.776Q+24 1.776Q+24	$\begin{array}{c} 0.0\\ 3.841Q+15\\ 1.899Q+17\\ 3.354Q+19\\ 1.901Q+21\\ 8.320Q+21\\ 1.203Q+22\\ 3.662Q+10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	6.947E-02 2.677E+00 1.134E+01 7.955E+03 8.730E+04 3.642E+06 4.451E+07 4.789E+07 4.789E+07 4.789E+07 4.789E+07 4.789E+07

Reactor Power 3000 MW

Fuel enrichment 3%

Mexp Method

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 100 yr 10 ⁵ yr	2.664Q+24 2.664Q+24	$\begin{array}{c} 0.0\\ 5.761Q+15\\ 2.849Q+17\\ 5.030Q+19\\ 2.852Q+21\\ 1.248Q+22\\ 1.804Q+22\\ 5.493Q+10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	1.042E-01 4.015E+00 1.70E+01 1.193E+04 1.310E+5 5.463E+06 6.677E+07 7.184E+07 7.184E+07 7.184E+07 7.184E+07

Table 5.6(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	1.431Q+17 3.457Q+17 3.922Q+20 2.004Q+21 1.901Q+23 2.458Q+24 2.664Q+24 2.664Q+24	$\begin{array}{c} 0.0\\ 5.761Q+15\\ 2.849Q+17\\ 5.030Q+19\\ 2.852Q+21\\ 1.248Q+22\\ 1.804Q+22\\ 5.493Q+10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	1.042E-01 4.015E+00 1.7E+01 1.193E+04 1.310E+05 5.463E+06 6.677E+07 7.184E+07 7.184E+07 7.184E+07 7.184E+07

Table 5.7(a). Growth and Decay of Cs-137

Reactor Power 1000 MW Fuel enrichment 90%

Mexp Method

Table 5.7(b)

Reactor Power 2000 MW Fuel enrichment 90%

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
1 sec	1.080Q+17	$\begin{array}{c} 0.0\\ 3.3290+17\\ 2.2550+19\\ 3.4890+20\\ 7.2970+21\\ 2.1190+22\\ 3.5390+23\\ 1.0110+25\\ 1.0370+26\\ 1.2730+17\\ 3.0630-06\end{array}$	2.126E-03
30 sec	6.356Q+18		1.316E-01
1 min	2.001Q+19		8.374E-01
30 min	5.649Q+21		1.180E+02
1 hr	1.259Q+22		3.913E+02
24 hr	3.321Q+23		6.952E+03
1 month	9.992Q+24		2.036E+05
1 yr	1.203Q+26		2.566E+06
10 yr	1.087Q+27		2.344E+07
1000 yr	5.301Q+27		1.043E+08
10 ⁵ yr	5.301Q+27		1.043E+08

Mexp Method

Table 5.8(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	1.203Q+26 1.087Q+27	0.0 3.329Q+17 2.255Q+19 3.489Q+20 7.297Q+21 2.119Q+22 3.539Q+23 1.011Q+25 1.037Q+26 1.273Q+17 0.0	2.126E-03 1.316E-01 8.374E-01 1.180E+02 3.913E+02 6.952E+03 2.036E+05 2.566E+06 2.344E+07 1.043E+08 1.043E+08

Table 5.9(a)

Reactor Power 3000 MW

Fuel enrichment 90%

Time	Buildup	Decay	Activity	
	(atoms)	(atoms)	(Curies)	
l sec	1.620Q+17	$\begin{array}{c} 0.0\\ 4.994Q+17\\ 3.382Q+19\\ 5.233Q+20\\ 1.095Q+22\\ 3.178Q+22\\ 5.309Q+23\\ 1.517Q+25\\ 1.555Q+26\\ 1.909Q+17\\ 4.594Q-06\end{array}$	3.188E-03	
30 sec	9.534Q+18		1.974E-03	
1 min	3.001Q+19		1.256E+00	
30 min	8.474Q+21		1.770E+02	
1 hr	1.889Q+22		5.870E+02	
24 hr	4.982Q+23		1.043E+04	
1 month	1.499Q+25		3.054E+05	
1 yr	1.805Q+26		3.85E+06	
10 yr	1.631Q+27		3.516E+07	
1000 yr	7.951Q+27		1.565E+08	
10 ⁵ yr	7.951Q+27		1.565E+08	

Mexp Method

Table 5.9(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec	1.620Q+17	$\begin{array}{c} 0.0\\ 4.994Q+17\\ 3.382Q+19\\ 5.233Q+20\\ 1.095Q+22\\ 3.178Q+22\\ 5.309Q+23\\ 1.517Q+25\\ 1.555Q+26\\ 1.909Q+17\\ 0.0\end{array}$	3.188E-03
30 sec	9.534Q+18		1.974E-03
1 min	3.001Q+19		1.256E+00
30 min	8.474Q+21		1.770E+02
1 hr	1.889Q+22		5.870E+02
24 hr	4.982Q+23		1.043E+04
1 month	1.499Q+25		3.054E+05
1 yr	1.805Q+26		3.85E+06
10 yr	1.631Q+27		3.516E+07
1000 yr	7.951Q+27		1.565E+08
10 ⁵ yr	7.951Q+27		1.565E+08

Reactor Power 1000 MW

Fuel enrichment 90%

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
1 sec 30 sec 1 min 30 min 1 hr 24 hr 1 montl 1 yr 10 yr 100 yr 10 ⁵ yr	1.015Q+24 1.015Q+24	0.0 2.581Q+15 1.380Q+17 1.991Q+19 1.088Q+21 4.728Q+21 6.888Q+21 2.097Q+10 0.0 0.0 0.0 0.0	3.964E-02 1.692E+00 7.882E+00 4.868E+03 5.055E+04 2.067E+06 2.544E+07 2.738E+07 2.738E+07 2.738E+07 2.738E+07

Mexp Method

Table 5.10(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	1.015Q+24 1.015Q+24	$\begin{array}{c} 0.0\\ 2.581Q+15\\ 1.380Q+17\\ 1.991Q+19\\ 1.088Q+21\\ 4.728Q+21\\ 6.888Q+21\\ 2.097Q+10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	3.964E-02 1.692E+00 7.882E+00 4.868E+03 5.055E+04 2.067E+06 2.544E+07 2.738E+07 2.738E+07 2.738E+07 2.738E+07 2.738E+07

Reactor Power 2000 MW

Fuel enrichment 90%

		Mexp Method	
Time	Buildup (atoms)	Decay (atoms)	Activity (Curies)
1 sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	2.940Q+15 1.203Q+17 3.086Q+17 3.212Q+20 1.572Q+21 1.438Q+23 1.873Q+24 2.030Q+24 2.030Q+24 2.030Q+24 2.030Q+24 2.030Q+24	0.0 5.163Q+15 2.759Q+17 3.982Q+19 2.177Q+21 9.457Q+21 1.378Q+22 4.194Q+10 0.0 0.0 0.0 0.0	7.929E-02 3.383E+00 1.576E+01 9.736E+03 1.011E+05 4.134E+06 5.089E+07 5.476E+07 5.476E+07 5.476E+07 5.476E+07

Mexp Method

Table 5.11(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
1 sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	2.030Q+24 2.030Q+24	$\begin{array}{c} 0.0\\ 5.163Q+15\\ 2.759Q+17\\ 3.982Q+19\\ 2.177Q+21\\ 9.457Q+21\\ 1.378Q+22\\ 4.194Q+10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	7.929E-02 3.383E+00 1.576E+01 9.736E+03 1.011E+05 4.134E+06 5.089E+07 5.476E+07 5.476E+07 5.476E+07 5.476E+07

Reactor Power 3000 MW Fuel enrichment 90%

Mexp Method

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
l sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	3.046Q+24 3.046Q+24	$\begin{array}{c} 0.0\\ 7.744Q+15\\ 4.139Q+17\\ 5.973Q+19\\ 3.265Q+21\\ 1.419Q+22\\ 2.066Q+22\\ 6.291Q+10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	1.189E-01 5.075E+00 2.365E+01 1.460E+04 1.517E+05 6.200E+06 7.633E+07 8.214E+07 8.214E+07 8.214E+07 8.214E+07 8.214E+07

Table 5.12(b)

Time	Buildup	Decay	Activity
	(atoms)	(atoms)	(Curies)
1 sec 30 sec 1 min 30 min 1 hr 24 hr 1 month 1 yr 10 yr 1000 yr 10 ⁵ yr	3.046Q+24 3.046Q+24	$\begin{array}{c} 0.0\\ 7.744Q+15\\ 4.139Q+17\\ 5.973Q+19\\ 3.265Q+21\\ 1.419Q+22\\ 2.066Q+22\\ 6.291Q+10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	1.189E-01 5.075E+00 2.365E+01 1.460E+04 1.517E+05 6.200E+06 7.633E+07 8.214E+07 8.214E+07 8.214E+07 8.214E+07 8.214E+07

Tabl	e 5	.1	3
------	-----	----	---

Study of Cs-137

Fuel Enrichment 90%

Time (Years)	Reactor Power 1000 MW Activity (Curies)	Reactor Power 3000 MW Activity (Curies)
4	4.576E+06	l.373E+07
10	1.070E+07	3.21E+07
20	1.92E+07	5.761E+07
30	2.596E+07	7.88E+07
40	3.133E+07	9.4E+07
50	3.560E+07	1.068E+08
60	3.90E+07	1.170E+08
70	4.170E+07	1.251E+08
80	4.384E+07	1.315E+08
90	4.555E+07	1.366E+08
100	4.690E+07	1.407+08
110	4.798E+07	1.439E+08
120	4.883E+07	1.465E+08
130	4.951E+07	l.485E+08
140	5.006E+07	1.502E+08
150	5.049E+07	1.515E+08

