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ABSTRACT

Natural sources and industrial operations are known to introduce
radioactive materials into the Mississippi River. Public health
implications of these materials have prompted studies from which
limited information on gross activities and specific radionuclide
inventories have been obtained. The current investigation was
undertaken to extend qualitative and quantitative knowledge of
specific radionuclides in river water through the application of
gamma-photon scintillation spectrometry. Raw river-water samples,
collected from the intake pipe at a Jefferson Parish water treatment
plant, were counted as one-liter aliquots in a Marinneli beaker for
12 hours with a 4-inch by 4-inch NaI(Tl) crystal housed in a large
graded-steel shield. Net peak areas from multichannel analyzer data
for gamma energies of interest were obtained by subtraction of 12-hour
background counts.

A novel technique for establishing counting yield as a function
of energy was developed to obtain both energy baseline and quantitative
information from sample gamma spectra. This technique involved
activation of selected target nuclides by Californium-252 neutrons,
with the product radionuclides first being quantitated by point-source
counting, and then dissolved for counting as one-liter samples in the
Marinneli beaker to provide empirical counting-yield data. Only
naturally-occuring radionuclides were detected, with Potassium-40
being the major contributor; up to 90 picocuries per liter of this
radionuclide were observed. Suggested improvements in methodology

vi



include use of large-volume semiconductor detectors and longer

counting times to obtain greater specificity and sensitivity.
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CHAPTER I
INTRODUCTION

Radionuclides encountered in the Mississippi River have
many origins, both natural and technological, with technological
sources introducing synthetic as well as naturally radioactive
materials.! Among the naturally-occurring radionuclides are
uranium, thorium, radium, and their daughters; tritium; carbon-14;
and potassium-40. These enter the river through such processes
as soil runoff and subsurface extraction, through industrial and
agricultural operations resulting in direct plant effluents
(aluminum and phosphate manufacturers), through leaching of
landfills (manufacturing by-products and power plants), and
through drainage runoffs from fields containing phosphate
fertilizer (up to 400 parts per million uranium).? Synthetic
radionuclides include, among others, tritium, iodine-125, iodine-131,
and cesium-137 which enter the river through atmospheric processes
(fallout and washout), technological operations (power plants and
research laboratories), and release from hospitals with nuclear
medicine facilities. The contributive interrelationships of
these various sources are diagrammed in Figure 1. It should be
emphasized that dynamic biological, physical, and chemical
interactions may alter or prevent radiochemical equilibria among

radioactive parent-daughter decay chains.



FIGURE 1
Interrelationships of Various Natural and Technological

Inputs of Radionuclides in the Mississippi River
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Many of these radionuclides have detectable gamma radiations,
some of which are listed Tables 1 and 2. Because certain
daughter products of the Th, U, and Ra decay chains are identical,
care must be exercised in specifying the parent nuclides.

Previous studies of baseline radionuclide content have
been concerned mainly with gross alpha and gross beta activity
measurements.? 3 % 5

Only in certain instances (e.g., when federal limits have
been exceeded® 7 & 9 10 11) have any attempts been made to
identify certain nuclides. For example, when a high gross
alpha count rate is observed, a specific radiochemical analysis
is made to determine the 22°Ra content in the sample. Specific
radiochemical analysis for ®°Sr is performed when a high gross
beta count rate is detected. These two nuclides are of
importance because their chemical properties parallel those
of calcium, making them bone séekers; once lodged in the bone
their high specific energy deposition rates may cause well
defined detrimental effects.!?

When available literature is examined in detail, it
becomes evident that there has been no definitive water-quality
surveillance for radioactivity from which time-dependence or
specific radionuclide concentrations could be determined.
Several of the literature sources reported gross alpha and gross
beta activities only once or twice per year,2 3 % 5 yith wide

variations in reported values. For example, gross alpha data



from sampling stations above New Orleans ranged from less than
detectable (approximately 2 picocuries per liter - pci/l),? to
over 6,000 pCi/1.%? Identification of nuclides other than

228Ra and °°Sr has not been undertaken, although the capability

of detecting other radionuclides exists.3

Several possible
industrial sources of 22®Ra and 23%y upstream from New Orleans
have been inferred from available data,? but as yet no direct
identification has been made. The effects of river level
change have not been studied, although it would seem that
rainfall upstream from New Orleans could leach both man-made
and natural radionuclides into the river. No mention of the
possible removal or addition of radionuclides during the chemical
or filtration processes of water treatment has been made in
available literature, nor has the possibility been reported

of the addition of “°K and radium daughter products to water
during storage in concrete reservoirs.

