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ABSTRACT

The objective of this work was to furnish the Louisiana
State University Californium-252 Demonstration Center with
a dry irradiation facility to increase irradiation capabil-
ities. Calculations of the neutron flux distribution in
this facility were made with the discrete ordinates code,
DOT, and the Monte Carlo code, MORSE, These calculations
were compared with the flux distributions measured by acti-
vation techniques, |

The measured thermal fluxes and energy spectra agreed
with the discrete ordinates calculations. However, the
Monte Carlo calculations were high in low-energy groups
and low in high-energy groups. This is a result of errors
in the cross sections and inaccuracies in the handling pro-
gram used to collapse the basic 100-group neutron cross
sections to the less detailed structure used in the trans-
port calculations,

This work has increased the capabilities of Louisiana
State University by the addition of an irradiation chamber,
Also, the MORSE Monte Carlo code is "now operational on the
LSU computer (an IBM 360/65) and should prove to be a

valuable analytic tool,
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CHAPTER I
INTRODUCTION

In the past three years californium-252 has become
increasingly useful as an isotopic neutron source. Interest
in this isotope has led the U.S. Atomic Energy Commission
to establish a Californium-252 Demonstration Center at
Louisiana State University. The function of the Cf-252
Demonstration Center is to stimulate interest and to provide
facilities to develop applications for the radioisotope,

To maximize the utility of the demonstration center,

a general-purpose irradiation chamber that could use the
relatively high neutron fluxes generated by the Cf-252 is
required, To maximize the utility of the chamber, both the
neutron and gamma-ray fluxes should be well known as a func-
tion of position within it for any given source arrangement,

The objective of this thesis was to design, build, and
experimentally and theoretically document the neutron and
gamma-ray fluxes within a multipurpose irradiation chamber.
The Multigroup Oak Ridge Stochastic Experiment (MORSE) code,
a Monte Carlo computer package, and”the Discrete Qrdinates
Transport (DOT) code, a discrete ordinates computer package,
were employed in the theoretical treatment of the chamber.*

DOT is a general purpose code which solves the linear,

*Both computer packages were provided to LSU by
The Radiation Shielding Information Center (RSIC), at the
Oak Ridge National Laboratory (ORNL), in Oak Ridge, Tenn.
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energy~-dependent, Boltzmann transport equation for special-
ized two-dimensional geometries (r-z, r-6, and x-y) by a
finite difference technique known as discrete ordinates or

(1) Previously at LSU, this code has

Carlson's Sn method..
been applied to the analysis of very subcritical systems of
light water and natural uranium,(z) The MORSE code is a
multipurpose neutron and gamma-ray stochastic code which
uses the Monte Carlo calculational technique to solve the

(3)

Boltzmann equation. A feature that increases the versa-
tility of the code is a general three-dimensional geometry
package as well as specialized one- and two-dimensional
geometry packages., Time dependence of radiation intensities
can also be treated for reactor kinetics problems., Other
features include an accurate treatment of anisotropic scat-
tering, and an albedo option for both neutrons and gamma-rays
at any material surface. RSIC provided a version of the code
which was operable on the ORNL computer, an IBM 360/75/91;
however, a major task of this thesis project was to make

this code package operable on the LSU computer, an IBM 360/65.
This involved coding changes because of compiler differences
and the requirement at LSU for an overlay structure using

the general geometry package. In addition, a supplement to

the user's manual for MORSE was prepared as an aid to per-

sonnel using the LSU version of the MORSE package.



CHAPTER II
THEORY OF MONTE CARLO

Introduction

A reliable method for treating the transport of neutrons
through matter is required in many areas of nuclear engineer-
ing. Criticality, shielding and many other calculational
areas share this common need. Prior to the last decade,
existing analytic and numerical methods for treating neutron
transport were severely hampered by limitations placed upon
the geometry, source distribution, and media characteristics.
O0ften these limitations prevented or sorely compromised use
of these methods in practical configurations.

A method which is essentially free from all these lim-
itations is the Monte Carlo method.(u) The Monte Carlo
method is a mathematical technique used to estimate a
desired average quantity by random sampling from the proba-
bilities describing the true stochastic process, The “sto-
chastic process” refers to the phenomena in which quantities
assume different values at different”times and which may be
represented as a family of random variables which fluctuate
in time,(u) A Monte Carlo calculation may then be considered
as the performance of an idealized experiment upon a system
whose properties are known; that is, the sets of probabil-
ities sufficient to describe the action of the system are

known, The study is carried out using counters (represent-

3



ing detectors) of known resolution and absolute efficiency.,
Like most measurements involving counting, however, the Monte
Carlo technique is subject to statistical errors, In prac-
tice, a balance must be reached between higher accuracy in
statistics and higher computer costs which are necessary
to achieve higher accuracy.

In the following sections of this chapter the mathe-
matics of the Monte Carlo method and its application to
solving the linear, energy-dependent Boltzmann transport

equation,and flux-at-a-point estimation will be outlined,

(4)

Mathematical Background

Random Numberss Consider some independent variable,x,
which assumes values over a specified interval (a,b)., Let
§ be any particular value of the independent variable;
this variable will be referred to as the random variable of
the independent variable x. A given physical situation
will determine a set of probabilities that § assumes some
particular value, X4y OT that § lies in some interval Axi.
A set of numbers over an interval such as (0,0,1,0)
constitutes a set of random numbers if they are uniformly
distributed over the interval and if no correlation exists
within a randomly selected sequence of these numbers, A
rigorous definition of the random number is that the proba-
bility of it being selected from an interval,y, contained
in zero to one is y. In practice there exist computational
algorithms adapted to digital computers that generate ran-

dom numbers, However, these numbers are not truly random



and should more properly be called pseudo-random numbers.

The period of such a distribution is the number of variables
which can be chosen from the distribution before the sequence
begins repeating itself. It is most important to ensure

that the period of a pseudo-random number sequence is longer
than the total number of random numbers which are required
for a given calculation,

Probability Distributionss If € is a random variable of the

independent variable x, then
F(x) = P(§%x) (2-1)

is the probability that € is less than or equal to x. This
function is defined for every x and is referred to as the
cummulative distribution function (c.d.f.). The c.d.f,
possesses the following properties:

(1) F(x) is a non-decreasing function of x,

(2) F(x) is continuous from the right at a discontinuity,

(3) If the variable x is a real number, then F(-=) = 0

and F(+w) = 1,
(4) The probability that the random variable assumes a

value within a finite interval (xl,xz) is given by

-~

P(x,4§€x,) = F(x,) - F(x,) (2-2)

(5) If the derivative dF(x)/dx exists at x, then for a
small interval Ax about x, the probability that the
random variable assumes a value within Ax is given

approximately by

lim _Ax aAxy . dF(x)
A P(x 5 <& <y 2) T Ax , (2=3)



The derivative of the c¢,d.f, is denoted as f(x) and
is equal to the relative frequency of the random variable
§ per unit x about x, This function is called the proba-
bility density function (p.d.f.) of the independent variable

X. Thus the p.d.f. is related to its corresponding c.d.f.

by £(x) = $Ex) (2-4)
or by
F(x) = [o £(x')dx", (2-5)

If f(x) = 0 for all x<a and for all x> Db, then f(x)

must be a normalized function over the interval (a,b) :

J2 (x*)ax’ = 1 (2-6)

where
F(a) = 0 (2=6a)
F(pb) = 1, (2-6b)

Also, since F(x) is non-decreasing, f(x) must be non-nega-
tive on the interval (a,b):

f(x) 20 a<x<b (2-7)

