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ABSTRACT

The results of the development of a prototype hybrid computer
package to study various proposed digitally controlled systems are
presented. The completed package, consisting of a digital control
system linked to an analog-simulated process, is the nucleus from
which other more elaborate control studies can easily be performed.

The specific physical system implemented in this work to demon-
gtrate the functioning of the package deals with digital computer
supervisory control of an analog computer simulated pressurized water
nuclear reactor power plant. The prototype was developed utilizing
the facilities and equipment of the Louisiana State University Chemical
Engineering Hybrid Simulation Laboratory.

The prototype is not limited to study of simulated processes
only. By using the analog computer as an interface almost any process
with measuring lines generating electrical signals may be studied.
Should control be desired there must be controllers that are operable
by electrical signals. This means that control studies can be per-
formed with pilot plants (processes) located within communication range

of the hybrid interface.
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CHAPTER I

INTRODUCTION

History, Background and Data Supporting the Reasons for this Work

A hybrid computer, which has features common to both digital and
analog computers, is a very versatile research instrument. It can be
used to study many diverse afpects of both similar and dissimilar
topics. In the field of nuclear power plant development, for example,
the hybrid computer can explore and evaluate such things as control,
safety, and plant design, and can be used to train operators by simu-
lating various situations expected in plant operations and management.

Experience has shown that persons trained on a nuclear power
plant simulator are better prepared to pass the Operator Licensing
Test given by the Atomic Energy Commission.(l) In designing nuclear
power plants, the computer can be used to analyze all systems which can
be expected to influence reactor behavior. Reactor kinetics equations
and auxiliary mathematical expressions of reactor dynamics can be
conveniently and rapidly analyzed.

Although the installation of an on-line computer in conventional
steam—electric generating plants is becoming quite common today, com-—
puter applications in a nuclear plant presents a somewhat different
approach. There has been no concerted effort toward direct digital
control in nuclear plants because of the extensive precautions
necessary in reactor operations.(z)

In the United States, the trend is to use the computer of a

nuclear plant only to accumulate data, perform calculations of internal




reactor parameters or core performance, and as an operational aid.
When a plant's computer is out-of-service, the plant can continue to
operate at full power or slightly less using the remaining instrumen-
tation. Operation at less than full power may be required when the
plant computer is out-of-service if the computer is being used to
determine operating limits.

After a sufficient history of reliable computer operations has
been accumulated, control aiid safety systems will become part of the
plant's computer functions. After these functions are assumed, the
need for redundancy in control systems in nuclear plants will probably
result in dual plant computers. A dual plant computer system would
be designed so that failure of one plant computer would automatically
allow a second computer to take over the functions of the inoperative
computer.

The potential applications of a computer in a nuclear power plant
include, in general, the following:

1) Data logging (Scan, Convert, and Alarm)

2) Calculations (Plant efficiencies)

3) Operator Aids (Plant conditions)

4) Safety System (Area radiation monitoring, and systems to

reduce the possibility of human error)

5) Supervisory Control

The great advantage of on-line computation is that it can provide
the plant operator with almost continuous information which permits
operating the plant closer to limits set by engineering, maintenance,

3)

safety, or procedural considerations,




A study of digital computer supervision of a nuclear power plant
revolves around the very real possibility of optimization of an objec-
tive function, which is usually net profit in dollars. The study
presents a problem common to many endeavors, namely evaluating the
proposed system. In evaluating proposed systems or designs one can
generally select either of two options: 1) an experimental evaluation,
or 2) an analytical evaluation. An experimental program is usually
characterized by a minimum of analysis, the construction of a prototype
of the system, and considerable trial and error work with the prototype.
The éost and time consumed in an experimental evaluation are normally
much greater than that required in an analytical evaluation of the
same scope. In the analytical approach, the first task is to derive
a set of equations (a mathematical model) whose solution will describe
the behavior of the variables of the system. Then these equations
instead of the experimental prototype are manipulated to generate the
desired results,

"Since the derivations of mathematical models nearly always require
some degree of approximation, some experimentation usually is required
for the verification of the model. However, prototypes designed from
analytical investigations hopefully portray reality. Then the only
experimental results required are those which validate the mathematical
model. Once the model is proven valid, additional data can be generated
analytically for various operating conditions, which may result in a
considerable cost reduction compared to the experimental approach. The

analytical approach is not necessarily always better than the experi-

mental, Both are different forms of analysis. The results of experi-

mentation are required to generate the mathematical relations of




parameters (mathematical models) for amalytical evaluation, and to

determine boundary conditions in some cases.

Electronic computation methods for the solution of mathematical
models utilize the digital computer or the analog computer or some

combination of both the digital computer and the analog computer called

a hybrid computer. In analog computers, the solutions of the mathe-

matical models depend on the analogy between the physical quantities

£y

and the mathematical numbers or manipulations. For example,

consider the analogy between electrical, mechanical and thermal

equations:

i-= de ___ (current flow through a capacitor)

¢ dt

F=2¥ dv __. (Force acting on a mass)
g dt

o
l

we Q% --- (Heat flow in a solid)

The form of the differential equation is the same in each case,
with the only difference being the constants and the physical meaning
of the variables. The variables are represented by scaled voltages in

an analog computer. The term "scaled voltages" (Magnitude Scaling) in

analog computers means that the voltage output of each amplifier is

proportional to the represented problem variable. This proportionality

constant is chosen so that the problem variable (temperature, pressure,

etc.) will be at maximum or minimum when the analog computer variable

(voltage) is maximum or minimum. (Usually this maximum is +10 volts or

+100 volts and the minimum is -10 volts or -100 volts, depending on the

machine reference voltage.) If a number of events take place at the

same time in the real world they will also take place at the same time




in the analog computer simulation. This occurrence at the same time in
the real world is termed parallel operation. On an analog computer it
is called parallel solution.

Digital computers perform all calculations serially, not in
parallel, and therefore, unlike the analog computer, require more and
more time as the problem becomes even more complex. In reality the
machine performs only Boolean Operations, which are used to build an
adder which adds numbers. To subtract, the machine adds the complement
of the number to itself the number of times equal to the multiplier.
Division has a similar algorithm. All operations that can be performed
on a digital computer have algorithms that, in their elementary form,
depend only on a certain structure of Boolean Logic. Therefore, with
the basic set of operations of Boolean Logic (and,or, not) the computer

(4)

can perform many operations.