It is evident that a systematic investigation of radionuclide
content of Mississippi River water is needed. Currently at
Louisiana State University there are several different radio-
nuclide-determination studies that are in progress. Gross
activity (alpha-plus-beta) and gross alpha activity are being
measured using thin-window flow proportional and GM counters.

An alpha spectrometer is utilized to identify the alpha emitters.
Gross beta activity is ascertained by using the low background

GM counter.



To augment the work currently underway, a partial
radionuclide inventory is to be established by means of gamma
spectrometry. In conjunction with qualitative spectrometry,

a special quantitative analytical technique utilizing tracer
materials activated by Californium~252 neutrons will be employed.
The gamma-emitter inventory is to be established over a
sufficient period of time so that ultimately seasonal or cyclic
changes may be known, understood, and predicted.

River water obtained at a single sampling station at
New Orleans will be examined. This locality is considered ideal
for modeling radionuclide variations in the lower Mississippi River
resulting from a variety of industrial and chemical process plants
located immediately upstream., Additionally, this sampling station
located at the Jefferson Parish Waterworks #1 supplies a large

portion of New Orleans, Louisiana with potable water.



TABLE 1
Detectable Gamma Energies and Other Physical Characteristics
of the Naturally-occurring Radionuclides Belonging to

the Primary Uranium and Radium Decay Series

Gamma Ray Energy (MeV) Alpha T 1/2 Beta T 1/2
238y 4.47 x 10%
23%Th 0.069 24.1 d
234pa 0.043 1.17 m
234y 0.053 2.44 x 10°%y
2307 0.068 7.7 x 10%y
226Ra 0.068 1600 y
222pn 0.51 3.824 d
218pg 3.05 m
21%pp 0.352, 0.295 26.8 m
214p4 0.609, 1.12, 1.76 19.8 m
214pg 0.792 1.637 x 10 *s
210py, 0.465 22.3y
2104 5.01 d
210p, 0.802 138.4 d
206pp stable
y - year
d - day
h - hour
m - minute
s - second

Extracted from Radiological Health Handbook, Revised Edition, Jan. 1970

Chart of the Nuclides, General Electric, April 1972



TABLE 2

Detectable Gamma Energies and Other Physical Characteristics

of the Naturally Occurring Radionuclides Belonging to

the Primary Thorium Decay Series and Other Selected Radionuclides

Gamma Ray Energy (MeV) Alpha T 1/2 Beta T 1/2
232y, 0.059 1.4 x 10'%
228p, 0.007 5.75 y
228 0.911, 0.969, 0.34 6.13 h
228y 0.084, 0.216 1.913 y
224%Ra 0.241 3.64 d
220pp 0.54 55.6 s
216p, 0.15 s
212py 0.239, 0.3 10.64 h
212p5 0.727 60.6 m
212p,4 3.0 x 10 ’s
208 2.615, 0.583, 0.511 3.054 m
208py, N _ stable
“o0g 1.461 1.28 x 10%y
89¢co 1.173, 1.332 5.272 y
137¢g 0.662 30.1y
1257 0.036
1311 0.365 8.04 d
y -~ year
d - day
h - hour
m - minute
s - second



CHAPTER II

PRINCIPLES OF ENVIRONMENTAL COUNTING

Radionuclide concentrations in raw river water were
determined using a thallium-doped sodium iodide [NaI(T1)] crystal.
This scintillation detector is preferred to other solid-state
detectors, specifically lithiumdrifted germanium and lithium-
drifted silicon, because of it's greater counting efficiency
(i.e., higher energy-absorption coefficient). This efficiency
becomes important when dealing with very low levels of radiation,
which would make counting times for semi-conductor detectors
unacceptably long.