Table 5.14

Study of I-131

Fuel Enrichment 90%

	Reactor Power 1000 MW	Reactor Power 3000 MW
Time (Days)	Activity (Curies)	Activity (Curies)
2	3.906E+06	1.172E+07
4	7.508E+06	2.252E+07
6	1.062E+07	3.158E+07
8	1.326E+07	3.978E+07
10	1.549E+07	4.647E+07
1 2	1.737E+07	5.212E+07
14	1.896E+07	5.687E+07
16	2.029E+07	6.087E+07
18	2.141E+07	6.424E+07
20	2.236E+07	6.707E+07
22	2.315E+07	6.946E+07
24	2.382E+07	7.147E+07
26	2.439E+07	7.316E+07
28	2.486E+07	7.458E+07
30	2.526E+07	7.578E+07

Table	5.	15
-------	----	----

Study of Total Activity Reactor Power 1000 MW Fuel Enrichment 3%

Time (hours)	Activity of all Fission Products (Curies)
2.77E-04	l.416E+08
1.0E+01	1.145E+09
2.0E+01	1.204E+09
4.0E+01	1.257E+09
8.0E+01	1.300E+09
2.0E+02	1.352E+09
4.0E+02	1.390E+09

Table 5.16

Comparison of CPU Time Taken by G-Factor and Mexp Methods (Reactor Power 1000 Mw, Fuel Enrichment 3%) for Total Activity of all Fission Products

Reactor Operation time (hours)	Mexp Method CPU time (min)	G-Factor Method CPU time (min)
2.77E-04	0.29	0.28
8.333E-03	0.30	0.28
0.0166	0.30	0.28
0.5	0.33	0.28
1.0	0.33	0.28
24.0	0.35	0.28
720.0	0.38	0.28
8760.0	0.40	0.28
8.76E+04	0.42	0.28
8.76E+06	0.46	0.28
8.76E+08	0.50	0.28

Activity of I-131 for 1000 and 3000 MW reactor power (90% fuel enrichment) vs. time. Fig. 8.

Total activity of all fission products (1000 MW reactor power, 3% fuel enrichment) vs. time. Fig. 9.

DISCUSSION

It is seen that the matrix exponential and G-factor methods give the same inventory for the fission products indicating thereby that the approach to a problem is not important as long as it is based on sound reasoning. Both methods give exactly the same result upto four significant figures listed. Typically, the result agree to 10 significant figures or more.

The first step in the project was to study the matrix exponential and G-factor methods and to get a good understanding of the techniques involved. Both methods have strong and weak points. The calculations for the matrix exponential method are much more involved and are based on the solution of matrix differential equations. On the other hand, the concepts used in the G-factor method are extremely simple. Moreover, the G-factor method uses less CPU time as compared to that for matrix exponential method. The G-factor method, however, suffers from the limitation that it is unable to handle reverse branching and, therefore, does not provide a general solution to the decay problem.

The data (branching factors, half lives and fission yields) for 192 decay chains involving 798 isotopes were collected from literature and are reproduced in Appendices A and B. A stable isotope was assumed to have the half-

life of 10¹⁵ years. This data was stored in the computer and was used in computations based on the program MIKU which was developed by us for our specific use.

The program MIKU was run for different operating conditions of the reactor and the results are listed in Table 5.1(a) to 5.16). Table 5.1(a) to Table 5.14 give the activities of Cs-137 and I-131 for different fuel concentrations and reactor power for various reactor operating times. The results for both the methods have been listed. It should be noted that I-131 is getting contributions from two members of decay chain (Appendix A) namely, M_{Te} and Te and, therefore, activity of I-131 is obtained without neglecting any contribution. Cs-137 however, gets contribution only from Xe-137. MIKU is a very powerful and accurate computer program as it includes all branches (contributions).

Tables 5.1(a) to 5.14 show that when the reactor power is increased by a factor of two or three, the activity is also increased by the same factor. This result was expected because of the linearity of the equation used to calculate the activity of the fission products.

Activities of Cs-137 and I-131 (Table 5.13 and 5.14) are, respectively, plotted in Fig. 7 and 8. It is observed that the activity of Cs-137 saturates after about 100 years of reactor operation whereas I-131 gets saturated in about 20 days. This occurrence of saturation is

supported by theory (Ref. 6). It can be shown that when the rate of production of the parent atom is constant in time, the activity of daughter atom reaches saturation after 3 or 4 times its half-life. Cs-137 and I-131 have their respective half-lives as 30.17 years and 8.04 days and hence their saturation times agree with the theoretical predictions.

Total activity for all the isotopes as function of time for 1000 MW reactor power and 3% enriched fuel have been computed and are listed in Table 5.15. The results are also displayed graphically (Fig. 9).

One can derive important information which can be very useful in radioactive waste disposal problem. One can easily obtain the remaining activity in a radioactive waste after certain length of time by simply putting the reactor operating power as zero and follow the decay chains for that length of time. This situation corresponds to the natural radioactive decay process. One can, therefore, easily estimate the time for which the radioactive waste remains unsafe.

The CPU time required by both the methods are also compared (Table 5.16). It is seen that the G-factor method takes 0.28 minutes CPU time to calculate the total activity of all the 798 isotopes for reactor operating time from one second to 10⁵ years. The Mexp method,

however, requires different CPU time depending on the reactor power. Comparison of CPU time show that the G-factor method is better computationally.

A case study was done for a reactor which is operated for one year (1000 MW power, 3% fuel enrichment) and then shut down for one year (same power and fuel concentration). The program was run with three stacked cards for three one-year time intervals. The total CPU time for G-factor method was 0.37 minutes and for Mexp method was 0.74 minutes. This shows that when the time intervals are equal the computer does not take three times the time for one interval but considerably less. This is because some factors, which are common for a particular interval, are not calculated in each computation, but only in the first.

Further study can be done by incorporating subroutine GSPEC which will compute gamma spectrum and can help in determining source term for shielding calculations. Activation libraries can also be included. Fuel management and fuel depletion routines can be the next further step in the study. To make the program more general, actinide chain should also be included.

REFERENCES

- Clarence E. Lee, Courtney E. Apperson, Jr. and John Foley, "A Computer Program to Calculate Fission Product Release from a Reactor Containment Building for Arbitrary Radioactive Decay Chains," LA-NUREG-6570-MS, Nov. 1976.
- D. R. Vondy and G. W. Cunningham, "BURNER: Exposure Calculation Code Model for Reactor Core Analysis," ORNL-5180.
- T. R. England, "CINDER: A One Point Depletion and Fission Product Program," WAPD-TM334, Aug. 1962.
- 4. Miles, R. E., "An Improved Method for Treating Problems Involving Simultaneous Radioactive Decay, Buildup, and Mass Transfer," Submitted for publication in Nuclear Science and Engineering.
- 5. F. R. Gantmacher, The Theory of Matrices, (Chelsea Publishing Company, N.Y., 1960).
- 6. Pierre Marmier and Eric Sheldon, Physics of Nuclei and Particles, Vol. 1 (Academic Press).
- 7. Miles, R. E., and Kumar, S., "MIKU A Computer Program for Generating Activation and Fission Product Inventories," In preparation.
- John E. Foley, "¹³¹I Release from an HTGR During the LOFC Accident," Los Alamos Scientific Laboratory Report LA-5893-MS, March 1975.
- 9. L. M. Carruthers and C. E. Lee, "Larc-1: A Los Alamos Release Calculation Program for Fission Product Transport in HTGR During the LOFC Accident," LA-NUREG-6563-MS, Nov. 1976.
- 10. L. M. Grossman, and W. Stein, "Calcalution of Decay Heat of Fission Products from Exact Relations," EPRINP-616, Vol. 2.
- 11. Table of Isotopes, NSRDS, Seventh ed., (Wiley Interscience).
- 12. K. Shure, "Fission Products Decay Energy," WAPD-BT-24, 1961.

APPENDIX A

Fission Product Chains

Isotope	Chain	ID	Half Life	BF(1)	BF(2)	BF(3)	Decay Chain
Ni-66 Cu-66 Zn-66		ч и м	54.8 H 5.10 M 10 ¹⁵ Y	1.0 1.0	0.00	0.00	Ni <mark>54.8h</mark> Cu <mark>5.10m</mark> Zn
Ni-67 Cu-67 Zn-67	000	4 N O	18.0S 61.9 [.] H 10 ^{1.5} Y	1.0 1.0	0.0	0.0	Ni <u>185</u> Cu ^{61.9h} Zn
Cu-68M Cu-68 Zn-68	ოოო	V 8 0	3.8 M 31 S 10 ^{1 5} Y	0.5 1.0 1.0	0.0	0.00	$M_{Cu} \xrightarrow{3.8M} Cu \xrightarrow{31S} Zn$
Ga-68 Zn-68	44	10 11	68.1 M 10 ¹⁵ Y	1.0	0.0	0.0	Ga ^{68.1M} Zn
Cu-69 Zn-69M Zn-69 Ga-69	ហហហហ	12 14 15	3.0 M 14.0 H 56.0 M 10 ¹⁵ Y	0.0 1.0 1.0	1.0 0.0 0.0	0000	$Cu \xrightarrow{3.0M} M_{Zn} \xrightarrow{1.0} Zn \xrightarrow{56M} Ga$
Cu-70M Cu-70 Zn-70	۵۵۵	16 17 18	47.0 s 5.0 s 10 ^{1 s} y	0.0 1.0 1.0	1.0 0.0 0.0	0.00	^M Cu-47S > Cu-5S > Zn
Ga-70 Ge-70	7	19 20	21.1 M 10 ^{1 5} Y	1.0	0.0	0.0	Ga ^{21.1M} Ge