The Problem

The objective of the work to be described in this thesis was to
develop a prototype hybrid computer package to study various proposed
systems. The package is the nucleus about which other more elabo-
rate studies can easily be made by other persons by using more
detailed analog models and by adding more control functions to the
digital section. This package has been developed in a modular form,
allowing virtually any problem that can be simulated on the analog to
be studied. The specific physical system implemented in this work (to

demonstrate that the package functions correctly) deals with digital



computer supervision of a simulated nuclear power plant. The proto-
type was devised utilizing the facilities and equipment of the

Louisiana State University Chemical Engineering Simulation Laboratory.

Hybrid Computer Simulation

The simulation of a nuclear power plant and its associated plant
digital computer is logically suited to hybrid techniques because a
nuclear power plant can be conven%fntly simulated on the analog com-
puter while the digital computer performs the functions of the digital
supervisor, In general, analog computers have the following advantages
over the digital computer for simulation of physical systems:

1) The speed of the solution is independent of the problem
complexity, and can be chosen to be faster or slower than
the physical system being simulated.

2) The analogy between the computer simulation variable and
the problem variable is straightforward.

3) The values of parameters and input variables can be easily
changed during operation, and the results of the change
can be observed at the rate of the time scale of the
analog simulation.

Digital computers, on the other hand, have quite different

advantages compared to the analog computers:

1) They are more precise, and solutions can be made as
accurate as the solution time or the mathematical model
will allow.

2) They handle logical operations much better than analogs.

3) They can store and manipulate huge quantities of data.




4) With floating point arithmetic, magnitude scaling is no

problem,

To enlarge slightly on the advantages of analog and digital
computers, consider the concept of information flow in either contin-
uous or discrete states. Continuous information flow is in the realm
of the analog computer. An analog computer is made up of electronic
components which function basically as operators in the mathematical
sense., Information flow in the &1screte form is in the realm of the
digital computer. In digital computers, structures depending on

&)

Boolean Logic serve as mathematical operators.




CHAPTER II

NUCLEAR REACTOR PLANT SIMULATION

Simulation of Neutron Kinetics

The kinetics of a nuclear fission reactor can be approximated by

the time and space dependent djffusion equation:
2. _ om

V2§ +B% = St

where & is the neutron flux in n/cm?-sec

B2 is the buckling in cm?

n is the neutron density in n/cm3

By considering a point in a reactor away from source sink and
boundary that has no spatial variation of neutron flux, the diffusion

equation can be simplified to give:

m
(-] . éhiﬁ-n + X AC

dt 1 =1 i1
dc_i: -s—in-kc
dt 1* 171
where k 1is the effective multiplication factor of the reactor

8k is (k-1)/k, the reactivity
g 1is the delayed neutron yield

1* is the mean effective lifetime of prompt neutrons in the
system

m is the number of delayed neutron groups

)\, is the decay constant of the ith group of delayed neutron
precursors.

C_ is the concentration of the ith group of delayed neutron
precursors.




With these simplifications the time and space dependent diffusion
equation becomes a single-node kinetics simulator. This single-node
simulation has thus neglected the space dependence leaving only the
time dependent diffusion equation. This time dependent diffusion
equation is an ordinary differential equation, which is easily pro-
grammed on an analog computer.

There are three basic types of single-node kinetics simulators:

-

1) One amplifier per group of delayed neutrons connected
to a single amplifier.

2) A single amplifier with a complex input impedance.

3) A single amplifier using a complex feedback impedance.

Each of these three types has its place in nuclear reactor
studies. The circuit with one amplifier per group of delayed neutrons
is used when amplifier availability is not a problem or when the delayed
groups are to have initial conditions, such as in the simulation of an
old core. The circuit using a single amplifier with complex input
impedance is used when there is a shortage of amplifiers but the
variable dn/dt must be available, such as in a multinode reactor core
simulation. A multinode reactor core simulation uses a number of
coupled space and time dependent diffusion equations, thus giving
spatial variation and the variation of neutron flux. The circuit
using the single amplifier with complex feedback impedance is used
when there is a need to conserve amplifiers and the variable dn/dt is
not explicitly needed in the simulation. This is accomplished with no
loss of accuracy.

Due to the large range of the power level in a reactor, as much as

a factor of 1014 from source level to peak power level, the simulation
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of a nuclear reactor on an analog computer presents a difficult magni-
tude scaling problem. Since it is impractical to cover more than two

or three decades in a single run on an analog computer, there have been
several alternate methods developed to treat the problem. One of these
methods depends on the nature of logarithms. By a substitution of
variables, the time dependent kinetics equations can be solved for the
logarithm of the power level instead of the power level. This allows
the power level itself to vary over a ;undred decade range remaining
within the magnitude limitations of the analog computer. This advantage
is not gained without added problems. These problems stem from the
large number of multipliers that must be used (one multiplier for each
group of delayed neutrons) and the high accuracy needed in the multi-
pliers to obtain satisfactory results in the simulation. Another method
that produces adequate precision depends on the manual rescaling of

the problem or the subdividing of the original problem into a number of
problems each covering two or three decades of the original problem.(s)
In this study the method implemented involves normalizing the neutron
flux which is equivalent to simulating the operation of the nuclear

reactor from three or four decades below maximum power level up to

maximum power level.

The Analog Implementation

This simulation was adapted from a study performed by EAI
(Electronic Associates, Inc., Red Bank, N.J.) on the primary loop of a
nuclear power plant.(6) In the EAI study the reactor neutron kinetics
was simulated by a passive feedback network. The transport delay of

the coolant flow was simulated by a piece of electronic equipment called
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a capacitor wheel. The scram system consisted simply of a manual switch
which was required by the peed for a human operator to perform the
function of quickly shutting down the simulation of a nuclear reactor
in operation. The adaptation for this work consisted of transforming
the analog program from dual EAI Model TR-10's to a model EAI-680 along
with transforming the passive network for simulation of the nuclear
reactor kinetics, the transport delay of the primary coolant loop, and
the scram system, all to the equivalent conventional analog patching.