Sampling Techniques: A very important phase of a Monte Carlo
calculation is the selection of randfm variables according

to the appropriate p,d.f. or related c,d,f. Consider two
independent variables x and y and their corresponding dis-
tributions F(x) and G(y). If the two c.d.f.'s have the same
values, that is, if F(x) = G(y), then §# x only if M= y, This
follows because the c.d.f,'s are monotonically increasing
functions, Therefore a distribution of random variables can

be determined which conform to the c.d.f. F(x) if there



exists another c.d.f, G(y) such that
F(xi) = G(yi) for i=1.2.3.oooo'N (2-8)

Since random numbers can be generated with a computer very

easily, a convenient choice for c.d.f. G(y) is the followings

G(y) =0 for y=0
G(y) =y for 0=y=1 (2-9)
G(y) = for y=1

The distribution G(y) is realized by the generation of
numbers, Ri' uniform over the interval zero to one, The

desired random variable, X5 is calulated from

F(xi) ={:i f(x*')dx' = Ry (2-10)

fOI‘ i = 1.2.‘...N

In principle, this approach to sampling yields a ran-
dom variable, Xs0 for each random number Ri' However, some
difficulties may arise in the attempted execution of the

inverse process,
- p-l

As an alternative, the "rejection method® can be used,
although it is less efficient since not all samples are
used,

Consider the p.d.f. f(x) which is bounded on the inter-
val (a,b)s; that is, it assumes some maximum value f(xm) at
x = x_as shown in part (a) of Figure 2-1, Define a modi-

m
fied distribution function fl(x) such that fl(xm) =1,

£, (x) = £(x)/f(x,), (2-12)
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Figure 2-1. The Probability Density Function f(x) (4)
(a) Unmodified Distribution (b) Modified Distribution,

and express the independent variable as

X; = a+ Ry (b =-a) (2-13)

where Ri is a random number from the computational algorithm,
The procedure in the rejection method is to generate random
numbers in pairs (RZi-l'RZi) for each sample which is attemp-
ted. This combination is interpreted as defining a point
[a+RZi_1(b-a),RZi] with uniform probability of occurrence
anywhere within the rectangle which circumscribes fl(x) as
shown in Figure 2-1(b), If the point falls under the curve
fl(x), the sample is accepted and xi”is generated, If it
falls above the curve (in the shaded area), the sample is
rejected. So the procedure for the ith sample is the fol-
lowing:

(1) Select the random numbers (R _q9Rpy)e

(2) Calculate Xs

Xy =at R2i—1 (b-a) (2-14)



(3) Evaluate fl(xi).
(4) Test fl(xi) > Roy if yes, accept X if no, reject
the sample,

Examples of Sampling in Particle Transport Processes:s The

following examples of sampling procedures are typical of the
sampling which must be performed during the generation of

a particle history in a Monte Carlo transport calculation.
(1) Select a nuclide from N kinds of nuclides in a mixture,
Each kind of nuclide has a total macroscopic cross section,
Zn? and the medium has a total macroscopic cross section,

Zt. which is given by .

- (2-15)
z, = .,
t 2;; n

Nuclide 1 is selected if a random number R is less than

Zl/Et, and the ith nuclide is selected if
i-1 i

> >

Z‘i D = R(Z 2 (2-16)
% £ °

n= n=

Once the nuclide has been selected, a choice must be made

between an absorption or a scattering reaction, If another
random number R is less than zs/:t' where £_ is the macro-
scopic scattering cross section, a scattering reaction will
occur; otherwise, absorption occurs,
(2) Select the azimuthal scattering angle &, where its p.d.f.
is given by

£(f) = 1/2w (2-17)

Its corresponding c.,d.f, is

@) = &P £(g)ag" = g/o (2-18)
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and a value for ¢ is obtained by setting
F(ﬁi) = Ry (2-19)

where R, is a random number; solving for g; yields

gi = 21’ij_ (2‘20)

(3) Pick a distance from one collision site to the next.
the p.d.f, is given by

£(x) = £, et (2-21)
and the corresponding c.d.f. by

- . -
F(x) = 2, (% e ZiX %t = 1 - e 5t (2-22)

By letting

R, = 1 - e~2¢%3 (2-23)

h

Xy is given by

_ 1
L

x.

i In (1-R,) (2-24)

Evaluation of Integrals By Monte Carlo Methods: When con-

sidering single or double integrals, normal numerical inte-
gration techniques give accurate results with less effort
than with Monte Carlo methods, but for higher order multiple
integrals, Monte Carlo becomes a practical tool,(5)

The Monte Carlo method can be demonstrated by the eval-

uation of the following integral:s
I = I: g(x)f(x) dx (2-25)

This integral generates the average of the function g(x)
weighted by the p.d.f. f(x) over the interval (a,b), This

integral can also be expressed as
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I =7 g(x) dF(x) (2-26)
where
F(x) = [X £(x")ax’, (2-27)

The function F(x) is the c.,d.f. corresponding to f(x). With
this transformation a selection of values of F(x) with uni-
form probability over the interval (0,1) is equivalent to
selection of values of X according to f(x) over the interval
(a,b). The values of the random variable x are sampled from
f(x) and for the ith random number, Ri' the ith selection of
the random variable is given by

-1
x; = FTO(Ry) (2-28)

There is a corresponding value g(xi), and an estimation of

the value of the integral is given by
N
= _ 1
T=3Y e, (2-29)
i=1

where I is the Monte Carlo estimate of I and N is an arbi-
trary number of samples.
When generalized to multidimensional integrals Q, over

the multidimensional space P, the integral

Q= JJJSIS g(P)E(P)dP © (2-30)

is given by the Monte Carlo estimate @,
1
Q=N ﬁg(Pi) (2-31)
i=1
where the samples having space coordinates, Pi' are chosen
according to a complex set of probabilities which generate

the p.d.f. f(P)o
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(3)

The Boltzmann Transport Equation

The application of the Monte Carlo method to radiation
transport becomes more evident if the Boltzmann transport
equation is expressed in integral form. The derivation of
the general time-dependent, integro-differential form of
the Boltzmann transport equation can be regarded as a
bookkeeping process that sets the storage of particles within
a differential element of phase space (dTr,dE,d8) equal to
particle gains minus particle losses in the same differential

element, This leads to the familiar and useful form

L2 b(FEG, ) +BVMEER) + £, (F.E) $(FEHRT)

S(F,E,t) + JJAE'dA" L (F,E'+EA%WD) ¢ (F,B',,t) (2-32)

where (T,E,Q,t) denotes the general seven-dimensional phase

space coordinatess

—tt

r = the position variable,

E = the particle's kinetic energy,

v = the particle's speed corresponding to E,

&l = the unit vector which describes the particle's direction
of motion,

t = time variable; :

¢ (F,EL,t) = the time dependent angular particle flux,

¢ (¥,E,Q,t)dEd? = the number of particles that cross a unit
area normal to the direction & per unit time at the
space point T and time t with energies in 4E about E
and with directions within the solid angle dQ about

the unit vector Q1.
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% %4) (T,E,8,t) dEdD net storage per unit volume and
time at the space point T and time t of particles
with energies in dE about E and with directions in 4@}
about Q),

a-Vo(T,EQ,t) dEdB

net convective losses per unit
volume and time at T and time t of particles with
energies within dE about E and directions within d&a
about 23,

Zt(?,E) = the total cross section at the point ¥ for par-
ticles of energy E,

Zt('f,E)¢(‘f,E,ﬁ.t) dEdQ. = collision losses per unit time
and volume of particles at point ¥ with energies within
dE about E and directions within d& aboutfl,

Zs('r'.E'-aE,':'z.'-v_"n',) dEdSi = the differential scattering cross
section which describes the probability per unit path
that a particle with an initial energy E' and an initial
direction fi' undergoes a scattering collision at T
which places it into a direction within d& about &
and energy within dE about E,

{J'J'ZS(?.E'-»E,‘;‘),'-—E) ¢ (F,E* 2, t) dE'dﬁ.'} dEdQl = the inscat-
tering gains per unit volume and time at point T and
time t of particles of energies within dE about E and
directions within d& aboutq,

S(%,E,d,t) dERL = source particles emitted per unit volume
and time at point T and time t with energies in dE about

E and directions within d& aboutil,

A "quantity of interest" (denoted by X\) such as bio-
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logical dose, energy deposition, or particle flux for a
given problem can be expressed in terms of the flux field
é (¥,E,8,t) and an appropriate response function

P(T,E,Q,t) due to a unit angular flux and is given by

A= SSISP(F,E,B,t) & (F,E,B,t) dFdEdddt , (2-33)

For application to Monte Carlo, the energy dependence of
equation (2-32) will be treated in terms of energy groups
which are defined such that

AEg = energy width of the gth group,

g = 1 corresponds to the highest energy group,

g = G corresponds to the lowest energy group.