BF(1) BF(2) BF(3) Decay Chain	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 0.0 0.0 1.0 0.0 0.0 As <u>61 H</u> Ge ^{11.2D} Ga	1.0 0.0 0.0 1.0 0.0 0.0 $z_n^{45.6H} \xrightarrow{d14.1H} g_a$	1.0 0.0 0.0 As ^{26.0H} Ge	1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 $2n^{-24s}$ $Ga^{4.87H}$ Ge	1.0 0.0 0.0 As ^{80.3D} Ge	1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 $Zn \xrightarrow{955} Ga \xrightarrow{105} M_{Ge} \xrightarrow{8.1M} Ge$	89
1	1. 10	≖ĵ			↑	<u>ଳ</u> ୀ	ተ	
	WZnZ	1	$2n\frac{45}{2}$	As ²⁶	1	As ⁸⁰		
BF (3)	2	0.0	0.0	0.0	0.0	0.0	0000	
BF(2)	.9995 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.00	
BF(1)	000	* * *	1.0 1.0				• • • •	
Half Life	3.9 Н 2.4 М 10 ¹⁵ У	61.0 H 11.2 D 10 ¹⁵ Y	45.6 H . 14.1 H 10 ¹⁵ Y	26.0 Н 10 ^{1 5} У	24.0 s 4.87 H 10 ¹⁵ Y	80.3 D 10 ¹⁵ Y	95.0 s 10 s 8.1 M 10 Y	
DI	21 22 23	24 25 26	27 28 29	30 31	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	35 36	37 38 39 40	
Chain	ထထထ	0 0 0	10 10	11	12 12 12	13 13	14 14 14	
Isotope	Zn-71M Zn-71 Ga-71	As-71 Ge-71 Ga-71	2n-72 Ga-72 Ge-72	As-72 Ge-72	Zn-73 Ga-73 Ge-73	As-73 Ge-73	2n-74 Ga-74 Ge-74 Ge-74	

BF (3) Decay Chain $BF (3)$ Decay Chain $0:0$ $0:0$ $0:0$ $Br \frac{4.3M}{.01}$ $0:0$ $Br \frac{5.1}{.011}$ $0:0$ $Br \frac{4.23}{.011}$	91	
	46M Se 05 Ge ⁴²⁵ As ^{9.0M} Se ^{6.5} ×10 ⁴ Br ^{M 4} . 50s Kr ³⁵ H Br 66s Ge ²⁹ S As ^{16S}	Decay Chain M.4.3M Br.57.0H Se ^M 17.45 Se
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
BF (2) BF (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	00 000000 000 0000 00 000 000 0000	0000
BF (1) BF (1)		BF(1 1.0 1.00 1.00
Half Life Half Life 57.0 H 17.4 S 17.4 S 10.1 5 Y 5.1 S 10.1 5 Y 10.1 5 Y	6.46 6.46 3.0 4.0 35.0 10 ¹ 10 ¹ 10 ¹ 10 ¹ 10 ¹ 10 ¹ 10 ¹	alf Life 4.3 M 57.0 H 17.4 s 10 ^{1 5} y
HD HD 1100000000000000000000000000000000		ID 64 65 67
Chain Chain 21 22 23 23 24 24 24 24 24 24 24 24 24 25 25 25 25 26 26 26 26 26 27 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20		Chain 21 21 21 21 21
Isotope Isotope Br-77M Br-77M Se-77M Se-77M Se-78 Ga-78 Ga-78 Ga-78 Se-78 Br-79 Br-79 Br-79 Br-79 Br-79 Br-79 Br-79 Br-79 Br-79 Se-80 Ga-80 Ga-80 Se-80 Se-80 Se-80	Br-78 Se-78 Ga-79 Ga-79 Br-79 Br-79 Br-79 Br-79 Ga-80 Ga-80 As-80 Se-80 Se-80	Isotope Br-77M Br-77 Se-77M Se-77

					(29) (29)	
		5M Br	Br			
		se <mark>18.5M</mark>	, kr ^{2.1x105} Y			
	Se	M_57.3M	Kr ^{2.}			
	086 Kr	.0 .0 .0 .0	.25 .25	es to	о ч	
Chain	Br <mark>17.6M</mark>	05 As 0.05	4.58H	7 1	024 Br <u>1.0*</u> Kr	
Decay C	.42H	s Ge ^{10s}	32M Rb ⁴ .	1.0 AB ^M .20	0.024	
	Br ^M 4	Ga <mark>1.2s</mark>	Rb ^M 3	Geo.0	Br. M. B.	
BF (3)	0000	000000	0.0000.0	0.00	0.0	
BF (2)	0.0 0.0 0.0	0.0000000000000000000000000000000000000	0.0 0.0 0.0	1.0 0.8 0.0	0.024 0.0 0.0	
BF (1)	1.0 .914 1.0	1.0 0.0 1.0 1.0	0.5 .75 1.0 1.0	0.0 0.2 1.0	.976 1.0 1.0	
Life	42 H 6 M 1 5 Y 1 5 Y	255 00 8 55 M 8 50 M 8	32.0 M 4.58 H 13.0 s 1X10 ⁵ Y 10 ¹⁵ Y	5 8) 8) 9 10 ² 9	1 M 4 H 1 s Y	
Half	4. 17. 10	10.01 57.10.01 18.10	32.(4.5 13.(13.(13.(10 ¹	4.6 19.0 14.0 1.4x1(6.1 35.4 10	
B	88 89 91	92 94 95 96	98 99 100 101 102	103 104 105	107 108 109	
Chain	27 27 27 27 27	888888 55555555	29999 29999 29999	0000		
sotope	Br-80M Br-80 Kr-80 Se-80	Ga-81 Ge-81 As-81 Se-81 Se-81 Br-81		н-82 1-82М 1-82М 1-82	Br-82M Br-82 Kr-82	
18	Se Kr	G A B C C A C C A C A C A C A C A C A C A	RD Kr Kr Br	A A A A A A A A A A A A A A A A A A A	Br Kr	

BF(3) Decay Chain	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
BF(1) BF(2)	1.0 .64 .64 .36 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 0.0 .23 .77 1.0 0.0	1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0	0.5 0.5 0.97 0.03 1.0 0.0 1.0 0.0	
Half Life	1.9 s 13.0 s 70.0 s 22.5 M 2.39 H 1.86 H 10 ^{1 s} Y	32.4 H 86.2 D 1.86 H 10 ¹⁵ y	1.2 s 5.3 s 3.3 M 6.0 M 31.8 M 10 ^{1 s} Y	20.5 M 32.9 D 10 ¹⁵ Y 10 ¹⁵ Y	
8	1110 1112 1113 1114 1115 1115	117 118 119 119	121 122 123 124 1254 1254	127 128 129 130	
Chain	5555555 99999399		444444 444444	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Isotope	Ge-83 As-83 Se-83 Se-83 Se-83 Br-83 Kr-83 Kr-83 Kr-83	Sr-83 Rb-83 Kr-83M Kr-83	Ge-84 As-84 Se-84 Br-84 Br-84 Br-84 Kr-84	Rb-84M Rb-84 Kr-84 Sr-84 Sr-84	

				94
	Y Chain	1.0 Se ^M 5e _{1.0} Br _{1.0} Kr ^M	$\begin{array}{c} Y_{0.0} & Sr^{M} & Sr^{1.0} & Rb \\ \hline 1 & 0 & 0 \\ \hline 1 & 0 \\ \hline 1 & 0 \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	ресау	As 0.0 Se Se.23 Se	Y ^M 0.0 Y0.0 Se0.0 Br ^M 0.1	
	BF (3)			
	BF (2)	1.0 7824 0.0 0.0 0.0		
	BF (1)	0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0		
	Half Life	• • • • • • • • • • • • • • • •	68.0 M 64.0 M 10 ¹⁵ Y 16.6 B 10 ¹⁵ Y 10 ¹⁵ Y	
	8	131 132 133 134 135 136 136 137 137 137 137 137 137	1445 1445 150 150	
	Chain	88 4444 6666666666666666666666666666666	>	
	Isotope		Sr-85 Sr-85 Br-85 Br-86 Kr-86 Kr-86	
and the second second				

		1.0 rs ^M ^M ^{1.0} ^{Sr} ^M ^{1.0} ^{Sr}	$\operatorname{Sr}^{M}_{003}$ $\operatorname{Rb}^{-97}_{\mathrm{Sr}}$ Sr	· Rb _{1.0} Sr		<u>c</u>
Decay Chain	Rb^{M} 1.0 $Rb_{1.0}$ Sr	$Se_{\overline{1.0}} Br_{\overline{1.0}} Kr_{\overline{0.0}}$	$z_{r} \xrightarrow{X_{1.0}^{M}} Y_{1.0}^{M} \xrightarrow{Y_{1.0}^{M}}$	Se _{1.0} Br _{1.0} Kr _{1.0}	$r_{1,0} \xrightarrow{Y_{1,0}} sr$	
BF (3)	0.0	000000	000000	00000	0.00	
BF (2)	0.0	0.0 0.1 0.9 0.0 0.0	0.0 0.0 0.0 0.0	00000	0.00	
BF (1)	1.0 1.0	1.0 0.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.00 1.00 1.00	1.0 1.0	
Half Life	1.02 M 18.8 D 10 ¹⁵ Y	5.6 s 55.7 s 76.0 M 2.81 H $4.8 \times 10^{10} Y$ $10^{15} Y$	1.6 H 13.0 H 80.3 H 2.81 H $4.8 \times 10^{1.0} Y$ $10^{1.5} Y$	1.5 s 15.9 s 2.8 H 17.7 M 10 ¹⁵ Y	85 D 106.6 D 10 ¹⁵ Y	
ID I	151 152 153	154 155 156 157 158 159	160 161 162 163 164 165	166 167 168 169 170	171 172 173	
Chain	40 40 40	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	422 422 422 422	4 4 4 4 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7	
Isotope	Rb-86M Rb-86 Rb-86 Sr-86	Se-87 Br-87 Kr-87 Sr-87M Rb-87 Sr-87	Zr-87 Y-87M Y-87 Sr-87M Sr-87 Sr-87 Sr-87	Se-88 Br-88 Kr-88 Rb-88 Sr-88 Sr-88	Zr-88 Y-88 Sr-88	