The simulator will reproduce the behavior of the primary loop of
a large pressurized water nuclear reactor (PWR) shown in Figure 2-1.
In this adaptation, the primary loop is considered to be operating
initially under steady-state conditions at one-half of its maximum
power. Typical responses studied in this simulation are the response
of the reactor to a step change in reactivity; the response of the
control system to power demand changes; the reactor response to control
system failure during power demand changes; and the response of the
reactor when scram rods (large negative reactivity) are inserted into
the core.

There are a number of interacting physical systems represented by
the simulation:

1) The reactor uses 235U fuel elements as the source of energy

(heat) from the fission process.
2) Heat transfer within the fuel element is caused by the

temperature difference within the element.
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1. Outlet Plenum
2., Primary Coolant Pump
3. Heat Exchanger
4, Inlet Plenum
5. Reactor Core
6. Control Rods
7. Control Rod Drive Unit
8. Cascade Comtroller
9, Analog Error Signal
10, Average Temperature Across Heat Exchange
11. vValve to Maintain Constant Pressure to Turbine
12, Turbine
13, Steam Temperature
14, Digital Computer
Figure 2-1
Schematic of PWR Primary Loop
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L)

5)

6)

T)

8)

9)

10)
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The fuel element to coolant heat transfer is due to tempera-
ture differences getween them. This results in the partial
extraction of fission energy from the core with later
application in the generation of electricity.

The pressurized fluid (coolant) leaves the core through the
outlet mixing chamber and is transported to the primary heat
exchanger (steam generator).

The energy is transferred fro; the primary loop to the
secondary loop by temperature differences in the steam
generator.

Although not simulated, flow through the secondary loop
would drive a turbine which in turn would drive a génerator.
The coolant in the primary loop after exit from the steam
generator is pumped back to the inlet mixing chamber.

The coolant reenters the core from the mixing chamber and
flows over the fuel elements removing the heat and thus com-
pleting the coolant loop.

The error signal feeding the control system is generated by
the difference between the average temperature of the primary
loop coolant existing in the steam generator and the setpoint
temperature (the temperature at which the steam generator
should be operating).

The error signal is operated on by a cascade controller to
generate the control rod position which in turn determines
the reactivity which through the reactor kinetics equation
dictates the neutron level. The cascade controller takes

the error signal and operates on it with a PI (proportional,
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Fuel Element Heat Transfer:
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Figure 2-2,1
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Reactor Kinetics: 92&%1 = 22151 - ﬁEéEl + X kici

Heat Generation and Coolant Transfer Loop Equations
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piping Delay to Inlet Plenum

Tix ~ Toxt™D)

Inlet Plenum

dT W
ic _ _¢
at H, (Ty-T5 )

Figure 2-2.2
Heat Generation and Coolant Transfer Loop Equations




Average Temperature:

avg = O.S(Tox + Tix)
Error Signal:
€(t) Tref-Tavg
PI Controller:
duw) | L aw m(ll)
dt T dt T n
m c
Reactivity:
6k = ékp + ka + ékc + th
ékt = d(Tf-To)
Figure 2-3

Control Systems Equations




Reactor Kinetics:

2
£ [10n"] = (0.5)[20008k] [10n" 1-10(0.64)[10n"] + 10 £ A.C,

1=1 11
* 8 *
drciﬁ‘_ 1 i * e
ST =L Snaty-a [ 2]
*
dt | 10 102 1 Lo
Fuel Element Heat Transfer:
f AH T
a [ 55,] { ) 5uA
2007 = 0.1 =—i—r [10n]( )[ ]+o1( [—=
dat 200 Mfo MfC 200 f £ 100
Fuel Element to Coolant Heat Transfer:
[c 2 [Tf]-(UA+2WcCc> [T°]+(ZW°C°>T
dt 100 M C 200 MC 100 MC c
c cc cc

Out of Reactor Core:

T,
10€0.2)[==x

I:100 100 [ 100 ]

Outlet Plenum:

|:100 = ( )[1001 ( )[1001

Piping Delay to Steam Generator:
To
[1 ] = [m] (t-D)

Steam Generator:

2 O UA UA T T,
1= 21+ 555] - wo ]-
Er M (356 M C_ 100~ ~ M C_ 100 M l100

Figure 2-4.1
Analog Magnitude Scaled Heat Generation and
Coolant Transfer Loop Equatioms




Qut of Steam Generator:

100] 10¢0.2) [100] l-'100]

Piping Delay to Inlet Plenum:
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Inlet Plenum: b
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Figure 2-4.2

Analog Magnitude Scaled Heat Generation and
Coolant Transfer Loop Equations
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Average Temperature:

[100 - °5<[1oo] [100]

Error Signal:
_ ref
[1o5) = [1°] 1ooo [100

Cascade Controller:

[2(no-n*)] = (2x10°K » J m]dt + (2000K T )[-1-0—0

-0.200[10°] + 2n_(0)

Control Rod Drive Unit:
*
3 [20(no-n )]

2 10

2 00007 = &y & [2000,] = ()
~ [2000] = &) & (200041 = (

dt m m

*
[10n ]
Reactivity:

T
[20008k] = 10(20k)[10] -10¢4x10*|a}) [ 5= 1+ [2000u]

k = ékf + 6kc(0) + GkP-GTo

Figure 2-5
Analog Magnitude Scaled Control Systems Equations
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CHAPTER III

CONTROL COMPUTER CONCEPTS

Information Flow

Three types of flow can be considered in process analysis: flow
of material, flow of energy, and flow of information. The flow of
information is enhanced by the ingprporation of control computers in the
scheme. Information flow is essential to control for without informa-
tion in its many forms the control function (the ability to accomplish
a desired end) is effectively lost. A digital computer control system
is a tool which may be applied in the area of information flow. The
digital computer has the ability to quickly acquire, assimilate, analyze,
and disseminate large amounts of information with great speed, accuracy,

and flexibility.