Mathematical solutions to problems involving absolute counting
with energy-dependent gamma detectors have generally assumed one
of two geometries: (a) a point source and a volume-distributed

detector,13

or (b) a point detector and a volume-distributed
source!” because of the simplifications implicit in such
assumptions. These mathematical simplifications can not be
applied to a finite-volume detector immediately adjacent to a
volume-distributed source, although a semi-empirical solution
for a right-cylinder source mounted atop a right-cylinder detector
has been developed.!®

When using a Marinelli beaker to contain the sample for
counting, geometrical considerations are far more complicated

than for point and volume-distributed sources (see Figure 2).

If a specific point p in the sample volume is selected, and is



connected linearly to a point p' in the crystal volume, such
that the path length within the sample is x_ and the path length
within the crystal is x> and only a small solid angle w is

allowed for emission of gamma radiation along this path, then

o
]

Probability of a gamma photon being

emitted in the direction of the crystal,

w/ 4w

Il

L]
[}

Probability of a gamma photon escaping

from the sample into the crystal,

d
]

Probability of a gamma photon interacting

in the crystal

il
[
i
(]
-

in which e is the base of the natural logarithm, and Mg and Mo
are, respectively, the energy absorption coefficients for the
sample and the crystal. These individual probability statements
may be combined to obtain an inclusive probability, P (p,p!), that
a count will be recorded for a gamma ray emitted in the sample
volume:

P (p,pl) = Pr * PS * PC ’

-1 x -U x
we ® 5 a-e 9
4T ?
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with k representing a unique efficiency constant for the
electronic system coupled to the detector. In order for the
total counting yield Y to be computed, it would be necessary
to integrate over all points within the sample volume and all

points in the crystal volume:

Y = / / P (p,p') dP

all p all p!

Functionally, us and uc are energy dependent, as is k for all
practical systems, while X, and x_ may be written in either polar
or cylindrical coordinate terms. The coordinate dependence of
the two path-length quantities implies transcendental functions
which are not readily amenable to analytical solution.

An empirical, rather than analytical, solution to the overall
detector-sample system was therefore deemed necessary. This
solution was based upon estimations of several values: (a) the
probability that a gamma ray from a point source will be incident
on the detector, known as the geometry factor, G; (b) the peak-to-
total ratio, P, which describes the fraction of available
informtion stored as a useful full-energy peak; and (c) the total
absorption efficiency, T, which includes self-absorption of the
water sample in the Marinelli beaker. These three factors, along
with the system operating constant, k, describe the total
probability that a gamma photon will produce a count in the digital

printout. The net counts, C (gross photopeak area counts minus



11

background counts), divided by the total detection probability
will yield the integral number of gamma disintegrations, N,
from the entire sample at a specific energy,as described by the

following equation

N = o= iC)
(6) () (T) (k)

As an indication of the practicality of this quantitative

technique, an estimate of the counting yield for “°K can be made

“0g is 0.0119% of total K

T 1/2 is (1.28 x 10%) (8.766 x 10°h/y) = 1.12205 x 1013

(6.93 x 10 1Y)
(1.12205 x 10'3)

1 pCi = 1.332 x 10%dph = N

_ (1.332 x 10%)(1.12205 x 10'%)
(6.93 x 10 %)

N = no. atoms “°K/%

(1.332 x 10%)(1.12205 x 10'3)
(6.93 x 10 1)(1.19 x 10° %)

Nk = no. atoms K/% =

(Nk) (39.1)

(6.023 x 10%3)

weight of K =

o = £1.332 x 10%)(1.12205 x 10'%)(3.91 x 10")
(6.93 x 107 1)(1.19 x 10 *)(6.023 x 102?)
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w=1.176 x 10 3g K/pci

This weight of potassium corresponds to a total of 1598
disintegrations in 12 hours. However, only 11% of “°Kk disintegrations
lead to emission of the 1.46 MeV gamma photon. Therefore, 1.176 mg
of total K will yield 176 potentially countable gammas in 12 hours.