Isotope	Chain	GI	Half Life	BF(1)	BF (2)	BF (3)	Decay Chain
Br-89 Kr-89 Rb-89 Sr-89	4444 2000	174 175 176 177	4.5 s 3.16 M 15.2 M 50.5 D	1.0	0.0 0.0 0.0	0000	
Y-89M Y-89	44 40 7	178	.7 8 0 ¹⁵ Y	1.0	0.0	0.0	.0,1.0,
ZF-89M ZF-89 Y-89M Y-89	4 4 4 4 4 6 6 6 6 6 6 6	180 181 182 183	4.18 M 78.5 H 15.7 s 10 ^{1 s} y	.998 .998 1.0	0.0		Zr Mr Sr. 998 Zr Mr Zr Mr Zr Mr Zr
Br-90 Kr-90 Rb-90M	47 47	184 185 186	1.6 s 32.3 s 4.28 M	1.0 .11 .05	0.0 .89 .95	0.0	.002
Rb-90 Sr-90 Y-90M Zr-90 Zr-90	4444	187 188 189 190 191	• • • • •	1.0 0.0 1.0 1.0	0.0 1.0 0.04 0.0	00000	$Br_{1.0}^{Br_{$
Nb-90M Nb-90 Zr-90	48 48 88	192 193 194	18.8 в 14.59 Н 10 ¹⁵ У	1.0	0.0	0.0	Nb ^M 1.0 Nb _{1.0} Zr

	.38 Y ^M J.0 Y _{1.0} Zr		Y <u>1.0</u> Zr		dN $\leftarrow 0.5$ $Nb^{M} \leftarrow Nc^{M}$ Vb^{M} $\downarrow 12$
Decay Chain	Kr _{1.0} Rb _{1.0} Sr _{.62}	ub ^M 1.0	Kr _{1.0} Rb _{1.0} Sr _{1.0}	$Nb^{M} \xrightarrow{1.0} 2r$	$Rb_{\overline{1.0}}$ $Sr_{\overline{1.0}}$ $Y_{\overline{1.0}}$
BF(3)	000000	0.0	0.0000	0.0	0.0000.00000000000000000000000000000000
BF(2)		0.0	00000	1.0 0.0	0.0000000000000000000000000000000000000
BF(1)	1.0 1.0 1.0 1.0 1.0	1.0	1.00 1.00 1.00	0.0 1.0 1.0	1.0 1.0 1.0 1.0
Half Life	9.0 s 58.5 s 9.48 H 49.7 M 58.6 D 10 ¹⁵ Υ	18.8 s 10 ^{1 s} y	1.84 s 4.53 s 2.71 H 3.53 H 10 ¹⁵ Y	10.13 D 3.2x10 ⁷ Y 10 ¹⁵ Y	5.8 s 7.5 M 10.2 H 1.5x10 ⁶ Y 13.6 Y 10 ¹⁵ Y
ID	195 196 197 198 199 200	201 202	203 204 205 205 207	208 209 210	211 212 213 213 214 215 215
Chain	49 49 49 49 49	50	51 51 51 51		ດ ຕ ຕ ຕ ຕ ຕ ດ ຕ ຕ ຕ ຕ ດ
Isotope	Kr-91 Rb-91 Sr-91 Y-91M Y-91 Zr-91	Nb-91M M19-dN	Kr-92 Rb-92 Sr-92 Y-92 Zr-92	Nb-92M Nb-92 Zr-92	Rb-93 Sr-93 Y-93 Zr-93 Nb-93M Nb-93

						98
Decay Chain	Mo ^M Mo 85 Nb ^M 1.0 Nb	$Rb_{1.0}$ $Sr_{1.0}$ $Y_{1.0}$ Zr	ом <u>0.1</u> им <u>899</u> мы	$o_{M} \underbrace{\sqrt[6]{0.1}^{M} \sqrt[6]{0.1}^{M} \sqrt[6]{0$	Tc^{M} $Tc_{1.0}^{M}$ Mo	$Sr_{\overline{1.0}}$ $Y_{\overline{1.0}}$ Zr
BF (3)	0000	0000	0.0	000000	0.0	0.0
BF(2)	0.0 .15 0.0	0000	.002 0.0	0.0 0.0 0.0 0.0 0.0	• 96 0 • 0 0 • 0	0.0
BF(1)	1.0 1.0 1.0	1.0 1.0	.998 1.0 1.0	1.0 1.0 1.0 1.0 1.0	.04 1.0 1.0	1.0 1.0
Half Life	6.9 H 3.0x10 ³ Y 13.6 Y 10 ¹⁵ Y	2.69 s 1.29 M 19.0 M 10 ¹⁵ Y	6.26 M 2.0x10 ⁴ Y 10 ¹⁵ Y	24.4 s 10.3 M 64.0 D 87.0 H 35.0 D 10 ¹⁵ Y	61.0 D 20.0 H 10 ^{1 5} Y	4.0 s 2.3 M 10 ¹⁵ Y
ID	217 218 219 220	221 222 223 223 224	25 25 27 26	228 229 231 231 233	mmm	237 238 239
Chain	54 54 54 54	ດ ດ ດ ດ ດ ດ ດ ດ		55 57 57 57 57 57		0 0 0 0 0 0
Isotope	Mo-93M Mo-93 Nb-93M Nb-93	Rb-94 Sr-94 Y-94 Zr-94	Nb-94M Nb-94 Mo-94	Sr-95 Y-95 Zr-95 Nb-95 Mb-95 Mo-95	Tc-95M Tc-95 Mo-95	Sr-96* Y-96 Zr-96

1	ļ						1.0 Tc1.0 RL
	Decay Chain	Nb0 Mo	2r.94 Nb ^M Nb ^M Nb ^{1.0} Mb	Tc ^M I.0 TcI.0 Mo	$\frac{1.0}{1.0} \operatorname{Zr}_{1.0}^{1.0} \operatorname{Nb}_{0.0}^{1.0} \operatorname{Nb}_{1.0}^{1.0} \operatorname{Mo}_{1.0}^{1.0}$	Tc <mark>1.0</mark> * Ru	$\frac{.70}{Y_{1.0}^{1.0} Zr_{.30}^{1.0} Nb_{0.0}^{M} Nb_{1.0}^{M} Nb_{1.0}^{M} Y_{1.0}^{M} Tc_{1}^{M}}$
	BF (3)	0.0	0.0000	0.0	0.0000	0.0	000000000
	BF (2)	0.0	0°0 0°0 0°0	0.00	0.0	0.0	0.00 0.00 0.00 0.00 0.00
	BF (1)	1.0	1.0 494 1.0 1.0	1.0 1.0	1.0 1.0 1.0	1.0	1.0 1.0 1.0 1.0 1.0 1.0
	Half Life	23.4 Н 10 ^{1 5} У	3.7 8 16.9 H 1.0 M 72.0 M 10 ¹⁵ Y	90.0 D 2.6x10 ⁶ Y 10 ¹⁵ Y	2.0 8 31.0 8 51.0 M 2.9 8 10 ¹⁵ Y	4.2x10 Y 10 ¹⁵ Y	1.4 8 2.1 8 2.6 M 15.0 8 66.02 H 6.02 H 2.14x10 ⁵ Y 10 ¹⁵ Y
	ID	240 241	244 244 244 244 244 244 244 244 244 244	247 248 249	251 251 253 253 253	255 256	257 258 259 260 263 263 263
	Chain	60 60	61 61 61	62 62 62	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	64 64	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Isotope	Nb-96 Mo-96	Y-97 Zr-97 Nb-97M Nb-97 Mo-97	TC-97M TC-97 MO-97	Y-98 Zr-98 Nb-98M Nb-98 Mo-98	Тс-98 Ru-98	Y-99 Zr-99 Nb-99 Mo-99 Tc-99 Tc-99 Ru-99 Ru-99
			7		Tc _{1.0} Ru		
-------------	--	------------------------	---	---	--	--	
			0 ³ ^{Tc} 1.0 Ru		7 TC ^M 0.0		
Decay Chain	^{Zr} I.ở ^{Nb} I.ở Mo	Tc _{1.0} , Ru	^Z r _{1.0} ^{Nb} _{1.0} ^{Mo} _{1.0}	Rh ^M .10 ⁷ Rh _{1.0} ⁹⁰ Ru	^{Zr} 1.0 ^{Nb} 1.0 ^{Mo} 1.($Rh^{M} \xrightarrow{1.0} Rh_{1.0} Rh$	
BF(3)	0.0	0.0	00000	0.0	000000	0.0	
BF (2)	0.0	0.0	00000	06.0 0.0	0.00.00.00.00	1.0 0.0 0.0	
BF(1)	1.0 1.0	1.0	0000. 1.000. 1.000.	.10 1.0 1.0	1.00 1.00 1.00 1.00	0.0 1.0 1.0	
Half Life	7.1 s 3.1 s 10 ^{1 s} Y	16.0 s $10^{15} y$	2.0 s 7.0 s 14.6 s 14.3 M 10 ¹⁵ Y	4.34 D 3.3 Y 10 ¹⁵ Y	2.9 s 4.3 s 4.4 M 5.3 s 10 ¹⁵ Y	206 D 2,9 Y 10 ¹⁵ Y	
QI	265 266 267	268 269	270 271 272 273 273	275 276 277	278 279 281 281 282 283	284 285 286	
Chain	66 66	67 67	8 8 8 8 8 9 8 8 8 9 8 8 8 8	69 69	70 70 70 70	71 71 71	
Isotope	Zr-100 Nb-100 Mo-100	Tc-100 Ru-100	Zr-101 Nb-101 Mo-101 Tc-101 Ru-101	Rh-101M Rh-101 Ru-101	Zr-102 Nb-102 Mo-102 Tc-102 Ru-102 Ru-102	Rh-102M Rh-102 Ru-102	