Methods of Computer Implementation

The methods of computer implementation of control which are of
interest are: 1) off-line, and 2) on-line. Each can be further divided
into: a) open-loop, and b) closed-loop. The terms off-line and on-line
refer to the method by which process data is entered into the computer.
The terms open-loop and closed-loop refer to the method by which the
feedback signal that is calculated by the computer is passed to the
process,

The off-line computer receives information about the process from
a4 human intermediary and the resulting calculated control actions are

applied to the process through the human operator (open-loop mode). In
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the closed-loop mode, the computer applies the control action to the
process through an electronic interface that converts the signals into
gettings for the controlled elements in the process.

As the intricacies of the process unfold, the potential of
information flow in the process is enhanced by on-line computers.
The term "on-line" refers to the ability of the computer to accept
signals directly from process instruments and to convert them into a
form suitable for computer proc;ssing. The on-line ability greatly
reduces the data accumulation time. An on-line computer could operate
in the open-loop mode, again referring to the fact that the resultant
calculated actions are applied to the process through a human operator.
In on-line, closed-loop computer control the computer receives informa-
tion strictly from the process and its calculated control actions are
applied directly to the process through suitable instruments. In this
last mode the faster information flow results inthe least delay time
from the time something happens in the process to the time the process

)]

receives a resulting control action.

Software Requirements

In the past in computer control implementationm, there have been
many instances of underestimation of the cost of user-written software.
There are several reasons for this:

1) Since every process is unique there will be a congiderable
amount of effort expended initially in developing the
custom software required by each process. Cost for the
effort depends upon many things, one of which is the

previous experience of the personnel on the project.
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2) The software was often not designed to be easily expandable.
The once-and-for-all concept was used with little or no
thought for future expansion.

The development of the philosophy and general operating charac-
teristics of a complete set of real-time programs is an extremely
important task. The success of the entire project may hinge upon
guccessful software design and development. To some degree the
structure of the software system dif;ers between DDC (Direct Digital
Control ) and Supervisory Control. In DDC, the tasks to be per formed
are usually simple, but must be performed at frequent intervals.

These tasks are usually very similar. In contrast, in Supervisory
Control the tasks are usually longer and more complex, but the system
is usually composed of fewer tasks. Supervisory Control can be thought
of as setpoint control. The computer outputs the setpoint to the
controlled device (analog controller) which in turn maintains the con-
trolled variable at setpoint conditions by manipulating a control
element. In DDC the computer outputs (position, etc.) directly to the
control element, thereby replacing the function performed by the ana-
log controller should the controlled variable experience a disturbance.
While the demands on the software packages differ between DDC and
Supervisory Control, both must operate in real time.

In either Supervisory Control or DDC, the monitor or executive
system can be divided into three parts:

1) Interrupt Servicing,

2) Cyclic Program Servicing,

3) Free-time Servicing.
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The basis for this structure revolves about the idea that the
accomplishment of some tasks are more important than the accomplishment
of others. Therefore the tasks that are more important are assigned a
higher priority than the less important tasks. Depending upon this pre-
assigned priority, the tasks are assigned to initiators or interrupt

jevels within the computer.

Interrupt Servicing -

A process control computer may have any number of levels of
interrupts. Each level has associated with it a priority. When the
computer is operating and an interrupt request occurs that has a higher
priority than the current task which the computer is executing, the
current task is interrupted with the contents of all registers saved
and the higher priority task enters execution. When the higher priority
task has been completed the interrupted task registers are restored and
execution continues from the point of interruption. If an interrupt
request occurs that has lower priority than the current task which the
computer is executing, there is no interruption of the higher priority
task to service the lower priority interrupt request. Instead when all
higher priority requests have been serviced, it will be serviced. An
interrupt request of the same priority level of a current task will not
interrupt the current task but will be serviced later.

To illustrate the operation of interrupts refer to Figure 3-1.
The computer is in the idle state at the start of this example, which is
graphically represented at the top of the time line. As time passes,
one moves down the time line until Interrupt 1 occurs. The computer \

responds by servicing this interrupt since none of higher priority are !

.




Occurrence
of Time Computex Computer Interrupt Servicing
Events Lin Idl
" ¢ € # #2 #
Interrupt 1 r ................. == -, Begin Task
....... -------------_.lEndTaﬂ:
Interrupt 2 ] { ---------------- Begin Task
Interrupt 3 . ................ nd Task on 2
Begin Task on 3
________ nd Task
Interrupt 2 ‘ L ............ e - -y Begin Task on 2

Interrupt 1

Interrupt 3

Interrupt 1

Halt Task on 2

""""" Return “to Task “on
------ End Task

Figure 3-1
Interrupt Operation

Begin Task on 1

Begin Task on 1

End Task on 1
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utilizing the computer. When this servicing is completed, since no
other interrupts of lower priority require servicing, the computer is
returned to the idle state. As time passes, Interrupt 2 occurs. Since
no interrupts of higher priority are active, the computer begins servic-
ing Interrupt 2. Before the computer has finished servicing Interrupt
2, Interrupt 3 occurs. Interrupt 3 does not receive control of the
computer now since an interrupt of h%gher priority has control. When
Interrupt 2 is completed the computer gives control to level 3 since no
interrupt of higher priority is active and Interrupt 3 is waiting to be
serviced. Since no other interrupts occur during the servicing of
Interrupt 3, the level is not interrupted and when service is completed,
the computer is returned to the jdle state. Later Interrupt 2 occurs
again. Since the computer is in the idle state, there are no high
priority interrupts active and the computer gives control to Interrupt
2. Before level 2 can finish, Interrupt 1 occurs. The computer saves
status on level 2 and begins servicing Interrupt 1 since it is the
highest priority active in the computer. Interrupt 3 occurs during the
gservicing of Interrupt 1, but since level 3 is lower than level 1 or
level 2, it will have to wait until the completion of the servicing of
levels 1 and 2. Interrupt 1 has now been completed and the computer
proceeds to give control to Interrupt 2, since it is waiting and now
has the highest priority. When the computer finishes servicing level 2
it will find that level 3 now has the highest priority and gives control
to Interrupt 3. During the servicing of level 3, Interrupt 1 occurs and
the computer gives control to level 1 putting level 3 in the wait state.
When level 1 is completed, level 3 is restored and continues servicing