The group form of the Boltzmann equation expressed in terms
of appropriate group parameters ( subscripted and super=-

scripted with g's ) is the following:

b 5t P TA) + BT (FM,1) + 2§() § (FRLt) =

S o (FL 1) +g§gf% @28 E(F A 6, (FE L) (2-34)

By proper transformation of spatial coordinates, intro-
duction of an integrating factor, and introduction of a quan-

tity called "optical thickness®
B (F.r8) = [gE§(F-R'A) ar’ (2-35)

where
R = | 7-7'| (2-36)
equation (2-34) can be transformed to the “Integral Flux

Density Equation":
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$ o (FiBt) = [5 dR o~Pa(®RT) S (F-RELT, t=R/Y)
gZ._,_g Jy 8 287 (P-RE, 8,50 -1) c\»g.(?'.ﬁ'.t')] (2-37)

If both sides of this equation are multiplied by E%(?).
this becomes an expression for the event density Y g(‘f@t).
where
Y (Ft) = s§F) P (T L), (2-38)

This represents the number of collision events per unit
volume and time at point T and time t experienced by parti-
cles having energies in the gth energy group and directions
in 48 about &.

The "Integral Event Density Equation® is of a reason-
able form to be solved by the Monte Carlo technique, This
equation is indeed the one that is chosen for the random

walk in the MORSE code employed in this study.(lo)

(6)

Point Detector Estimator

It is frequently desireable to use the Monte Carlo tech-
nique to estimate particle fluence, or some fluence-related
quantity, at a point in space., One method of accomplishing
this is to use a "next event" estimaior which records from
each collision point of a particle, the probability of the
next event being at the point of interest.

The random walk process in a Monte Carlo code generates
a sequence of collisions which are samples from the event
density p.d.f. E(P) defined by the following:

E(P) = S(P) + J E(P') K(P',P) dpP* (2=39)
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where S(P) is the p.d.f. of particle births of particles
with phase space coordinates P, and where K(P',P) is the
conditional p.d.f. of events at P, given that the event
originated at P',

If S(P) and K(P',P) are given in terms of coordinates
of particles entering an event (a collision or birth), the
particle flux at the point T can be expressed as

$(F) = JSJS dE'dP'dEdH * D(F,E,B)

- -5, (E) [£-1|
r-r' e t 1 -

where,

D(Y¥,E,Q3) = the density of particles entering collisions in
a unit volume with energy in dE about E and direction
in d4 about @ at the point T,

pQF;E) = the probability per steradian of scattering a
particle of energy E through an angle of cos"b;,

E' = energy of particles leaving the collision,

Zt(E) = the total macroscopic cross section for particles
of energy E,
Since the random walk process generates selections from

the p.d.f. E(P), a partial estimate of ¢ (¥) may be obtained

by evaluating the quantity in square brackets in equation

(2-40) for all collision sites.



CHAPTER III
PRINCIPLES OF DISCRETE ORDINATES

The discrete ordinates and other related methods of
numerically solving the energy-dependent Boltzmann equation
(Equation 2-32) have been used extensively in nuclear engi-
neering. These methods have their foundation in the eval-
uation of the angular flux in a number of discrete directions
instead of using an expansion in spherical harmonics or in
Legendre polynomials, By considering enough discrete direc-
tions, it is possible, in principle, to obtain a solution
to any desired degree of accuracy,

In discrete ordinates techniques, as in Monte Carlo
techniques, the energy is also treated as discrete by treating
the energy in arbitrarily selected groups. Also, the spatial
dependence is treated in terms of a finite mesh spacing of
space coordinates., Thus all independent variables in a time
independent form of the transport equation are treated as

discrete; hence the name -- discrete ordinates transport.

Discrete Ordinates in One Dimension "

For a one energy group, steady-state treatment in slab
geometry, the Boltzmann transport equation reduces to the

followings

n 52,;¢(x.p) + 5(x) ¢ (x,p) =9-‘-’%§-(£)-f fi ¢ (x,p')dp’ + S(x,p)
(3-1)

17
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where p is the cosine of the scattering angle, ®(x,n) is
the angular dependent flux, %Z(x) is the macroscopic cross
section, and C(x) is the mean number of particles emerging
from collisions at x., By considering a discrete set of
angles, the integral of the angular dependent flux can be
expanded in a quadrature formula(B) with quadrature weights,

Wi such that
N
P apaut v & wy $Gxapy). (3-2)

Substituting this into equation (3-1) yields a set of N

coupled, first order differential equations for ¢#(x.pi)

Pysed apg) + 2x) $xppy) = "—‘%MZWR“-Pﬁ + S(xpg),
1
for j = 1,2,...N. (3=3)

These equations can readily be solved by finite difference
techniques once the boundary conditions and characteristics
of the problem are specified.(7) The particular choice of
weights and direction cosines affects the accuracy obtained
in solving a given set of N equations, The set that is
usually chosen is the Gaussian quadrature set which is widely
applied in numerical integration.(a)ﬁ

The first step in solving the system of equations (3-3)
is to establish a mesh of spatial points, that is, of dis-
crete values, Xy where k = 0,1,2,,..,.K such that X, corres-
ponds to one boundary of the slab and Xy to the other, The

resulting derivative terms can then be expressed as finite

differences
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¢ (Rppgolg) = @ (x0m5)

r
Y ¢(xv)-1 )
2 9
* ! Xpel ~ g

(3=4)

X=Xp+1/2

where
1
Xee1/2 = 7 (K + %) (3-5)

This method can be applied to the set of equations (3-3) and
then placed in suitable form to be solved by.an iterative
process, that is, beginning with some initial guesses for
the ¢(x,pj)'s and repeatedly solving the system of equations

for a new set of fluxes until the solution set converges,

Two-dimensional Discrete Ordinates

In curved geometries (spherical or cylindrical coordi-
nates) the discrete ordinates treatment is complicated by
the fact that the angular derivatives in the transport equa-

(2)

tion must also be approximated, These derivatives arise
in a curved geometry system because the velocity vector of
a particle traveling in a straight line changes continuously.
In an analogous manner to that of the slab geometry

treatment, the cylindrical geometry form of the energy depen-
dent transport equation can be reduced to a set of difference
equations, Consider a differential element of phase space
in cylindrical coordinates,

dP = 2nr dr dz dng dY dE, (3-6)

where n and ¥ are angles describing the motion of a particle

with energy E. A finite phase space cell,AP, is defined as

.. I Z . L2 E
APSsmpad -l ikt f:k“ frn“ Jg&t 2nur dr dz ap d¥ e
S A (3-7)
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or
ap = T‘r(rirl"ri)(z 2 5) g M) Vg1 =¥ (B 17Bg)
(3-7)
or x
AP =V ;AN &KAE, (3-8)