, ,	Rh R			Pd Pd NI. 0
Decay Chain	.01 Nb _{1.0} ^{Mo1.0} ^{Tc} 1.0 ^{Ru} .99 ^{Rh} ^M 1.0 ¹	Pd_99 Rh ^M Rh	Nb <u>1.0</u> ^{MO} 1.0 ^T Tc <u>1.0</u> ^{RU} .0018 Rh ^M .9982 ^{Rh} 1.0 ^P Pd	.73 Nb1.0 Mo1.0 Tc1.0 Ru.2 Rh ^M 1.0
BF (3)	0.00000	0.0		
BF (2)	0.0	.01 0.0 0.0	.0018	.73
BF(1)	1.0 1.0 1.0 1.0 1.0	.99 1.0 1.0	1.0 1.0 9982 1.0	1.0 1.0 1.0 1.0 1.0 1.0
Half Life BF(1)	1.5 8 60.0 8 50.0 8 39.4 D 56.1 M 10 ¹⁵ Y	17.5 D 56.1 M 10 ¹⁵ Y	4.34 M 1.0 M 10 ¹⁵ Y 4.34 M 42.3 B 10 ¹⁵ Y	2.0 8 36.0 8 7.6 M 4.44 H 45.0 8 35.4 H 10 ¹⁵ Y
61	287 288 289 290 291	95 95 95	297 298 299 300 301	304 305 306 306 308 308
Chain	72 72 72 72 72	73 73 78	277 777 770 770	76 76 76 76 76
Isotope	Nb-103 Mo-103 Tc-103 Ru-103 Rh-103 Rh-103 Rh-103	Pd-103 Rh-103M Rh-103	nu-104 TC-104 Ru-104 Rh-104 Rh-104 Pd-104 Pd-104	Nb-105 Mo-105 Tc-105 Ru-105 Rh-105 Rh-105 Pd-105

	103
Decay Chain $Ag^{M}_{0.077}$ $Ag^{1.07}_{0.077}$ $Bd^{0.07}_{0.07}$ $Bd^{0.07}_{0.077}$ $Bd^{0.07}_{0.077}$ $Cd^{1.07}_{0.077}$ $Bd^{0.07}_{0.077}$ $Cd^{1.07}_{0.077}$ $Bd^{0.07}_{0.077}$ $Cd^{1.07}_{0.07}$ $Bd^{0.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Bd^{0.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Bd^{0.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Bd^{0.07}_{0.07}$ $Ag^{1.07}_{0.07}$ $Bd^{0.07}_{0.07}$ $Ag^{0.07}_{0.07}$ $Ag^{0.07}_{0$	
BF(3) Deca	
BF(2) B .923 .977 .977 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
BF(1) .077 .023 .023 .023 .023 .023 .023 .023 .023	
Half Life 127 Y 127 Y 10,15Y 10,15Y 10,15Y 10,15Y 4.69 M 13.43 H 39.0 8 39.8 8 10,15Y 10,15Y 10,5Y 10,5Y 10,5Y 10,5Y 10,5Y 10,5Y	
ID 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D	
Chain 881 84 84 84 84 84 83 82 82 82 82 82 82 82 82 82 82 82 82 82	
Isotope Ag-108M Ag-108 Pd-108 Pd-108 Rh-109 Rh-109 Rh-109 Ag-109 Ag-109 Ag-109 Ag-109 Rh-110 Rh-110 Rh-110 Rh-110 Rh-110	

	986.		.014 0.986 .997 0.003	0.014 0.997	252 D 24.4 s	352 353	82 85 85	Ag-110M Ag-110
	Decay Chain	BF (3)	BF (2)	BF (1)	Half Life BF(1) BF(2) BF(3)	ID	Chain	Isotope Chain ID
•								

A <u>9-97</u> Cd _{0.0} Pd		
Ag AIN. MgA	Ru <u>1.0</u> Rh-	Rh _{1.0} Pd _{1.0} Ag _{1.0} Cd
0.0	.003	Pd1.0
0.986 0.003 0.0	.9957 .217 .007 0.0 1.0	Rh1.0
0.014 0.997 0.0 0.0	1.0 .0043 .713 .993 .993 .00 0.0	1.0 1.0 0.0
252 D 24.4 8 10 ¹⁵ Y 10 ¹⁵ Y	1.5 8 11.0 8 5.5 h 22 M 7.45 D 48.6 M 10 ¹⁵ Y	4.6 B 21.1 H 3.14 H 10 ¹⁵ Y
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	356 359 360 362 363 363	364 365 365 366 367
8 8 8 8 8 9 9 9	0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8	87 87 87 87
Ag-110M Ag-110 Cd-110 Fd-110	Ru-111 Rh-111 Pd-111M Ag-111M Ag-111 Cd-111M Cd-111	Rh-112 Pd-112 Ag-112 Cd-112

ł	.037, 		
	.915 .915 .73 cd ^M cd <u>1.0</u> .73 .00 In <u>1.0</u> Sn	Ag <u>1.0</u> Cd	S.
Decay Chain	.73 Pd <u>.27</u> Ag ^M Ag.	Pd.50 Ag ^M .02 Ag	In ^M 1.0 0.0 In 1.0
BF (3)	.73		
BF (2)	.73 .27 .915 .00009 .037	0.50 0.98	1.0
BF (1)	.27 0.0 0.0 1.0 1.0 0.0	0.50 0.02 1.0 0.0	0.0
Half Life BF(1)	$\begin{array}{c} 37 & \text{s} \\ 18 & \text{s} \\ 20 & \text{M} \\ 44.8 & \text{D} \\ 53.4 & \text{H} \\ 5.1 \times 10^{14} & \text{Y} \\ 10^{15} & \text{Y} \end{array}$	14 8 105 8 2.68 M 10 ¹⁵ y	54.1 M 14.1 s 10 ¹⁵ y
DI	387 388 390 391 392 393 394	395 396 398	399 400 401
Chain	92 92 92 92 92 92 92	6 6 6 6 6 7 6 6	94 94 94
Isotope Chain	Pd-115 Ag-115M Ag-115M Cd-115M In-115M Sn-115 Sn-115	Pd-116 Ag-116M Ag-116 Cd-116 Cd-116	In-116M In-116 Sn-116

	80 Cd.93 In ^M .47 0.0 Cd.93 In ^M .47 80 .44 0.0 Sn ^M Sn	.0 Cd0.0 In ^M In <u>1.0</u> Sn	•
Decay Chain	Ag ^M 0.0 Ag 20 Cd ^M 0.80	.5 Pd.5 Ag ^M AgT	$s_{b}^{M} \xrightarrow{1.0}_{0.0} s_{b_{1.0}} s_{n}$
BF (3)	00000 0000 0000 0000	000000000000000000000000000000000000000	0.0
BF (2)	0.5 0.6 0.0 0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0 0.0	1.0 0.0 0.0
BF (1)	0.0 0.20 0.93 0.47 0.0	0.5 0.0 0.0 0.0 0.0	0.0 1.0 0.0
Half Life	5.3 8 1.21 M 3.4 H 2.4 H 1.93 H 42 M 12 D 10 ^{1 S} Y	2.8 2.8 2.8 2.6 2.6 3 7.6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.0 Н 3.5 М 10 ^{1 s} у
QI	4005 4005 4005 4005 4005 4009 4009	410 412 413 414 415 415	417 418 419
Chain	9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97 79 79
Isotope	Ag-117M Ag-117 Cd-117M Cd-117 In-117M In-117M Sn-117M Sn-117	Pd-118 Ag-118M Ag-118 Cd-118 In-118M In-118M In-118 Sn-118	Sb-118M Sb-118 Sn-118

Isotope	Chain	đ	Half Life	BF(1)	BF (2)	BF (3)	Decay Chain
Ag-119 Cd-119M Cd-119 In-119M In-119 Sn-119M Sn-119	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	420 421 423 425 425 425 425	2.1 8 1.9 M 2.7 M 18.0 M 2.1 M 250 D 10 ^{1 5} Y	0.5 0.0 1.0 1.0 1.0 05 0.0	0.5 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	$Ag_{.50} Cd^{M} \frac{150}{0.0} Cd_{1.0} In^{M} \frac{1}{105} In_{.05} In_{.05} Sn^{M} \frac{1}{1.0} $
Sb-119 Sn-119 Ag-120 Cd-120 In-120 In-120 Sn-120	66 0011 00011 00011 00011	427 428 4331 4331 4331 4331	38,1 H 10 ¹⁵ Y 1,2 8 50,8 8 3.0 8 44.0 8 10 ¹⁵ Y	0.0 0.0 0.50 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0 \end{array}$	0.0000000000000000000000000000000000000	Sb_1.0 > Sn Ag_1.0 > Cd_50 > In ^M 0.0 > In 1.0 > Sn
Sb-120M Sb-120 Sn-120	101 101 101	434 435 436	5.76 D 16.0 M 10 ¹⁵ Y	0.0	1.0 0.0	0.0	Sb ^M 0.0 * Sb 1.0 * Sn
Ag-121 Cd-121 In-121M In-121M Sn-121M Sn-121M Sn-121 Sb-121	102 102 102 102 102 102	4437 4439 4440 4442 4433	3.0 s 12.8 s 3.8 M 3.8 M 3.6 M 30. s 27.1 H 10 ¹ s	1.0 0.18 0.0 0.0 0.0 0.0	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.000.000.00.000.000.000.000.000.000.000.000.000.000.000.000.000.000.0000	0.0000000000000000000000000000000000000	$Ag_{1.0}^{-1.0} Cd.18^{-1.0} In_{0.0}^{-1.0} In_{0.0}^{-1.0} Sn_{0.0}^{-1.0} Sn_{1.0}^{-1.0} Sb_{1.0}^{-1.0} Sb_{1.0}^{-1.0}$
							108