from the point at which Interrupt 1 had occurred. When level 3 is
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completed there are no interrupts active and the computer again returns
to the idle state.(s)
In general, the assignment of interrupts to their associated
tasks is not a simple matter. In most cases, monitor interrupts have
the highest priority, level 1. The next level, level 2, may be
assigned to disastrous plant alarms. The groups that would be attached
at this level are equipment shutdown tasks. This level could also
include some type of logging function which after an emergency condi-
tion could, upon request, produce the record of events during the
emergency condition. With this information the operator should be able
to decide what caused the condition. On level 3, there could be some
type of timing function or clock task which would be the scheduler for
programs that need to run on a cyclic base. The different control
programs would be attached to different interrupts within level 3.
When the clock task detects that it is time for one of the tasks to
run, the clock task turns on the interrupt associated with the tasks
that need servicing. On level 4, there could be a task that allows
the human operator to communicate with the control computer. The
usual name for this task is operators console. This interface rela-
tionship between the human and the computer is very important. The

function of operators console is to allow the operator to use the

computer to expand the control capability.




CHAPTER IV

DIGITAL DATA ACQUISITION AND CONTROL PACKAGE

The Function of the Package

This package performs the necessary digital data acquisition
and data manipulations required to accomplish a set of control tasks.
The package is connected to an interface through which process
variables are communicated., The process in this study was simulated
on an analog computer. The process need not be simulated should the
real process be accessible to the computer. The interface communi-
cates signals between -10 and +10 volts. The analog computer operates
with signals in the range of -10 to +10 volts. Should the real process
not have signals initially in this range, the signals can be trans-
formed into the required voltage. The real process variables are then
connected into the interface instead of the simulated process varia-
bles. Thus the researcher can study a simulated process or a real

process with equal ease.

The Description of the Package

The package was designed with further expansion in mind. This
capability for further expansion stems from its modular structure,
which was designed at the outset of the project. The structure
consists of several modules each composed of groups of related
tasks. The basic modules required are: 1) time module, 2) process-
computer interface module, 3) control module, 4) human-computer
interface module and 5) intra-structure communication module; refer

to Figure 4-1.




Timing
Module

Intra-
Structure
Communication

Module

Control
Module

Human-
Computer

Figure 4-1

Structure of Hybrid Package
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Timing Module

The timing module consists of a clock function for counting
elapsed time and a triggering function for initiating all tasks that
cun on a cyclic or time initiated base. At memory location X'5A'
(hexadecimal) in the Sigma 5(9) is a hardware feature called "counter 3
interrupt if zero". The integer number stored in this location is auto-
matically decremented by 1 every one five-hundredth of a second.
Depending upon the time frame desired, this location is initially set
at a certain value (e.g. 500). After 1 second has passed the location
will have counted down to zero and the internal interrupt from ''counter
3 interrupt if zero" will occur. Because this is the highest priority
interrupt in the computer, it will be serviced immediately. To service
this interrupt, the computer first stops executing whatever program it

is currently working on and stores into location X'5A' the same value as

before so that the automatic count-down to zero will occur again the

next second. Then the computer triggers interrupt level X'60', the

highest external interrupt which is connected to the timing module

routine. Therefore, instead of returning to the program which it may
have been executing when the counter 3 interrupt occurred, the computer
next begins executing the timing module routine after first saving the
necessary registers to permit it to returnm to fhe interrupted program
later. The timing module updates the time-of-day, a record it is keep-
ing, and decrements by 1 second all the contents of locations associated
with the time-to-run (ITRUN) table, which keeps track of when each task
that runs on a cyclic base should be jnitiated. The timing module then
Checks to see if any of these tasks have a time-to-run equal to zero.

If 80 the interrupt to which the task is connected is triggered by the i
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timing module and the task run interval is stored in the time-to-run
table. None of these triggered tasks start immediately because the
timing module routine 1is running at the highest priority external
interrupt level. When it is finished with the time-to-run table, the
timing module interrogates the intra-structure communication module to
determine if any control programs need servicing. These control
programs could need servicing because of either unusual conditions in
the process detected by the process-computer interface or by request
from other modules. If any need servicing, the interrupt levels
associated with them are triggered. Therefore, the control programs
may run on a cyclic time base and also on requests., This describes the

present design of the timing module structure. The timing module is

easy to add to or modify.

Process-Computer Interface Module

The process-computer interface module performs four functions and
1s connected to the second highest external interrupt level X'61'.
These four functions are: 1) receive, 2) filter, 3) send, and
4) convert. In receive, the computer interrogates the process to
determine the current values of the variables in the process which have
been chosen as process inputs and therefore are patched into the Analog
Digital Converters (ADC units). The digital values which the computer
receives from the ADC units are normalized quantities (between -1 and
+1). These normalized values must be multiplied by a scaling constant
for each individual variable to obtain the value in engineering units.
These scaling constants are read into a table as data when the package

18 first loaded into the computer. Thus the values in engineering
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units, E.U., have dimensions, whereas the values initially read from
the process as normalized variables are undimensioned. The E.U.

values next could be digitally filtered to reduce the effect of any
random error or ''moise'" in the readings from the process. This filter-
ing function was not implemented in this study since no need for it

was detected. Later applications involving readings from actual
instruments on pilot plant equipment will likely require filtering.

The position to insert filtering has been denoted in the program list-
ing should the need develop. The filtered E.U. values are stored in a
table in the intra-structure communication module for access by other
modules. Thus there exists in memory at all times while the package
is in operation a table of the most recent E.U. values of the process
inputs. The process-computer interface next checks to see if any other
modules have entered any values to be sent to the process (setpoints,
etc.). Should there be outputs to be sent to the process, the process-
computer interface normalizes the E.U. values of the outputs then sends
them to the process via the Digital to Analog Converters (DAC units).

At this point the module has completed its function for this cycle.