The lower case subscripts (i, j,k,n,g) refer to quantities
evaluated at a surface of a finite phase space cell, and the
upper case subscripts (I,J,K,N,G) refer to quantities which
are defined for the cell as a whole, By applying a similar
integration over a finite phase space cell to the cylindrical
geometry form of the transport equation, the following

difference equation is obtained:
2nlz gup(ry g 6 541,5,0 - ri‘?G i,J,0) * 2ryArpn, =

($¢,1,51,0 - %a,1,3,0) +5 W (Y‘n+1¢G I,J,n41,K % *

¢
G’I.J'n’K) + VI J' G¢G I J D VI'J SG'I,J'D +
L NOA
l,m 1,m
1o L Z, A ZSG G* 2: 454" #qr,1,5,00%" -
1=0 m=0 G'=1 D'=1

(3-9)

The curvature coefficients,‘fn. are defined by

¥ = saraqs = Zaraq/1miein¥..  (3-10)

n

-

To make a unique solution possible, some additional condi-
tions must be imposed on the flux., Some relationships
between fluxes in adjoining cells will provide enough equa-
tions in this case, The set of equations used for this
purpose are known as the "diamond difference® equations;
these equations and their use are described in a work by

(9)

Carlson,



CHAPTER IV
THE MORSE CODE

The Multigroup Qak Ridge Stochastic Experiment (MORSE)
code is a multipurpose neutron and gamma-ray transport Monte

(3)

Carlo code, MORSE has many features which allow a variety
of options for the user, including the ability to treat
neutron transport, gamma-ray transport, or coupled neutron
and secondary gamma-ray production, MORSE also utilizes
multigroup cross sections; allows solving either the forward
or the adjoint problem; contains cross-section handling and
analysis, general geometry or specialized one- and two-
dimensional geometries, internal debugging routines, an
ability to treat time dependence, and an albedo option at
any material surface; and includes several types of
importance sampling.

In the current work, MORSE is used in conjunction with
the 100-group DLC2D library of ENDF/B nuclear data provided
LSU by the Radiation Shielding Information Center (RSIC) at
Oak Ridge National Laboratory (ORNL) at Oak Ridge,
Tennessee.(lo) =

Of primary significance in the utility of MORSE is the
structure of its functions into basic modules, Modules
exist for input, geometry handling, transport analysis,
cross-section handling, random-walk generation, and diag-
nostic aids. Each of these modules functions independently

and can be interfaced with user-written modules which perform

21
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similar functions,

Some distinguishing characteristics of MORSE compared
to other Monte Carlo codes are its ability to treat an entire
problem without the use of magnetic tapes, terminate a job
internally after a set elapsed c,p.u, time and obtain an
output of quantities based upon the number of histories
treated up to that time, batch processing of particles for
the purpose of determining statistics, and a repeat run
feature which allows time dependent fission problems to be
solved with statistical estimates., Also included in the
output of MORSE are various counters which allow some
insights into the physics of the interactions which are
taking place,

Detailed descriptions of the subroutines used by MORSE
and logical flow charts may be found in the work of E. A.
(3)

Straker, A complete description of the input necessary
to describe a MORSE problem is found in Burgart.(ll)

Figure 4-1 shows the hierarchy of the major subroutines
in MORSE, With the aid of this figure, it is possible to
see the functions of the various modules, INPUT initializes
the arrays and variables necessary for the transport process,
The initial calculations by the cross section module begin
in subroutine XSEC, The analysis module of the code is
interfaced with MORSE through subroutine BANKR, The analysis
module makes use of the cross-section and geometry modules

when making calculations of the "quantity of interest, A.“

With the exception of the output from the random walk process,
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the remainder of the code consists of subroutine calls from
subroutine MORSE, The geometry module is interfaced with the
analysis module through GOMST, and the source is interfaced
through MSOUR., The diagnostic module is independent and any

part of it may be executed from any routine.

The Random Walk Module

The basic random walk process consists of choosing a
source particle and following it through its history of
events, This process is governed by the routines in this
module, A given problem is solved by tracing the histories
of a number of batches of such particles, A batch of source
particles is generated and stored in the bank, The random
walk of a batch is determined by taking the particles from
the bank and transporting them from collision to collision,
splitting particles into many particles (fission), killing
(capturing) them by Russian roulette, and generating second-
ary particles, Termination of a history occurs when a par-
ticle leaks from the system, reaches a low energy cut-off,
is killed by Russian roulette, or reaches an age limit (in
time),

The random walk module conducts”the necessary book-
keeping for the bank, the transportation and generation of
new particles, and relays this information to the analysis
module for estimation of the desired quantities of interest,
Use is made of the cross-section module and the geometry
module in the random walk process as well as input and output

routines for obtaining and printing information pertinent to
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the problem,

After the necessary input operations and setting up of
storage requirements, the walk process consists of three
nested loops: one for runs, one for batches, and the inner-
most for particles, After each termination of the batch loop,
bookkeeping is required before the generation of a new batch
of source particles, After the termination of a run, a
summary of the particle terminations, scattering counters
and secondary production counters are output as well as
results of Russian roulette and splitting for each energy

group and region within the system,

Multigroup Crossg Section Module

The function of this module in multigroup Monte Carlo
codes is to read ANISN-type(lz) cross sections for elements
or media, mix several elements together to obtain media
cross sections, determine group-to-group transfer proba-
bilities, and determine the probabilities and angles of
scattering for each group-to-group transfer, All variables
within the code are flexibly dimensioned and are part of
blank common (see Appendix A) storage, All types of cross
sections may be treated by this module such as neutron only,
gamma-ray only, neutron and gamma-ray coupled, or gamma-ray
only from coupled neutron and gamma-ray input., Cross sections
for either forward or adjoint solution of the Boltzmann
equation may be obtained, and the Legendre coefficients for
each group-to-group transfer may be retained for the next

flight estimation,
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After all cross sections are stored from input, the
contribution of each element to the cross section for the
medium is determined, Also at this time, the sum of the
downscatter vectors for each group is determined for future
calculation of the non-absorption probability. After the
cross sections for the media have been determined, the non-
absorption probability, fission probability, and gamma-ray
production probabilities are formed by dividing the appro-
priate cross sections by the total cross section. The
Legendre coefficients for each group-to-group transfer are
converted to angles and probabilities of scattering at those
angles by the use of a generalized Gaussian quadrature which
uses the angular distribution as a weighting function. The
use of this Gaussian quadrature is described in the work of
E.A. Straker, et g;.(B) These media cross sections, and the
probabilities derived from them, are used in the random walk
process to describe the transport of a partiecle-through the

system being treated,

The Analysis Module

SAMBO (Stochastic Analysis Machine for ggokkeeping)(é)
is a package of computer routines wﬁach handles the drudgery
associated with the analysis of collisions in a Monte Carlo
code, SAMBO was specifically written for use with the MORSE
code but should be readily adaptable for incorporation into
other random walk generating codes, An arbitrary number of
detectors, energy-dependent response functions, energy bins,

time bins, and angle bins are allowed with virtually no
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numerical limitations except the available core storage,
Figure 4-2 is a simplified flow diagram of a typical Monte
Carlo program interfaced with the SAMBO package. Input of
parameters and initialization are performed at the beginning
of each problem (SCORIN), each run (STRUN), and each batch
(STBTCH), A batch is either a generation of particles in a
multiplying system or a group of histories treated together
for calculation of variances; a run is a set of batches,
Terminal operations are performed at the end of each batch
(NBATCH) and run (NRUN)., The above mentioned routines, when
called at the appropriate point by the history-generating
routines, perform most of the necessary bookkeeping func-
tions, Five additional routines are called by the primary
bookkeeping routines or by the appropriate estimating rou-
tiness INSCOR and ENDRUN are dummies called by SCORIN and
NRUN, respectively, to allow the user to make problem depen-
dent modifications; VAR2 and VAR3 are called by NRUN to
calculate fractional standard deviations in two- and three-
dimensional arrays, respectivelys and FLUXST is the interface
between estimating and bookkeeping routines which is called
by the estimating routines to store estimates in the proper
arrays.,