If a geometry factor (G) of40% is assumed, a peak-to-total
ratio (P), of 0.4, the total absorption efficiency (T) of 0.2
and k = 1, for the 1.46 MeV gamma in a 4" x 4" NaI(Tl) crystal,

then the expected count rate will be

1.76 x 10® (0.4)(0.4)(0.2)(1) = 5.632 cts/12 hours
for 1 pCi of “°K, or 1.176 mg total K. This corresponds to

5.632
1.176

= 4.79 cts/12 hrs/mg K,
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FIGURE 2
Point-source Volume-detector Geometry Versus Volume-source

Volume—detector Geometry of the Marinelli Configuration
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CHAPTER IIIX

EXPERIMENTAL DESIGN AND PROCEDURE

From September, 1975 through June, 1976 one-gallon samples
of raw river water have been collected weekly at Jefferson Parish
Waterworks #1 in New Orleans, LA. On several occasions one-gallon
samples were also collected at various stages of the purification
process. These samples were stored in clean polyethylene
bottles that had contained only distilled water before use. To
limit cross-contamination effects from plateout of sediment, the
containers were not reused. The samples were than stored in a
cool, dark room to limit biological growth.

One-liter samples were examined by gamma spectrometry at
the low-background laboratory of the Louisiana Division of
Radiation Control. The gamma spectrometry system consisted of
a 4" x 4" NaI(Tl) crystal encased in a commercially available
low-background graded-steel shield. The detector was connected
to a standard multi-channel analyzer (MCA) and printout (see
Figure 3).

Sample preparation was initiated by vigorously shaking the
raw river water container for approximately 30 seconds. This
shaking resuspended most of the sediment and material plateout
on the bottom and sides of the container. One liter of this
sample was transferred into a Marinelli beaker, which was then

placed over the NaI(Tl) crystal. The counting configuration of

14
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the Marinelli beaker allowed the same thickness of sample on the
sides and top of the crystal. The sample was then counted for
12 hours. This time period was considered optimum for balancing
counting requirements with statistically significant information.
After each 12-hour count the Marinelli beaker was washed to
remove sediment and plateout contamination, and rinsed with
distilled water.

Digital information was obtained from the MCA printout,
permitting both qualitative and quantitative determination of
the gamma emitters present. The digital information was then
plotted on semi-log paper for ease of interpretation. Peak
energies were ascertained by cross reference to a calibration
analysis as described below.

An energy calibration was made after each series of samples
was analyzed. This calibration used standard sources of !33Ba,
137Cs, and ®%°Co for comparison of peak positions. The energies
represented by these standards gave good coverage over the range
of gamma energies emitted from the natural radionuclides expected
to occur in the Mississippi River.

Quantitative analysis was made in the following manner:
known quantities of selected water-soluble standard materials
were activated in a known flux of neutrons from a Californium-252
source, and the calculated activity produced was measured by
counting as a point source above a 3" x 3" NaI(Tl) crystal at the

Louisiana State University Nuclear Science Center. The activated
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sample was then dissolved in one liter of distilled water and
counted in the Marinelli beaker on the Division of Radiation
Controls' 4" x 4" NaI(Tl) crystal. Various amounts of a
radionuclide as well as different nuclides that have differing
gamma ray energies throughout the expected range of natural
radionuclides were also produced and counted. Several 12-hour
background counts were taken routinely throughout the sample
counting period. The net peak area of a specific energy gamma
ray was obtained by summation of the peak area counts of the raw
river water sample and subtracting from this total the average
background peak area counts. This net peak area, expressed in
counts, was then converted to disintegration rate by cross-
reference to a factor obtained from the known activity of an
activated standard of a specified energy. The above procedure
accounted for both the complex geometry of the counting
configuration and the varying detector efficiencies for the wide

range of gamma ray energies.
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FIGURE 3

Experimental Design and Equipment
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CHAPTER IV
RESULTS

Figure 4 is a chronological presentation of gross alpha
activities and gross alpha-plus-beta activities determined for

individual sampling dates.!®

This figure was used for selecting
samples which exhibited either low, medium or high activities
for further inspection by gamma spectroscopy. These three typical
spectra are presented in Figures 6, 7, and 8, with a background
spectrum included as Figure 5.