Control Module

The control module has slots for eight control programs, one of
which was implemented in this study. Expansion of the number of control
8lots beyond eight could be easily implemented. Each control program
has associated with it a run interval since control programs normally
run on a cyclic base. If the control program has been previously turned
on, the time-to-run for the control program (ITRUNC) is being decre-

Mented each cycle by the clock module. The control module merely
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interrogates the time-to-run of each control program and executes those
that have zero entries. Thus the control module itself runs on the
ghortest cycle when initiated by the timing module, and each control
program is called at its appropriate time by the control module. All
run interval values are stored in the intra-structure communication
module and they can be changed with the human-computer interface module.
When a control program needs to output information back to the process,
it stores the value in the intra-structure communication module and sets
a flag that indicates the value is new and awaiting transmission to the
process, The next time the process-computer interface module rums, the
set flag is detected and the value is sent to the process. The control
module is connected to both external interrupt level X'62' and X'63'.
Should a control program be requested to run by another control program
or by any module, interrupt level X'62' will be activated. If the con-
trol is requested by the timing module, interrupt X'63' will be acti-
vated. This allows control programs with a higher need to run than the
normal cyclic operation to cut in line. Control programs also have
built-in priorities with respect to each other depending upon the order

in which they are interrogated by the control module.

Human-Computer Interface Module

The human-computer interface is located at the lowest priority in
the interrupt structure because of the relatively long response time of
a human operator. The computer can respond to an operator request via
the human-computer interface module and still perform all the higher
Priority tasks described above, normally without the human operator

detecting a lull in the transmissions. Were this module given higher
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priority, the human operator-computer communication would not increase
noticcably, but the computer would spend excessive time in the idle
state since it cannot service lower level interrupts until higher levels
are completed. Consequently, many of its tasks would simply not be
executed. Instead, the priority structure assigning the human-computer
interface module the lowest priority results in the best overall per-
formance. The human-computer module is termed the '"operators console

w
program" by most users in industry. The operators console program
should be broad enough in scope so that the human operators abilities to
interpret and run the plant are improved, not hindered. To accomplish
this task effectively, the module performs two basic functions. The
first gives the human operator the capability of changing values stored
in memory locations with the computer, and the second gives him the
capability of looking at listings of values stored in the computer. The
human operator would be required to remember the locations of the values
and exactly what the value had to be to accomplish the desired action if
these two module functions were not expanded. In the expanded form
implemented in this study, instead of only one general purpose memory
change function and one general purpose memory printout function, there
are a number of specific change and print functions designed to change
Or print out specific types of quantities. Each function is requested
by the operator by entering three codes into the computer. The first
code, IFUNCOD (Function Number), identifies the function. The second
code, IDPT (ID point), identifies a sub-element within the specific
function and the third code, VALUE, when applicable designates the new
Value to be entered into memory. When a human operator attempts to

Cchange any value by more than five percent, the operator console program

R




36

requires a verification from him before the change is affected. The
operators console functions implemented in this work are listed in
Figure 4-2. The values that the operators console program can change

or print out are stored in the intra-structure communication module.

Intra-Structure Communication Module

A Fortran programmer would recognize the intra-structure com-
minication module as "Common'. Common is a storage area that can be
used by the different modules, but it is not located within the modules.
In this study, values that are parameters are stored in common in the
CT (control table). These parameters can be changed or printed out by
an operators console function. The values that are variables, i.e.,
values that are either read from the process or generated by a module,
are stored in common in the VT (variable table). These values cannot
be changed directly by the human operator, but they can be printed out.
Typical CT and VT constants are listed in Figure 4-3 and 4-4 along with

the meaning of each element.

The Use of the Package

The process if simulated is patched on the analog board. The
inputs and outputs to the simulated or real pilot plant are selected and
patched into the interface section on the analog board (ADC units and
DAC units). With knowledge of the inputs and outputs, the parameter
cards are punched and added to the program deck. The program is then
loaded into the computer. The setup of the deck will not be discussed
here since appropriate comment cards are included within the listing of

the program deck in the appendix. The parameter cards which follow the
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program deck arc also shown in the listing in the appendix. They are
described by comment cards in the listing and their formats are defined

by format statements in the program.
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Idpt

Idpt

Void
Idpt

Void

Idpt

Void

Void

Idpt

Void

Idpt

Idpt

Void

Idpt

Idpt
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VALUE DESCRIPTION

Value Update of Constants in Control
Table (Idpt) to (Value)

Value Update of Task Run Interval (Idpt)
to (Value)

Value Update of Alarm Lower Limit (Idpt)
to (Value)

Value Update of Alarm Upper Limit (Idpt)
to (Value)

Void List on Logging Device Alarm Limits

Void Change Name of Analog Input (Idpt)

Void List on Logging Device Names of
Analog Inputs

Void Start Trending Log, Idpt = Number
of Variables to be Trended

Void Stop Trending Log

Void Add One Variable to Trend Log
(Max.9)

Void Delete One Variable From the Trend-
ing Log, Idpt = the Number of the
Variable Deleted

Void To Give Clock Correct Time of Day

Void To Turn on a Control Program (Idpt)

Void To Turn Off a Control Program (Idpt)

Void To List on Logging Device Status of
Control Programs

Void To Allow Control Program to Print
Messages

Void To Turn Off Messages From Control
Program

Figure 4-2

Operator Console Functions
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CONTROL TABLE

IDPT VALUE DESCRIPTION
1 1.0 Maximum Value Neutron Flux
2 20000.0 " "  Avg. Fuel Temp. F
3 1000.0 " "  Temp. Out of Core F
4 1000.0 g " " " " Mixing F
5 1000.0 3 " " in Exch. = F
6 1000.0 M "  Avg. Temp. Exch. F
7 1000.0 " " Cool in Core F
8 1000.0 " "  Temp. Out Exch. —F
9 1000.0 "% " Inlet Mixing F
10 1000.0 " " T Inlet Core F
11 1.0 i " Control Rod Position
12 10000.0 " "  Steam Temp., — F
13 1000.0 " "  Temp. Avg. Compar. F
14 1000.0 " "  Error Temp. F
15 1.0
16 1.0
17 0.005 " "  Del K
18 1000.0 " "  Temp. Ref. F
19 1.0
20 0.0
21 0.0
22 0.0
23 0.0
24 0.0
25 1000.0 " "  Setpoint Controller F
26 1.0 " "  Digital Load Change
27 0.7 Position of Valve on Heat Exchanger
28 0.0
29 0.0
30 0.0
31 - 0.0
32 0.0
33 0.0
34 0.0
35 0.0
36 0.0
37 400.0 Temp. Steam Target F
38 0.1 KP For CONTR1
Zg 0.05 KI For CONTR1
0.0
Figure 4-3.1