Many types of estimators are possible and no attempt is
made to provide an all inclusive estimating routine. 1In
lieu of this, a point-estimating routine is included by RSIC
with the MORSE package. The method employed by this routine

(described in Chapter 2) estimates the fluence at a point
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detector,

Geometry Module

MORSE uses geometry packages which were used with the
#5R Monte Carlo code with minor changes, There are slab,
spherical, cylindrical, and general three-dimensional geometry
packages available, Changes were made to all of the geometry
packages to allow for albedo scattering from any material
surface and for variable input and output units., The
geometry packages may be replaced with special purpose
geometry routines which the user might write,

The three main functions of the geometry package are
performed by the three subroutines described below, Subrou-
tine JOMIN reads geometry input and keeps account of the
first location in blank common used for input geometry
storage. In some special geometry packages blank ¢ommon may
not be used for storage of input data., Subroutine LOOKZ
determines the block number, zone number, medium, and region
for a point (x,y,z). LOOKZ is called from MSOUR to determine
the starting region and medium for source particles, Sub-
routine GEOM is the primary executive routine which determines
the endpoint of a flight of a particie given the starting
point and the direction cosines, or a tentative endpoint and
the number of mean free paths the particle will travel, It
is called from GOMST and required information is obtained
from a labeled common, In the more complicated geometry
packages there are many routines which assist GEOM in deter-

mining the collision point.
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The general three-dimensional geometry package is
described in the @5R code manual.(13) The only limitation
in the detail which can be treated with this package 1s that
all surfaces must be describable by quadratic equations in
three-dimensional space, The description of the system
must include a rectangular parallelepiped whose faces are
parallel to the XY, YZ, and X2 coordinate planes, This
parallelepiped is then divided into zones by planes which
extend entirely across the system and which are parallel
to the coordinate planes, The zones are divided into blocks
by planes parallel to the coordinate planes but which extend
only across the individual zones, Each zone is then divided
into sectors by quadratic surfaces with a sector being
defined by whether the volume is positive or negative with
respect to the quadratic surfaces, Each sector may contain
only one medium, Therefore, if a medium cannot be described
by a single quadratic surface, it must be divided into sev-
eral sectors, Besides material boundaries, both internal
(medium 1000) and external (medium 0) void regions may be
treated., An exterior void may be used in the exterior or the
interior of the system, It behaves as a perfect particle
absorber; that is, the particle is assumed to have escaped
the system if it enters such a medium, An internal void
is treated as transparent and particle paths are extended
through it,

Figure 4-3 shows the hierarchy of subroutines in the

general geometry package, Detailed descriptions of the
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various subroutines used are given in the manuals which

are available from RSIC.(13'3)

Diagnostic Module

Frequently in debugging problem input parameters, or in
trying to gain further insight into the physics of a problem,
it is desireable to have the contents of some labeled com-
mons or portions of blank common available for examination,
The counters describing operations completed and interactions
treated are stored in these common areas. The diagnostic
module makes it possible to print, in a readable format, the
values of these variables,

The key routine in this module is subroutine HELPER
which prints in decimal form any part of a single precision
array, HELPER is used to obtain a listing of appropriate
common areas which are related to the situation of interest.
HELPER is also called when MORSE encounters an unresolvable
situation, The output is a "dump”" of related common areas
to facilitate location of the difficulty by the user, Sub-
routine HELP can be used to obtain a more inclusive dump of
common areas if the need arises,

The diagnostic module is indepeﬁdent of all other modules
of the MORSE code, Therefore, its debugging capability can
be used at any point in the operation of the code that is
desired by the user, In addition, automatic calls are made
to this module if any unresolﬁable situation is encountered
in the normal execution of a problem == such as bad cross

sections or incorrect geometry input data,
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Program PICTURE(1¥)

The general geometry package has found wide usage in
Monte Carlo transport codes. Because of GEOM's generality,
preparing geometry input correctly is often a formidable
task., GEOM itself can detect some of the errors and reject
the input as written by the user, Frequently, however, an
error cammot be determined by GEOM, because the input
describes a perfectly legitimate geometry, but one that
differs in some respect from that which was intended., To
help the user determine whether or not the geometry input
describes the geometry intended, a program called PICTURE
was devised,

PICTURE displays, as a printed output, a representation
of two-dimensional slices through the geometry as described
by the input., A regularly-spaced array of points is gener-
ated and a call to GEOM determines the medium number at each
of the points in the array. By printing out this array a
relative picture of one view of the input geometry is pro-
duced, The user may visually inspect the picture and deter-
mine whether or not the geometry is as intended. By obtain-
ing several such pictures of two-dimepsional slices through
the geometry, an-overall picture of the geometry can be
visualized,

PICTURE may be utilized in several different ways: an
input parameter determines whether the output picture dis.
plays the material media or the region numbers, Input must

also include the direction cosines of the axes of the two-
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dimensional slice through the geometry., The area to be
covered may then be specified by giving either the coordie
nates of the upper left and lower right corners of the pice
ture, or by giving a starting point and the distances to be
covered in the picture in each of the two axes' directions.
By stacking input, several pictures may be obtained in a
single run., If the picture is too large for a single printer
page, it will then be continued on succeeding pages, These
pages can then be separated and assembled in the proper
orientation,

PICTURE is highly versatile and helpful to the user of
the general geometry package accompanying the MORSE code,
The input is simple -- consisting of six parameter cards in
addition to the geometry input as prepared in the MORSE
format. A more complete description of the input required
and formats used may be found in the work of Irving and

(14)

Morrison.



CHAPTER V

DESIGN AND MODELING OF THE IRRADIATION CHAMBER

Introduction

In 1971 Louisiana State University was designated by
the U. S. Atomic Energy Commission as a Californium-252
Demonstration Center, The demonstration center was to serve
as a focal point for industry and educational institutions
in the development of applications for californium-252, an
isotopic neutron source. To accomplish this the AEC has
made available through LSU various Cf-252 sources that range
in size from one to 11,000 micrograms, Some of the nuclear
properties of californium-252 are listed in Table 5-1,
These properties make californium a highly versatile, iso-
topic neutron source,

To enhance the capability of developing applications
of californium at LSU, several flexible facilities were
built, The principal facility for the storage and use of
sources is a four feet wide, eight feet long, and six and
one half feet high tank of water, shjelded on three sides
by concrete blocks and borated sand, An assembly was
built inside this tank so that samples could be irradiated
in standard polyethylene vials, There was no provision,
however, for the irradiation of samples which could not be
placed in these vials, The irradiation chamber analyzed

in the current work was proposed to increase the irradiation
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PROPERTY

VALUE

Effective Half-life

Alpha Decay Half-life
Spontaneous Fission Half-life
Average Neutron Energy

Average Alpha Energy

Neutrons per Spontaneous Fission
Neutron Emission Rate

Gamma Emission Rate

2,646 years
2,731 years
85.5 years
2,348 Mev
6.117 MeV
3.76
12
2,34 x 10""n/sec-gm