Table 3 is the compilation of background peak—-area counts
for four of the most important gamma-photon peaks: I”’K, 208y
(a thorium daughter), 2!“Pb and 2'“Bi (both uranium and radium
daughters). Two of these background counts were taken with an
empty Marinelli beaker in place over the detector, while the
third count waé with the Marinelli beaker filled with one liter
of distilled water. Because there is no significant difference
in counts between the empty and filled beaker, all counts were
included in computing averages. The background counts were taken
at the beginning and end of the sample counting period and gave
fairly consistant peak area counts. These peak area counts were
averaged, and this averaged count was subtracted from the selected
sample counts to yield net peak-area counts for specific

radionuclides, as represented by Table 4,

18
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Quantitative standard information (Table 5) was plotted to
establish detector efficiences for various gamma energies
(Figure 9). By comparing Figure 9 and information in Table 4,
it is possible to measure selected radionuclide concentrations

quantitatively.



20

0
0°0T
(1/t0d) 0°0C
£31ATIOV
g+0 @
SS0a1% 0°0¢
0°0%

9L "d9dav 9. °¥VK 9, °"9dd 9L "NVIL §L "DdQ SL

*AON 6/ °*120 §L "1LddS S/

onv &/ RIAC

40

S9TITATIOV (0) ssoan pue (g + W) SS0IH

1938pM I9ATY FAdISSTSSIH

% MNOI4

0
0°'T
0'z (1/10d)
£ITATIOV
<7 0
0°€ $S01%
0"y



Counts

103

102

FIGURE 5

21

Background Count Spectrum, June 11, 1976
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FIGURE 6

High Count Sample Spectrum, October 8, 1975
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Medium Count Sample Spectrum, September 24, 1975
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Low Count Sample Spectrum, October 1, 1975
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TABLE 5

Quantitative Standards

Element Compound Weight of Element Calculated Activity
Cr (NHy) (xr207) 1.0 g 10 nci
Mn metal 1 mg 31.2 nCi
Na Na2S04 0.1¢g 10 nCi
K KC1l | 2.07 g 900 pCi
Element 7Y Energy (MeV) Actual Activity Net Peak Area Counts
Cr 0.32 10 nCi 3,245
Mn 0.84 27.3 nCi 22,229
1.81 27.3 nCi 2,760
2.11 27.3 nCi 1,372
Na 1.37 9.77 nCi 1,953
2.75 9.77 nCi 1,109
K 1.46 900 pCi 5,658

27
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Gamma spectroscopy of Mississippi River water using a large
volume NaI(T1l) detector is one method of determining both
qualitative and quantitative information on gamma-emitting
radionuclides. Obvious disadvantages include:

a. poor sensitivity compared to gas filled
detectors,

b. very long counting times,

c. empirical determination of detector
system efficiency,

d. no direct relationship between daughter-
parent quantities,

e. the tedium associated with data reduction,

f. sedimentation during counting times
resulting in a constantly changing
counting geometry,

g. the need for a large volume of sample,

h. and a high background which produces large
errors in calculated activities.

Among the advantages of scintillation gamma spectrometry are:

a. the ability to identify and quantify
gamma emitters,

b. high sensitivity compared to other solid-

state detectors
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c. the ability to use large sample volumes,

d. and the possibility of simultaneous
identification of large numbers of
radionuclides.

Using Californium—-252 for activation of carefully selected
nuclides has proved to be a useful technique for producing
calibration standards for determining detector efficiencies
at various gamma photon energies for complex counting geometries.

After analysis of the river water data several recommendations
become evident to aid in the determination of radionuclide
concentrations as listed below:

a. longer counts should be made to obtain
more statistically significant quantitative
information,

b. sampling collection procedures should be
standardized such that outside contamination
factors be minimized,

c. more radionuclides should be activated for
the determination of detector efficilency
over the energy range of interest,

d. and stirrers should be employed to keep
sediments in solution during the counting

time.



Implementation of these recommendations should improve the
quality of information obtainable from important environmental
samples including reduction of minimum detectable limits

obtained during the current research.
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