Control Table
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CONTROL TABLE
IDPT VALUE DESCRIPTION
41 60.0 CONTR1 Run Interval Seconds
42 60.0 CONTR2 " " "
43 60.0 CONTR3 " " "
L4 60.0 CONTRG " " "
45 300.0 CONTR5 " " "
46 300.0 CONTR6 " " "
47 300.0 CONTR7 " " "
48 300.0 CONTR8 " " "
49 0.0 -
50 0.0
51 1.0 Flag to Print Cont. Prog. 1 Run
52 1.0 1] " " " " 2 "
53 1.0 " 1" " " " 3 1
54 1.0 " 1" " " 1" 4 "
55 1.0 1" " " 1" " 5 1"
56 1.0 " 1 " " 1" 6 111
57 1.0 1" " " 1" " 7 "
58 1.0 1" 1] 11 " " 8 "
59 0.0
60 400.0 Temp. Setpoint F
Figure 4-3.2

Control Table
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VARIABLE TABLE

IDPT VALUE DESCRIPTION
1 Current Values Current Value(EU) of Variable Described CT(IDPT)
2 11 11 1] [1] 11] " 11] 1"
3 1] 11] 1" (1] 1 1" n "
4 11] " 1" (1] o " " "
5 11 " 11 11" 1" " 1 "
6 1" 1 1] 1" " (1] " " 1"
7 " 1" 11 11) 1" 1 1" "
8 (1] " 11) 1" " " " "
9 " " ”" L 1" 1" 1} "
10 1] " " 1" " 11] " "
11 11 " 11 ”" 1" 11 1 "
12 " 11 " " 1" " 1" "
13 " " " 1" 1t 11" [1] "
14 " " 11" " n 11] " 11}
15 1" 11 " 1" 11 " " 1"
16 11 " " " ”" " " 1"
17 n " " 1" 1) 1] 1" 1"
18 " 11 1" n 11) 1" 11 "
19 Available for future use
20 11 " 11 "
21 11 11) ” 1 1]
22 " 11] 11] "
23 (1] " " 11
24 1] " 11 "
25 " " 1" 1"
26 Current Values Position of Valve on Heat Exchanger
27 Available for future use
Figure 4-4

Variable Table




CHAPTER V

ACTION OF A DIGITAL SUPERVISORY CONTROL PROGRAM

Digital Control Program

The digital control program implemented in this study demon-
strates the utility of the hybrid package for making studies of various
proposed digitally controlled systemg. The cascaded control system
included in the analog simulation of the PWR is not capable of main-
taining constant steam temperature when a load disturbance occurs in
the system. With the addition of a supervisory digital control program
to maintain constant steam temperature the total system adjusts auto-
matically to load disturbances and returns the steam temperature to its
desired value. The objective of maintaining constant steam temperature
stems from the characteristics of turbines. Turbines perform better if

(10) Since the steam in this

they are operated at constant pressure.
model is considered to be saturated, constant pressure means constant
temperature. Therefore the objective of better performance of the
Steam turbines is met by maintaining a constant temperature steam flow
leaving the héat exchanger.

Each time it runs, the digital control program uses the velocity
form of the PI control algorithm to compute an adjustment to the manip-
ulated variable (temperature setpoint for the analog cascaded PI

controller) based on the error in the controlled variable (desired

Steam temperature — actual steam temperature). The velocity algorithm
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can be expressed as:

M= Kb(EN-EO) + KI(EN)

where M = Change in the manipulated variable
R? = Proportional constant
KI = Integral constant
EN = Error now
EO = Error at previous*time increment

There was no attempt made in this study to develop optimal values for
the two digital controller settings, the proportional constant and the

integral constant,

Response of Process to Digital Supervisory Control

The above described digital supervisory control program was
written and inserted into the digital package to illustrate the appli-
cation of the digital control package to control an analog simulated
process, As explained above, the digital control program, when turned
on by the human operator through an operator console function, adjusts
the setpoint of the analog cascade controller to maintain a constant
temperature of the steam generated in the boiler. The graphs in
Figure 5-1 to 5-4 represent the responses produced by the hybrid com-
puter package to a ten percent load change. The load was varied by
adjusting a parameter in the analog simulation representing the open-
ing of a valve in the steamline to the turbine, The plotted informa-
tion was obtained while the simulated process was running via the
operators console function. Different responses were obtained by
Changing the digital controller proportional and integral constants.

'/
alues of the controller constants are listed on the individual graphs.




Figure 5-1 illustrates the response without the digital control
program in operation. The steam temperature does not return to its
original position before load change. Figure 5~2 illustrates the
response with only proportional action. In this case the steam
temperature does not have as much steady-state off-set from the set-
point as in the case without any control., Figure 5-3 and 5-4 illu-
strate the response with both proportional and integral action.

There is no permanent off-set if inte;ral action is employed. Differ-
ent values of integral action produce differences in the periodic time
constant and the stability of the system. Increased integral action
decreases the response time of the system, but at the same time de-

creases the stability of the system.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDED FUTURE TOPICS
Conclusions

A hybrid computer package has been developed allowing the study
of many aspects of various physical time varying systems. The variety
of physical systems that can be studied are limited by only two con-
straints. The system must either be':ommunicable in a mathematical
gense such that a mathematical model of it (simulation) can be patched
on the analog portion of the hybrid, or be actual physical processes
that can communicate with the hybrid.

For demonstration of the package, a nuclear power reactor was
simulated on the analog section with a digital process control computer
implemented on the digital section of the hybrid computer. The digital
control objective was to maintain a certain output (steam temperature)
of the analog simulation at a specific value.

The demonstration system was operated successfully, and all
components of the hybrid package were shown to function as designed,
including Scan, Alarm, Trend Logging, Operators Console Functions, and

Digital Control Programs.

Recommended Future Topics

The hybrid package could be expanded in various ways to yield an
even more powerful research tool.

The capability of maintaining in the computeré auxiliary memory a
historical record recallable on demand (e.g. 24 hours) of all the data

being generated would produce for the researcher a more complete




picture of what was occurring.