		sn		Sb	
Decay Chain	Te^{M} $\overrightarrow{.90}$ Te 1.0 Sb	Ag-1.0 ³ Cd-0.0 ³ In ^M -0.0 ³ In-1.0 ³	Sb ^M 1.0 Sb.03 Sn.0.0 Te	$In^{M} \xrightarrow{.5} .5 Sn^{M} \xrightarrow{.5} Sn^{M} \xrightarrow{.0.0} Sn^{1.0}$	Te ^M 1.0 ^{>} Te1.0 ^{>} Sb
BF (3)	0.0	00000	0.00	0.0000	0.0
BF (2)	0.10	0.0	0.0 .97 0.0	0.5 0.5 0.0	0.0
BF(1)	0.9 1.0 0.0	1.0 0.0 0.0	1.0 .03 0.0	0.000.55	1.0 1.0 0.0
Half Life	154 D 16.8 D 10 ¹⁵ Y	1.5 5.6 1.5 8 10 1.5 8 1 5 4	4.2 M 2.68 D 10 ¹⁵ Y 10 ¹⁵ Y	48 8 6.0 8 40.1 M 129 D 10 ¹⁵ Y	119.7 D 1.20x10 Y 10 ¹⁵ Y
QI	444 445 446	447 448 450 451	455 455 455 55 45 55 45 55 45 55 45 55 45 55 5	456 457 458 459 460	461 462 463
Chain	103 103 103	104 104 104 104	105 105 105	106 106 106 106 106	107 107 107
Isotope	Te-121M Te-121 Sb-121	Ag-122 Cd-122 In-122M In-122 Sn-122 Sn-122	Sb-122M Sb-122 Sn-122 Te-122	In-123M In-123 Sn-123M Sn-123 Sb-123	Te-123M Te-123 Sb-123

Isot	sotope C	Chain	8	Half Life	BF (1)	BF(2)	BF (3)	Decay Chain
	In-127M In-127 Sn-127 Sn-127 Sb-127 Sb-127 Te-127 Te-127 I-127 I-127	114 1114 1114 1114 1114 1114 1114	486 487 488 490 491 492 493	1.3 S 3.7 S 4.1 M 2.1 H 2.1 H 3.9 D 9.4 H 9.4 H $10^{15} Y$	0.0 0.0 1.0 174 .976 0.0	0.0 1.0 0.0 0.0 0.0 024 0.0	10000000	$In^{M} \underbrace{1.0}_{0.0} \underbrace{1.0}_{1.0} \underbrace{Sn^{M}}_{0.0} \underbrace{Sn^{M}}_{0.0} \underbrace{Sn^{1}}_{0.0} \underbrace{Sn^{1}}_{$
I - 1 SSD	127M 127 27 128 128 128M 128	1115 1115 1115 1116 1116 1116 1116	494 495 496 499 500 500	69 s 36.41 D 10 ¹⁵ Y 59.3 M 9.1 H 10.0 M 9.1 H 10 ¹⁵ Y	1.0 1.0 0.0 1.0 .998 0.0 0.0	0.0 0.0 0.0 1.0 0.0	0.00 00000	$xe^{M} \xrightarrow{1.0} xe_{1.0} I$ $xe^{1.0} \xrightarrow{500} 5b^{M} \xrightarrow{0.0} 5b_{1.0} Te$
I-1) Te-1 Xe-1	28 128 128	117 117 117	502 503 504	24.99 M 1.5x10 ^{2 4} Y 10 ¹⁵ Y	.063 1.0 0.0	.937 0.0 0.0	0.0	1.0 1.053 Te 1.0 Xe

-	0.0		Xe	Xe ^M Xe ^M Xe
	Te ^M	- - -	$\overrightarrow{0}^{1} \overrightarrow{1}^{M} \overrightarrow{1}^{1} \overrightarrow{0}^{1} \overrightarrow{1}^{1} \overrightarrow{1}^{1} \overrightarrow{0}^{1} \overrightarrow{1}^{1} \overrightarrow$.0 10.0 Cs1.0
Decay Chain	Sn ^M 0.0 Sn1.0 Sb.166	Cs- <u>r</u> A Xe	$\begin{array}{c} \begin{array}{c} 0.10\\ \\ 0.10\\ \\ Sn_{\overline{90}} & Sb_{\overline{0.0}} & Sb_{\overline{1.0}} & Te_{\overline{0.0}} \\ \end{array}$	sn1.0 ³ Sb.07 ³ Te ^M .18 ³ Te ₁ .
BF(3)	000000000000000000000000000000000000000	0.0	0.0000000000000000000000000000000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0
BF (2)	1.0 .834 .364 0.0 0.0 0.0	0.0	0.10 1.0 0.0 0.0 0.15 0.15	0.0 .93 .82 0.0 0.0 0.0
BF(1)	0.0 110 1166 100 100 0.0	$1.0 \\ 0.0$	0.90 0.0 1.0 0.0 0.85 0.0	$\begin{array}{c}1.0\\.07\\.18\\1.0\\0.0\\1.0\\1.0\\1.0\\0.0\end{array}$
Half Life	7.5 M 2.2 M 4.4 H 33.5 D 69 . 1.6 $\times 10^7 \text{y}$ 10 ¹⁵ y	32.3 Н 10 ¹⁵ У	3.7 M 6.5 M 40.0 M 2.0x10 ²¹ Y 9.2 M 10 ¹⁵ Y	63 s 23.03 M 30 H 25.0 M 8.04 D 9.688 D 11.77 D 11 ^{.77} D
8	505 506 508 508 510 512 512	513 514	515 516 517 518 519 520	522 525 525 525 522 522 522 522 522 522
Chain	118 118 118 118 118 118 118 118 118		120 120 120 120 120	121 121 121 121 121 121 121 121
Isotope	Sn-129M Sn-129 Sb-129 Te-129M Te-129 I-129 Xe-129M Xe-129 Xe-129	Cs-129 Xe-129	Sn-130 Sb-130M Sb-130 Te-130 I+130M I-130M I-130	Sn-131 Sb-131 Te-131M Te-131 I-131 Cs-131 Cs-131 Xe-131M Xe-131

	1.0 7 1 ^M 86 1.0 Xe .14		0 I.028 Xe ^M I.0 Xe 972	
Decay Chain	$S_{n} = \frac{50}{50} S_{n} = \frac{50}{0.0} S_{n} = \frac{10}{1.0} T_{e} = \frac{10}{0.0}$.022 Cs <mark>.978</mark> Xe 0.0 Ba	.58 1.0 Sb. $\frac{1}{4^2}$ Te $\frac{M}{0.13}$ Te $\frac{1}{0.0}$ I $\frac{M}{1}$.	Ba ^M 1.0→ Ba 1.0→ Cs
BF (3)	0000000	0.0	000000 0000000000000000000000000000000	0.0
BF (2)	0.5 0.0 1.0 0.0 0.0	.022 0.0 0.0	.58 0.0 0.0 0.0 0.0 0.0	0.0
BF(1)	0.5 0.0 0.0 0.0 1.0 1.0 0.0	.978 0.0 0.0	.42 .13 0.0 1.0 1.0 1.0 0.0	1.0 1.0 0.0
Half Life BF(1)	40 s 2.8 M 4.2 M 78 H 83 M 2.28 H 10 ^{1 s} Y	6.47 D 10 ¹⁵ Y 10 ¹⁵ Y	2.7 M 55.4 M 9.0 s 20.9 H 5.23 D 5.23 D 10 ¹⁵ Y	38.9 H 10.4 Y 10 ^{1 5} Y
ID	530 532 533 534 535 536	537 538 539	040 0444 0444 0444 0446 0446 0446 0446	548 549 550
Chain	$122 \\ 122 $	123 123 123	124 124 124 124 124	125 125 125
Isotope	Sn-132 Sb-132 Sb-132 Te-132 I-132 I-132 I-132 Xe-132	Cs-132 Xe-132 Ba-132	Sb-133 Te-133M Te-133M I-133M I-133 Xe-133 Cs-133 Cs-133	Ba-133M Ba-133 Cs-133

	Decay Chain	$Sb_{1.0}^{1.0} Te_{0.0}^{1.0} I^{M} \underbrace{\overset{1.0}{.98}}_{.02}^{1.0} Xe_{0.0}^{1.0} Cs^{M}_{.99}^{01} Cs_{1.0}^{01} Ba$	Te _{1.0} I 147 Xe ^M Xe ^M Xe ^M 1.0 Xe _{1.0} Cs ^M 1.0 Xe _{1.0} Ba ^M 1.0 Ba	La 1.0 1.0 $Te_{0.0} I_{M_{0.0}}^{M_{0.0}} I_{1.0}^{M_{0.0}} Xe_{0.0}^{M_{0.0}} Cs_{1.0}^{M_{0.0}} Ba$
	BF(3)	000000000	0.0000000000000000000000000000000000000	00 000000000000000000000000000000000000
	BF (2)	0.0 0.0 0.0 0.0 0.0 0.0	0.0 853 0.0 0.0 0.0 0.0	0.0000000
	BF(1)	0.1 0.0 0.0 0.0 0.0 0.0 0.0	1.0 1.47 1.0 1.0 1.0 1.0 0.0	
	Half Life	10.4 s 42 M 3.5 M 52.6 M 10 ¹⁵ Y 2.090 H 2.062 Y 10 ¹⁵ Y	19.2 s 6.61 M 15.6 M 9.10 H 53 M 3X10 ⁶ Y 28.7 H 10 ¹⁵ Y	19,4 10 ¹⁵ Y 17.5 s 46 s 83 s 83 s 10 ¹⁵ Y 13,1 D 10 ¹⁵ Y
	QI	5555 5555 5555 5555 5555 5555 5555 5555 5555	559 561 563 565 565 565	567 568 569 572 572 573 573
4	Chain	126 126 126 126 126 126 126 126 126	127 127 127 127 127 127 127	128 128 129 129 129 129 129
Chata	Isotope	Sb-134 Te-134 I-134M I-134 Xe-134 Cs-134 Cs-134 Ba-134	Te-135 I-135 Xe-135 Xe-135 Cs-135 Cs-135 Cs-135 Ba~135 Ba~135	Lar135 Bar135 Ter136 Ir136 Xer136 Xer136 Csr136 Csr136 Bar136 Bar136