1.3 x 1013 photons/
sec-gm

TABLE 5-1, Nuclear Properties of Californium=252,



37

capability at LSU,

Chamber Design

The objective of the current work was to design a useful,
versatile, and inexpensive facility to extend LSU's capa-
bility to aid in the development of applications of califor-
nium-252, A general-purpose irradiation chamber for use
with the cobalt-60 facility at LSU was already in existence,
The same basic design concept used for that facility was
adapted for the californium irradiation chamber; however,
several different considerations had to be made because of
the nature of the source to be used (that is, a neutron
gsource as opposed to a gamma-ray source),

Factors which were considered in the design were the
physical and nuclear properties of the chamber materials,
sufficient size to facilitate a multipurpose chamber, and
availability and cost of materials and labor, With these
factors taken into account, a preliminary design using
materials on hand and very simple construction techniques
was conceived, It was then found that a piece of equipment
was available which met the specifications then outlined for
the chamber., This piece of equipment, a mixing tank for
a liquid fuel rocket engine, was readily adaptable to the
purposes at hand and saved a considerable amount of money
and time,

The chamber consists basically of a right circular
cylinder, weighted with lead at the bottom, and with a flange

at the top., A top plate with an O-ring seal can be bolted
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to the top of the cylinder's flange so that the chamber is
air tight (see Figure 5-1). This provides a dry environment
for specimen irradiations. The chamber was constructed of
an aluminum alloy with a small percentage of magnesium,
Fittings are available on the top of the chamber to facil-
itate many adaptations and modifications of the chamber (see
Chapter VI),

In addition to the chamber, there was also a need for
an apparatus to allow the placement of sources in a repro-
ducible geometry with respect to the chamber, Because of
the size and shape of the chamber, the existing source
configurations were not readily adaptable, Thus, a new
source holder was constructed of clear plastic (Plexiglass*)
for use with the chamber (see Figure 5-2)., This source
holder is considered a temporary facility because no attempt
was made to optimize the source and chamber configuration,
The source holder does, however, allow up to ten sources to be
placed in a circular configuration around the chamber to
achieve some uniformity of flux throughout it,

Because the chamber is constructed of aluminum and
exposed to high neutron fluxes, there is a considerable
amount of activation of the chamber itself, The Al-27(n,Y¥)
Al1-28 and Al-27(n,p)Mg-27 reactions create a significant
amount of activity in the chamber wall., The chamber was

irradiated for one hour (essentially saturation for both

*
Registered trademark for acrylic sheet; Rohm and Haas Co,
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FIGURE 5-1, Cutaway View of Cf-252 Irradiation Chamber,
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reactions) with a single ten milligram californium=252
source, The resulting beta-gamma dose rates at the surface
of the chamber are displayed in Figure 5-3 as a function

of decay time,

)

FIGURE 5-2. Source Stand for Use With Irradiation Chamber,
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Modeling of the Chamber

To theoretically treat the neutron flux distribution
in the chamber, the DOT and MORSE computer codes were used,
The modeling necessary to adapt the chamber description to
these codes is decribed below,

DOT performs only a two-dimensional treatment of any
transport problem.(15) Because of the symmetry of the
chamber, an r-z geometry treatment was chosen as the most
applicable (see Figure 5-4), The centerline of the chamber
was chosen as the axis of symmetry and a fully reflecting
boundary was imposed along this line, In the radial diree-
tion mesh boundaries were established at convenient inter-
vals inside and outside the chamber, and one mesh block was
allowed for the chamber wall, In the axial direction,
mesh boundaries were chosen to coincide with chamber bound-
aries and convenient interval spacings (approximately two
centimeters) inside and outside of the chamber. The treat-
ment utilized fifteen radial and twenty-five axial mesh
blocks, Appropriate materials were entered into the mesh
blocks, that is, aluminum and water, with the interior of
the chamber being treated as very low density (one gram/
cubic liter) oxygen, The source was treated as a single,
volume-distributed source filling the sixth radial and
eleventh axial mesh block, A seventeen group energy struc-
ture was employed in this treatment of neutron transport

only (see Table 5-2), The source spectrum is normalized
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GROUP UPP%SV%NERGY LOW?ZV§NERGY s?gggﬁa§£§23§um
1 1.4918(7)2 1.,0000(7) .00355
2 1.0000(7) 3.0119(6) «27805
3 3.0119(6) 1.4957(6) 32175
" 1.4957(6) 1,0026(6) 14223
5 1.0026(6) 4.,0762(5) .17487
6 4,0762(5) 1,1109(5) . 06762
7 1.1109(5) 1.5034(4) 01193
8 1.5034(4) 2,6126(3) 00000
9 2,6126(3) 5.8295(2) 3

10 5.8295(2) 1.0130(2) -
11 1.0130(2) 2,9023(1) -
12 2,9023(1) 1.0677(1) -
13 1.0677(1) 3.0509(0) N
14 3.0509(0) 1.1254(0) -
15 1.1254(0) 0.5316(0) -
16 0.5316(0) 0.4140(0) -
17 0.4140(0) 0.,0253(0), -

8Read as 1.4918 x 107.

TABLE 5-2,

Californium-252 Neutron Source Spectrum in the

17 Group Structure Used in This Work.

lyly
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to one neutron and collapsed from the 100-group spectrum for
californium=-252 provided with the DLC2D cross-section
library by Rsic,(10)

Modeling for the MORSE code was somewhat more difficult
and detailed than for the DOT code because of the three-di-
mensional geometry employed in MORSE. When in use, the cham-
ber is placed in the four-feet by eight-feet by six-and-one-
half-feet tank of water, This tank was taken as the system
of interest for the MORSE treatment, This system model was
surrounded by an external void (medium O in MORSE). The
region interior to the tank was divided into three blocks
(see Figure 5-5) with block boundaries as indicated to allow
simple division of the chamber into sectors., The interior
of the chamber was treated as an interior void (medium 1000
in MORSE). The geometric configuration used to treat the
chamber and tank system required ten quadratic surfaces in
addition to block and zone boundaries., For a complete list=-
ing of the geometry input see Appendix B,

The source was treated as a point fission source of
neutrons using the Cf-252 spectrum of Table 5-2, The energy-
group structure, fission spectrum, and cross-sections were
the same as those for the DOT problem with the exception of
the order of the expansion of the cross sections, A P=2
expansion was used in DOT with a later version of the DLC2D
library? and a P-8 expansion was used in MORSE with an early

version of the DIC2D library,

*A corrected version of the July 1972 library issued October,
1072,
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CHAPTER VI
RESULTS AND RECOMMENDATIONS

The determination of neutron fluxes within the irra-
diation chamber was accomplished by both calculational and
experimental methods, The theoretical treatment involved
modeling of the chamber system to solve the Boltzmann trans-
port equation by two different techniques, Monte Carlo and
discrete ordinates, The MORSE Monte Carlo code calculates
fluxes using a point-detector estimator during a stochastic
experiment, The method of estimation of fluxes at points
is somewhat difficult and is subject to statistical errors,
The DOT discrete ordinates code solves for fluxes as
average quantities over a finite phase space cell, The
latter method is perhaps more applicable to the study of
real systems, because point measurements cannot be made;
all measurements involve some volume averaging, However,
because of only a two-dimensional treatment of the geometry,
this method may not be applicable to systems without a2 high
degree of symmetry. The three-dimensional treatment of the
geometry in MORSE should be more accurate, within the limi-
tations of statistics, in the treatment of systems in which
there is little or no symmetry.