the second second second

	3) Decay Chain	$\begin{array}{c c} Te_{1,0} & I_{1,0} \\ \hline & & & \\ Ce^{M} & & \\ Ce^{M} & & \\ Ce_{1,0} & I_{1,0} \\ \end{array} \end{array}$	$La \xrightarrow{0} ce \xrightarrow{0} Ba$ $I \xrightarrow{0} xe \xrightarrow{0} Cs \xrightarrow{0} Ba \xrightarrow{0} La$
	BF(3)		0.0000000000000000000000000000000000000
	BF'(2)	000000000000000000000000000000000000000	
BF (1)		1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00000
Half Life		24.5 s 3.82 M 30.17 Y 2.5551 M 10 ¹⁵ Y 10 ¹⁵ Y 10 ¹⁵ Y 10 ¹⁵ Y 1.4 s 6.5 s 14.1 M 22.9 M 32.29 M 32.29 M 32.29 M 10 ¹⁵ Y 10 ¹⁵ Y	V N N N N N N N N N N N N N N N N N N N
DI		576 577 577 587 581 582 583 583 583 583 583 583 591 592 592 592	94 96 99 99 99 8 99
Chain		130 130 130 130 131 132 132 132 132 132 132 132 132 132	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Isotope	-12 -12	Le-137 T-137 Xe-137 Cs-137 Ba-137 Ce-137 Ce-137 Ce-137 La-137 Te-138 Te-138 Te-138 Cs-138 Ba-138 Cs-138 Ba-138 Cs-138 Ba-138 Cs-138 Ba-138	

.5

		116
Decay Chain	$\begin{array}{c} 1.0 \\ 0.0^{\circ} \ Ce^{M} 1.0^{\circ} \ Ce^{-1.0^{\circ}} \ La} \\ 0.0^{\circ} \ Ce^{M} 1.0^{\circ} \ Ce^{-1.0^{\circ}} \ Ba_{1.0^{\circ}} \ Ba_{1.0^{\circ}} \ Ba_{1.0^{\circ}} \ Ba_{1.0^{\circ}} \ Ce^{-0.0^{\circ}} \ Nd^{M} 1.0^{\circ} \ Nd^{-1.0^{\circ}} \ Pr \\ 1.0^{\circ} \ Cs_{1.0^{\circ}} \ Ba_{1.0^{\circ}} \ Ba_{1.0^{\circ}} \ La_{1.0^{\circ}} \ Ce^{-0.0^{\circ}} \ Nd^{M} 1.0^{\circ} \ Nd^{-1.0^{\circ}} \ Pr \\ 1.0^{\circ} \ Cs_{-1.0^{\circ}} \ Ba_{-1.0^{\circ}} \ Ba_{-1.0^{\circ}} \ La_{-1.0^{\circ}} \ Ce^{-0.0^{\circ}} \ Nd^{-0.0^{\circ}} \ Nd^{-0.0^{\circ}} \ Nd^{-0.0^{\circ}} \ Pr \\ 1.0^{\circ} \ Cs_{-1.0^{\circ}} \ Ba_{-1.0^{\circ}} \ Ba_{-1.0^{\circ}} \ Ce^{-0.0^{\circ}} \ Nd^{-0.0^{\circ}} \ Nd^{-0.0^{\circ}} \ Nd^{-0.0^{\circ}} \ Pr \\ 1.0^{\circ} \ Cs_{-1.0^{\circ}} \ Ba_{-1.0^{\circ}} \ Ba_{-1.0^{\circ}} \ Ce^{-0.0^{\circ}} \ Nd^{-0.0^{\circ}} \ Nd^{-0.0^{\circ}} \ Ce^{-0.0^{\circ}} \ Nd^{-0.0^{\circ}} \ Dd^{-0.0^{\circ}} \$	
BF (3)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
BF (2)		
BF(1)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Half Life	4.4 H 56.5 137.2 D $10^{1.5}Y$ 14.5 65.5 $10^{1.5}Y$ $10^{1.5}Y$ $10^{1.5}Y$ $10^{1.5}Y$ $10^{1.5}Y$ $10^{1.5}Y$ $10^{1.5}Y$ $10^{1.5}Y$ $10^{1.5}Y$	
B	600 601 603 603 603 603 603 613 613 613 613 613 613 613 613 613 61	
Chain	135 135 135 135 135 136 136 136 136 137 137 137 137 137 137 137 137 137 137	
Isotope	Pr-139 Ce-139M Ce-139M Ce-139 La-139 Cs-140 Cs-140 Pr-140 Ce-141 Ce-141 Pr-141 Pr-141 Pr-141 Pr-142 Cs-142 Cs-142 Cs-142 Cs-142 Cs-142 Cs-142 Cs-142 Cs-142 Cs-142	

			15 Pr .0005	D Z	
Decay Chain	1.0> Pr 1.0> Nd	.0 Ba <u>1.0 La1.0 Ce1.0 Pr1.0</u> Nd	.0 ⁵ Cs _{1.0} ⁸ Ba _{1.0} ¹ La _{1.0} ⁶ Ce.005 Pr ^M .995	0→ Nd	.0 ^{La} 1.0 ^{Ce} 1.0 ^{Pr} 1.0 Nd
	PrW	Cs.	Xe <u>1</u>	Pm	Ba_]
BF (3)	0.0		000000000000000000000000000000000000000	0.0	0.00
BF (2)	0.0	0.00000	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0
BF(1)	1.0 1.0 0.0	1.0 1.0 0.0	1.0 1.0 1.0 1.0 .005 .9995 1.0 0.0	0.0	0.0
Half Life	14.6 M 19.2 H 10 ¹⁵ Y	1.78 s 13.5 s 14.0 M 33.0 H 13.58 D 10 ¹⁵ Y	1.2 s 1.0 s 11.9 s 40.0 s 284 d 7.2 M 17.3 M 10 ^{1 s} Y	349 D 10 ¹⁵ Y 5 S 30 S	5.98 Н 10 ¹⁵ У
ß	623 624 625	626 627 628 629 630 631	632 633 634 635 635 633 633 633 633 633 633 633 633	641 641 642 643 643	777
Chain	139 139 139	140 140 140 140 140 140	141 141 141 141 141 141 141 141	142 142 143 143	143
Isotope	Pr-142M Pr-142 Nd-142	CS-143 Ba-143 La-143 Ce-143 Pr-143 Nd-143	Xe-144 Cs-144 Ba-144 La-144 La-144 Ce-144 Pr-144M Pr-144 Nd-144	Pm~144 Nd-144 Ba-145 La-145 Ce-145	44

Decay Chain	Pm_1.0 > Nd Ba_1.0 > La_1.0 > Ce_1.0 > Pr_1.0 > Nd	$Pm \xrightarrow{65} Sm \xrightarrow{0.0} Nd$	$Ce_{1.0} > Pr_{1.0} > Nd_{1.0} > Pm_{1.0} > Sm$ $La_{1.0} > Ce_{1.0} > Pr_{1.0} > Nd$	Pm ^M .046 Pm Sm
BF (3)	00 00000			0.0
BF(2)	00 00000	.65 0.0 0.0 0.0		.954 0.0 0.0
BF (1)		.35 0.0 1.0		.046 1.0 1.0
Half Life	$17.7 Y 10^{15} Y$ $10^{15} Y$ 1.7 S 14 M 24.0 M $10^{15} Y$	90 10 90	$\begin{array}{c} 11.0 \\ 2.6234 \\ 1.06\times10^{11} \\ 1.3 \\ 48 \\ 2.3 \\ 10^{15} \\ \end{array}$	41.3 D 5,37 D 8x10 ¹⁵ Y
ID	647 648 650 651 653 653	ഗവ വവ	6659 6661 6662 6663 6663	666 667 668
Chain	144 144 1455 1455 1455 1455	444 44	147 147 148 148 148	149 149 149
Isotope	Pm-145 Nd-145 Ba-146 La-146 Ce-146 Pr-146 Nd-146		Nd-147 Pm-147 Sm-147 Sm-147 La-148 Ce-148 Pr-148 Nd-148	Pm-148M Pm-148 Sm-148

	_					119
Decay Chain	$Ce_{1.0} \rightarrow Pr_{1.0} \rightarrow Nd_{1.0} \rightarrow Pm_{1.0} \rightarrow Sm$	Eu— <u>1.0</u> ≯ Sm	Ce Pr Nd	1.0 Sm	$\frac{1}{1.0}$ $Pr_{1.0}$ $Nd_{1.0}$ $Pm_{1.0}$ $Sm_{1.0}$ Eu	1.0 0.0 Pm ^M 0.0 Pm_1.0
BF (3)	00000	0.0 E	C 0.0 0.0	0.0 0.0 Pm-	0.0 0.0 0.0 0.0 Cel	0.0 0.0 0.0
BF(2)	0.0	0.0	0.0	0.0	0.00000	1.0 0.0 0.0
BF(1)	1.0 0.0 0.0	1.00.0	1.0 1.0 0.0	1.0	1.0 1.0 1.0 1.0 1.0 10 ¹⁵ Y	0.0 1.0 0.0
Half Life	5.0 s 2.3 M 1.73 M 53.1 H 10 ¹⁵ Y	93.1 D 10 ¹⁵ Y	4 s 6.2 s 10 ¹⁵ Y	2.68 Н 10 ¹⁵ У	1.0 s 4 s 12.4 M 28.4 H 90 Y 10 ^{1 s} Y	11.4 M 18 M 4.1 M 10 ¹⁵ Y
QI	669 670 671 672 673	674 675	676 677 578	679 680	681 682 683 684 685 685	687 688 690 690
Chain	150 150 150 150	151	152 152 152	153 153	154 154 154 154 154 154	155 155 155 155
Isotope	Ce-149 Pr-149 Nd-149 Pm-149 Sm-149 Sm-149	Eu-149 Sm-149	Ce-150 Pr-150 Nd-150	Pm-150 Sm-150	Ce-151 Pr-151 Nd-151 Pm-151 Sm-151 Eu-151	Nd-152 Pm-152M Pm-152 Sm-152

Decay Chain	Eu <mark>_1.0</mark> ≯ Gd	Gđ	Eu <u>1.0</u> → Gd	.50	Eu <u>1.0</u> Gd	Gđ	Gđ
Десау	Sm <u>1,0</u> ≯	Tb_1.0 G	Sm- <u>1,0</u>	Tb ^M .50	Sm <u>1.0</u> →	$T^{\mathrm{D}} \xrightarrow{1.0}$	Eu <u>1.0</u> (
BF(3)	0.0	0.0	0.00	0.00	0.0	0.0	0.0
BF(2)	0.0	0.0	0.0	• 50 0 • 0	0.0	0.0	0.0
BF(1)	1.0 1.0 0.0	1.0	1.0 1.0 0.0	.50 1.0 0.0	1.0 1.0 0.0	1.0 0.0	1.0 0.0
Half Life	22.4 M 4.9 Y 10 ^{1 5} Y	5.3 D 10 ¹⁵ Y	9.4 Н 15 d 10 ¹⁵ Y	5.0 H 5.3 D 10 ¹⁵ Y	8.0 M 15.13 H 10 ¹⁵ Y	150 Y 10 ¹⁵ Y	45.9 M 10 ¹⁵ Y
ID	708 709 710	711 712	713 714 715	716 717 718	719 720 721	722 723	724 725
Chain	161 161 161	162 162	163 163 163	164 164 164	165 165 165	166 166	167 167
Isotope	Sm-155 Eu-155 Gd-155	Tb-155 Gd-155	Sm-156 Eu-156 Gd-156	Tb-156M Tb-156 Gd-156	Sm-157 Eu-157 Gd-157	Tb-157 Gd-157	Eu-158 Gd-158

								122
Decay Chain	$Tb^{M} \xrightarrow{1.0} Tb \xrightarrow{.84} Gd \xrightarrow{0.0} Dy$	Eu <u>1.0</u> Gd <u>1.0</u> Tb	DY- <u>1.0</u> → Tb	Eu <u>1.0</u> , Gd	Tb_1.0 > DY	Gd <u>1.0</u> Tb <u>1.0</u> Dy	Ho ^M 1.0 Ho 1.0 DY	
BF (3)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
BF (2)	0.0 .16 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
BF(1)	1.0 .84 0.0	1.0 1.0 0.0	1.0 0.0	1.0 0.0	1.0 0.0	1.0 1.0 0.0	1.0 1.0 0.0	
Half Life	10.5 s 150 Y 10 ^{1 5} Y	18.1 M 18.6 H 10 ¹⁵ Y	144.4D $10^{15}y$	$48 \text{ s} 10^{15} \text{ y}$	72.1 D 10 ¹⁵ Y	3.7 M 6.9 D 10 ¹⁵ Y	6.7 s 2.48 H 10 ^{1 5} Y	
DI	726 727 728 729	730 731 732	733 734	735 736	737 738	739 740 741	742 743 744	
Chain	168 168 168 168	169 169	170 170	171 171	172 172	173 173 173	174 174 174	
Isotope	Tb-158M Tb-158 Gd-158 DY-158	Eu-159 Gd-159 TD-159	DY-159 Tb-159	Eu-160 Gd-160	Tb-160 Dy-160	Gd-161 Tb-161 Dy-161	Но-161М Но-161 DY-161	

	1						123
Decay Chain	.98 Gd .02 Tb ^M Tb Tb 1.0 Dy 1.0 1.0	Ho ^M .63 Ho 1.0 Dy	$Tb \xrightarrow{T} Dy$	Ho ^M 1.0 → Ho 1.0 → Dy	$Tb \xrightarrow{-1.0} Dy$	$H_{0}^{M} \xrightarrow{47} F_{1.0}^{M} \xrightarrow{1.0} H_{0.53} E_{1.0}^{M} D_{Y}$	
BF (3)	0.00	0.0	0.0	0.0	0.0	0.000	
BF (2)	. 98 1.0 0.0	.37 0.0 0.0	0.0	0.0	0.0	0.0 .47 0.0	
BF (1)	.02 0.0 1.0 0.0	.63 1.0 0.0	1.0 0.0	1.0 1.0 0.0	1.00.0	1.0 .53 0.0	
Half Life	9.0 M 2.23 H 7.47 M 10 ¹⁵ Y	68 M 15 M 10 ¹⁵ Y	19.5 M 10 ¹⁵ Y	1.09 s 33 y 10 ¹⁵ y	3.0 M 10 ¹⁵ Y	37 M 29.0 M 10 ¹⁵ Y 10 ¹⁵ Y	
E E	745 746 747 748	749 750 751	752 753	754 755 756	757 758	759 760 761 762	
Chain	175 175 175 175	176 176 176	177 177	178 178 178	179 179	180 180 180	
Isotope	Gd-162 Tb-162M Tb-162 Dy-162	Ho-162 Ho-162 Dy-162	Tb-163 Dy-163	Но-163М Но-163 Dy-163	Tb-164 Dy-164	Ho-164M Ho-164 Er-164 Dy-164	

sotope	Chain	ID	Half Life	BF(1)	BF(2)	BF(3)	Decay Chain
y-165M y-165 0-165	181 181 181 181	763 764 765	1.26 M 2.33 H 10 ¹⁵ Y	.975 1.0 0.0	.025 0.0 0.0	0.0	Dy ^M .025025
Er-165 Ho-165	182 182	766 767	10.4 H 10 ¹⁵ Y	1.0	0.0	0.0	Er 1.0 Ho
y-166 0-166M 0-166 :0-166	183 183 183 183	768 769 770 771	81.5 H 1.2x10 ³ Y 26.8 H 10 ¹⁵ Y	0.0	1.0 1.0 0.0	0.00.0	$DY - 0.0^{2} Ho^{M} - 0.0^{2} Ho^{-1.0} Er$
Tm-166 Er-166	184 184	772 773	7.7 H 10 ¹⁵ Y	1.0	0.0	0.0	Tm-1.0 > Er
Dy-167 Ho-167 Er-167M Er-167	185 185 185 185	774 775 776 777	6.2 M 3.1 H 2.28 s 10 ¹⁵ Y	1.0 0.10 1.0 0.0	0.000.0000.0000000000000000000000000000	0.00	$DY \xrightarrow{1.0} Ho \underbrace{.10} Er^{M} \xrightarrow{1.0} Er$
Tm-167 Er-167M Er-167	186 186 186	778 779 780	9.25 D 2.28 s 10 ¹⁵ Y	.98 1.0 0.0	.02 0.0	0.00	$Tm \xrightarrow{.02} Er^{M} \xrightarrow{.02} Er$

c		mT ≮0	.0 Er	0 Er	d¥ ◆0	Yb
Decay Chain	Ho 0.0 Tm 1.0	Ho <u>1.0</u> > Er <u>1.</u>	Ho ^M Ho T	.002 Tm <u>.998</u> ≯ Yb_0.0	Er- <u>1.0</u> > Tm_ <u>1.</u> (Er
BF (3)	0.00	0.0	0.0	0.0	0.0	0.00
BF (2)	1.0 0.0	0.0	1.0 0.0 0.0	.002 0.0 0.0	0.0	0.0
BF(1)	0.0	1.0 1.0 0.0	0.0 1.0 0.0	.998 0.0 0.0	1.0 1.0 0.0	1.0
Half Life	3.0 M 43.1 D 10 ¹⁵ Y	4.6 M 9.4 D 10 ¹⁵ Y	43 s 2.8 M 10 ¹⁵ Y	128.6 D 10 ¹⁵ Y 10 ¹⁵ Y	7.52 H 1.92 Y 10 ¹⁵ Y	49.5 H 63.6 H 10 ¹⁵ V
DI	781 782 783	784 785 786	787 788 789	790 791 792	793 794 795	796 797
Chain	187 187 187	188 188 188	189 189 180	190 190 190	191 191	192 192
Isotope	Ho-168 Tm-168 Er-168	Ho-169 Er-169 Tm-169	Ho-170M Ho-170 Er-170	Tm-170 Tb-170 Er-170	Er-171 Tm-171 Yb-171	Er-172 Tm-172 Vh-172

APPENDIX B

Fission yield values are given in the following pages. The first column represents the isotope I.D. numbers and the ten numbers in each row are the fission yield values for the following:

U-235T, U-235F, U-235HE, U-238F, U-238HE, Pu-239T, Pu-239F, Pu-241T, U-233T, Th-232F.

VITA

Satyendra Kumar was born in Delhi, India on August 25, 1953. Upon graduation from Model Higher Secondary School, he was admitted to Delhi University in 1970. He received the Bachelor of Science degree in physics in 1974 and Master of Science degree in physics with specialization in electronics in 1976.

He is currently employed by the Department of Physics, Southern University as an Instructor. He is married to Chitra of Allahabad, India.