The experimental determinations of neutron fluxes were
made by standard activation techniques.(lé) For thermal

neutron flux determinations, bare and cadmium-covered indium

L7
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foils were used, The activity induced in these foils was
measured with a 3" x 3" NaI(Tl) crystal and a multichannel
analyzer by examining the 1,29 MeV gamma-ray which is
characteristic of the decay of In-116m, Determinations
were also made of the fast neutron flux (above 2,9 MeV)
by using sulfur as a threshold detector., The S=32(n,p)P=32
reaction was used as the threshold reaction., The resulting
P-32 activity (a pure beta emitter) was measured by liquid
scintillation counting and comparison with a P-32 standard,
The positioning of indium foil pairs for thermal flux
measurements within the chamber is shown in Figure 6-1,
At each position a bare and cadmium-covered foil pair was
placed and irradiated for about one half-life of In-116m
(54,1 minutes), The results of these measurements (normal-
ized to one source neutron) and the calculated values from
DOT and MORSE are shown in Table 6-1? The thermal neutron
fluxes for DOT and MORSE are those of group 17 of the energy
structure (0,414 eV and below), This is a widely accepted
range for the sub-cadmium flux, The general patterns of
thermal neutron flux distributions are the same for both
codes, The magnitude of the flux falls off as the distance
from the source increases, and the fluxes at positions
"~ 4, 6, and 7 are approximately the same. The measured fluxes
agree quite well with the calculational values from DoT,
but are somewhat lower than the caleulational values from

MORSE. These differences can be attributed to several factors,

*Numbers in parentheses are powers of ten.
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7
FIGURE 6-1, Positions of Indium Foil Pairs Irradiated in

the Chamber.

Fluxes,

POSITION THERMAL NEUTRON FLUX PER SOURCE NEUTRON
MORSE DOT EXPERIMENTAL

1 10.(=3) + 48% 2.1(-3) 2.,1(=3) + 30%
2 5-8(-3) t 2’4‘% 201('3) 200(-3) i'. 30%
3 b,7(-3) + 22% 2,0(-3) 2.3(-3) + 30%
u’ 309(-3) i‘_ 22% ------- 205(-3) t 30%
5 2-7(‘3) t 31% ------- 1-9(“3) t 30%
6 b.4(-3) + 25% 2,3(-3) 2,3(=3) + 30%
7 3.7(=3) + 32% 1.6(-3) 2.2(=3) + 30%

TABLE 6-1., Calculated and Experimental Thermal Neutron
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First, all foils were irradiated simultaneously, Con-
sequently, seven sets of foils and cadmium~covered foils
were present in the chamber simultaneously, The flux
depression due to large amounts of cadmium is a significant
factor, Second, the foils in positions 2 through 5 were
shadowed by increasing amounts of indium and cadmium-covered
foils., Both of these factors tend to make the measured
thermal fluxes lower than they would be in an unperturbed
system, To alleviate these errors, a separate irradiation
was conducted with only two foil pairs in the chamber at
positions 1 and 7. Results from these measurements were
used to normalize the remainder of the measurements, These
are the results shown in Table 6-1,

In a separate irradiation, sulfur pellets and poly-
ethylene vials of sulfur were placed into the chamber as
threshold detectors for neutrons with energies above 2,9 MeV,
The fluxes measured by this technique are shown in Table 6-=2
for the positions within the chamber shown in Figure 6-2,
These values are within the order of magnitude as calculated
by DOT, but vary widely from those calculated by MORSE, The
differences in the high energy group .fluxes as calculated
by DOT and MORSE at three points within the chamber can be
seen by an examination of Tables 6-3 through 6-5, The MORSE
values are several orders of magnitude lower than the DOT
values which are in relative agreement with experimental
values, These differences in calculated fluxes can be ex-

plained, in part at least, because of the different versions
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FIGURE 6-2, Positions of Sulfur Vials Irradiated in the

Chamber,

POSITION FAST NEUTRON FLUX (>2.9 MeV)
la 1.4(-4)
1b 5.8(=5)
1c 3.0(=5)
1d 3.3(=5)
le b,1(-5)
1f 5.2(=5)
2a 2.5(-5)
2b 1.6(+5)
2c 1.5(=5)
2d 0.4(=-5)
2e 1.2(=5)
2f 1.6(-5)

TABLE 6-2, Fast Flux Distribution Determined
Experimentally.




ENERGY GROUP

DOT SPECTRUM

MORSE SPECTRUM

O O N O v EFowoNn e
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2,4(=7)
L,o(-5)
7.0(=5)
5.2(=5)
1.2(-4)
1.4(-4)
1.5(-4)
1.1(-4)
9.0(-5)
1.0(-4)
6.9(-5)
5¢3(=5)
6.4(=5)
4.9(-5)
3.6(-5)
1.1(-5)
2.0(-3)

0.0
6.2(=-12)
5.8(-11)
2.,1(-10)
2,7(-10)
8.0(-10)
1.3(=9)
1.3(-8)
8.3(-8)
2,9(=7)
8.2(=7)
3.6(=6)
9.1(-6)
1.3(-5)
3.5(=5)
9.3(~5)
bo7(-3)

TABLE 6-3, Comparison of DOT and MORSE Calculated Energy

—

Spectra at the Center of the Chamber.
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ENERGY GROUP

DOT SPECTRUM

MORSE SPECTRUM

1 6.8(-7) 0.0
2 - 9.2(=5) 1.2(-11)
3 1.2(-4) 1.8(-10)
b 8+5(=5) 5.6(=10)
5 1.9(-4) 5.2(-10)
6 2,0(-4) 2.,3(=9)
vi 1.8(-4) 3.9(=9)
8 1.3(-4) 1.5(-8)
9 1.0(-4) 2,1(=7)
10 1.1(-4) 8.2(=7)
11 7.7(=5) 3.2(=6)
12 5:9(=5) 3.1(=6)
13 7.0(=5) 7.7(-6)
14 5.4(=5) 3.1(=-5)
15 3.9(=5) 1.0(=4)
16 1.3(=5) 2.5(=4)
17 2,1(-3) 7.9(=3)
TABLE 6-4, Comparison of DOT and MORSE Calculated Energy

Spectra at 4.0 cm, from the Center of the
Chamber and Colinear with the Source.
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ENERGY GROUP

DOT SPECTRUM

MORSE SPECTRUM

1 8.5(=6) 0.0
2 7.2(=4) 1.9(-11)
3 8. 5(=k) 2,5(-10)
L b,2(-4) 7.0(~10)
5 6¢3(=4) 8,2(~10)
6 boh(-4) 2,5(-9)
7 2.4(-4) b.5(-9)
8 1.7(=4) 2,0(-8)
9 1.3(-4) 2,7(=6)
10 1o4(-4) 2,1(-6)
11 8.9(=5) 8.6(-6)
12 6.7(-5) 1.0(-5)
13 8,0(=5) 8.6(-~6)
14 6.1(=-5) 5.8(=6)
15 4,4(=5) 1.2(=4)
16 1.4(=-5) 5.6(=4)
17 2,1(-3) 1.0(=2)

-~

sk

TABLE 6-5, Comparison of DOT and MORSE Calculated Energy
Spectra at the Inside Wall of the Chamber
Colinear with the Source,
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of the cross sections used in these calculations,

In the cross-section module of MORSE, a non-absorption
probability is calculated from cross-section input., For
the high energy groups of lead, this probability was found
to be greater than one, It is suspected that this is a
result of inacurracies in the code, APRFX-I, which was used
to collapse the cross sections.(17) This non-absorption
probability is used by MORSE in the flux-at-a-point estima-
tor, So a high non-absorption probability and a low total
macroscopic cross section resulted in a skewed energy distri-
bution, away from higher energies and toward the lower
energies, Because the total macroscopic cross section is
in an exponential in MORSE and is a multiplicative factor
in DOT, the DOT calculations were not affected in the same

manner as the MORSE calculation,

Recommendations

Some further work is still needed to make the irradi-
ation chamber facility as useful as it could be,

First, further calculations using MORSE and DOT with
cross sections collapsed by ANISN(13) or XCHEKR(B) instead
of APRFX-I(lo) may bring the two calculations into better
agreement with themselves and with experiment, Second, the
calculations and measurements were made with only one source,
By employing superposition and the already measured and cal-
culated fluxes, the distribution for a multiple-source con-
figuration can be obtained, This would increase the utility

of the chamber because of higher and more uniform fluxes,
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Third, measurements of neutron and gamma-ray fluxes
with thermoluminescent dosimeters (TLD's) have been esti=-
mated to yield probable errors of +12%, This would be a
reasonable improvement upon the estimated accuracy of
+30% for activation foil techniques.(ls)

Fourth, the chamber may be modified or adapted to pro-
vide for many different types of studies, For example, the
activation of gases may be studied with a flow-through
system; and radiation effects upon operating electronic
circuits may be observed, Other studies may be conducted
on the effects of filter materials on the neutron spectrum
within the chamber, This could lead to the optimization
of the neutron energy distributions for various activation
analyses,

The objective of the current work was to provide a
useful chamber for larger scale irradiations with califor-
nium-252 sources with documented neutron and gamma-ray
fluxes, Because of the lack of coupled neutron and gamma-
ray cross sections and no adequate gamma-ray dosimetry
system, the gamma-ray effort was not attempted in this
thesis, However, with the documentation available on the
thermal neutron distribution and the recommendations
proffered for future uses, the chamber should be a useful
addition to the facilities at the Louisiana State University
Nuclear Science Center, The arsenal of computer codes at
LSU has also been increased with the addition of the MORSE

Monte Carlo code to the inventory.
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~ APPENDIX A
Supplement To MORSE User's Maual

The Fortran IV version of MORSE received by LSU was
compatible with release 20,1 of the Fortran G compiler at
LSU with one minor exception., The LSU system does not
allow ending a do-loop with a statement which can transfer
control, such as a LOGICAL IF statement, A simple remedy
for this situation is to remove the statement number from
the LOGICAL IF and place it on an inserted CONTINUE state-
ment immediately following, This was the only Fortran
language change that was necessary,

Other changes made to the MORSE package were made to
the blank COMMON and were made for two reasons, First, the
dimension of the blank common was 90,000 words, This
dimension was much too large for the LSU system (IBM 360/65).
There was no hope of fitting MORSE onto the LSU system
because of a limit of 260,000 bytes of main storage with
a four-byte word. The dimension of this common was, there-
fore, reduced to 26,000 words., This was more than adequate
for the current work (19,500 words were used), Second,
to allow for future use of hierarchy and low-speed core
for this common block, blank common was changed to a
labeled common, AMIKE, Therefore, there is no longer a
blank common in MORSE; all commons are now labeled,

The routines of MORSE were compiled and placed as
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three members of an object module library on disk. These
object modules are input to the linkage editor by means of
INCTTIDE statements., Also input to the linkage editor is

+he OVERLAY structure which saves approximately 48,000

bytes and allows MORSE to be run in 246,000 bytes of main
core, If hierarchy is employed at a future date, a region
of (150K,110K) would be sufficient, Appendix B is a listing
of the changes which were necessary to correct compilation
errors and to incorporate changes such that hierarchy may

be used without the need to recompile,

Appendix C contains a listing of the job control lan-
guage (JCL), linkage editor input (the overlay structure),
and the geometry input for MORSE, (Note: As of November 20,
1972, all data sets on disk used for DOT and MORSE have
been catalogued and renamed under D7011,.P50007,COURTNEY, )

The following are notes concerning specific points
which may be of use to future users of the LSU version of
MORSE ¢
1, Hierarchy of MORSE may be executed by the following:

// 0S Job Card

//STEP1 EXEC FORTGC

//FORT .SYSIN DD *

(Subroutine ERROR =-- User-written)

//STEP2 EXEC FORTGLG,PARM,LKED='HIAR,LIST,XREF,LET",

// REGION,GO=(150K,110K)

//LKED ,MORSE DD DSN=D7011,P50007,COURTNEY.0OBJECT,

// DISP=SHR
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//LKED,SYSIN DD *
INCLUDKE MORSE(MAIN1)
INCLUDE MORSE(MAINZ2)
INCLUDE MORSE(MAIN3)
HIARCHY 1, AMIKE
ENTRY MAIN
//GO.SYSIN DD *
(MORSE Input Goes Here)
/*
//
2, Hierarchy and Overlay cannot be used simultaneously
on an IBM 360,
3. The members of the object library and their contents
are as follows:
MAIN1 -- SAMBO, MORSE, and Cross-Section Routines,
MAINZ2 -- Library Functions and Machine Language
Routines Necessary for MORSE,
MAIN3 == Geometry Module and Subroutine BANKR,
4. Subroutine ERROR as used in this work is a dummy subrou-
tine which writes a message saying that ERROR has been
called., ERROR is provided for the user to write an error-
handling routine to meet specific needs, ERROR is called
whenever the diagnostic module is called during a MORSE run,
5. The geometry description in ORNL-4585 is probably
insufficient for the user with no prior experience with MORSE
input for the geometry module, A much more complete descrip-

tion is found in the @5R manual.(13) The geometry portion
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of the input for MORSE for the chamber treated in this
thesis is listed as a part of Appendix C (see also Figures
A=l and 5-5),
6, In the future, ANISN or XCHEKR is recommended for the
cross-section collapsing with the DLC2D library.(17)
APRFX~I seemed to be inadequate,
7. To use program PICTURE, all subroutines in the geometry
package as well as the following assembly language subrou-
tines are necessary:s

Subroutines AND, IAND, OR, IOR, ICOMPL, ERROR,
The assembly language routines are provided with MORSE, A
copy of program PICTURE for general geometry is available
from the Nuclear Science Center which includes all necessary
subroutines,
8, 'The variable, RH#, in the mixing table is the atom
density, N, times 10'24. The explanation of this on page
of ORNL-4585 is somewhat confusing,
9. SURFACE and SECTOR cards in the geometry input must be
omitted if the block contains only medium 0., (See Appendix
C.)

t(ll) is a complete description of

~

the input for a MORSE problem and is strongly recommended

10, The work of Burgar

as the source of information for the preparation of input,
11, If other problems are encountered in the use of MORSE,
the personnel at RSIC are always willing to help. They may
be contacted at phone 615-483-8611, extension 3-6944,
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BIOCK 1 1 3
3 2 3
1
I—_——--——_w-_m-r__—--—___
5 b b 5
Sector
Boundaries
BLOCK 1 1 2
3 2 1 2 3
Sector
Numbers
Block
Boundaries
—_h'-6_#
BLOCK 1 1 1
1 2 1

FIGURE A-1, Division of Z2one 2 2 1 into Blocks and
Sectors for MORSE Input.
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VITA

Robert Micheal Wyatt, born in Lafayette, Louisiana,
on September 5, 1949, is the son of Mr, and Mrs. Frank L.
Wyatt, After attending high school in Keyser, West Virginia,
for three years, his family moved to Baton Rouge, Louisiana,
where he graduated from Robert E, Lee High School in 1967,

He then entered Louisiana State University and received
his Bachelor of Science degree in basic physics in May,
1971, and was commissioned as a second lieutenant in the
U. S. Air Force. He was awarded a Union Carbide Corporation
scholarship for graduate study., After completing the
requirements for his bachelor's degree, he was called to
active duty with the Air Force and assigned to the Civilian
Institutions Program of the Air Force Institute of Technology
and assigned to pursue a Master of Science degree in Nuclear
Engineering at LSU,

Upon completion of this assignment at LSU he will be
assigned to the Air Force Weapons Laboratory at Kirtland

Air Force Base, New Mexico, as a nuclear research officer,