At present when the package is running both the analog and digital
machines are dedicated to the hybrid package. The digital section of
the hybrid package could be further developed so as to time-share the
digital computer with other digital programs. The use of the hybrid
computer to control either simulated or analog processes would not
interfere greatly with normal batch-type use of the digital computer.

For any specific study, additional control programs could be
developed relying on more advanced control techniques. Two such
techniques are Feedforward Control and Adaptive Control. Feedforward
control generates control actions based upon measurement of inputs to
the process instead of the controlled variable. Should the inputs
change, a feedforward control program computes the corrective action
needed to maintain the controlled variable at the desired value.(ll)
Adaptive control is defined as a system which is provided with a means
of continuously monitoring its own performance in relation to a given
index of performance and modifying its own parameters by closed loop
action so as to approach optimal performance.(lz)

Should the control programs exceed the available core storage, the
Structure could be modified to allow the control programs to reside in

auxiliary storage. The programs could then be brought into core when

needed (e.g. overlay structure).

50
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LIST OF SYMBOLS

SYMBOL MEANING UNITS
A Heat transfer area in the reactor ft2
Ax Heat transfer area in the steam generator ft2
A’ Cross sectional flow area ft2
C, Specific heat of the coolant Btu/1b-°F
cf Specific heat of the fuel, moderator,etc. Btu/1b-°F
G Concentration of neutrons from delayed
J neutron group "j" Neu/sec
Fluid specific heat Btu/1b=-°F
Reactivity constant Dimensionless
Control rod drive unit gain ft/sec
Controller gain neutzrons
°F-sec-cm
Mass of coolant in the reactor lbs.
Mass of fuel, moderator, etc. 1bs,
Mass of collant in the inlet plenum
chamber 1bs,
Mass of coolant in the outlet plenum
chamber 1bs,
Mass of coolant in the steam generator 1bs,
Operator Seconds-1
Ambient temperature °F
Average coolant temperature in the
reactor °F
Average fuel temperature °F
Coolant temperature at the input to the
reactor inlet plenum chamber °F

Coolant temperature at the outlet

plenum chamber, or temperature co-

efficient of reactivity reference temp-

erature (temperature of which temp-

erature contribution is zero). °F




oC

oxX

ref.

ave.

2 < <

H =

'y

MEANING

Average temperature of secondary fluid
in steam generator

Average coolant temperature in the steam
generator

Temperature of coolant entering the
reactor

Temperature of coolant entering the steam
generator -

Temperature of coolant leaving the reactor

Temperature of coolant leaving the steam
generator

Reference temperature
Average system temperature
Fluid temperature

Overall coefficient of heat transfer in
the reactor core, or

Control rod reactivity variable

Overall coefficient of heat transfer in
the steam generator

Overall coefficient of heat transfer
Mean fluid velocity

Mass flow rate of coolsﬁt

VA, mass rate of flow of the fluid
Control rod position

Heat transfer area per unit length
of conduit

Index for delayed meutron groups
Effective length of inlet piping system
Effective length of outlet piping system

Effective neutron lifetime
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INITS
°F
°F
°F

°F

°F

°F

°F

°F

°F

Btu
sec-£t2

Dimensionless
Dimensionless
Dimensionless

ft/sec

1bs/sec

1bs/sec

Dimensionless

ft.
Dimensionless
ft.
ft.

seconds




SYMBOL

6k
c
ékc(O)

ok

bk
P

MEANING
Neutron density
Reduced neutron density
Maximum practical neutron density
Demand-power level neutron demnsity
Time

Mean velocity of coolapt in outlet
piping system

Mean velocity of coolant in inlet
piping system

Position along conduit
Temperature coefficient of reactivity

Fraction of prompt neutrons appearing
in delayed neutron group "j"

Reactivity

Reactivity contribution of control
rod positions

Initial reactivity contribution of
control rods

Built-in reactivity of fuel

Reactivity contribution of reactor
poisons

Reactivity contribution due to the
fuel temperature

Heat of fission
Error signal

Decay constant associated with
group Ilj n

Departure of control rod reactivity
from its initial value

Outlet piping system delay time

INITS
Neutron/cu.cm,
Dimensionless
Neutron/cu.cm.
Neutron/cu.cm.

seconds

ft/sec.

ft/sec.

ft.

°F "1

Dimensionless

Dimensionless

Dimensionless

Dimensionless

Dimensionless
Dimensionless

Dimensionless

Btu-cu.cm.

sec. Neu
°F

Dimensionless

Dimensionless

seconds
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MEANING
Inlet piping system delay time

Control rod drive unit time constant

Fluid density
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UNITS
seconds
seconds

seconds
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Reactor Kinetics:

57

2
* *
%E [10n*] = (0.5)[20008k ] [10n*] - 10(0.64)(10n ] + 10 & A C
i=1
O
+10
O G
10
* *
10 -(lon ]| 1 +[10n™ ]
5 4
10
-X HX
)
7 31 8
- y
Pot Setting
05 0.5000
07 0.6400
31 0.5000 [20008k ]




+[10n" ]

Delayed Neutron Groups:

B
1 i Fa oo\ [
= = [10n "] xi[lo

C.*

100 1

ERO

DN
"t 10
1 0
0
10
10
37
O RE
Pot Setting
00 0.7580
02 0.0033
37 0.0950
60 0.0041
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Fuel Element Heat Transfer:

dt zog:| = 0. 1(336’&;:?) [10n°] - ( M.C
( ) [100
¢
-10

59

f> [200

1
) I
11 10
\_/ 1
20,
Pot Setting

10 0.5000
11 0.1000
12 0.1000

17

0.2000
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Fuel Element to Coolant Heat Transfer:

L[_EE]=(ZUA>[Tf]-<UA+2WCCC)['I‘
dt -100 M C / -200 M C
c C c C

2W¢C T.
( c c) ic ]
M C 100
¢ c

C
o0 t

+ [2—00] +1

15 20
)

+L 1

T T
100 _ C c
6 e 10 5T 25 N\ o0
10

T,
ic

9,
Pot Setting
15 0.9999
16 0.2500
20 0.5000

45 0.3000




Qut of Reactor Core:

Toc Tc Tic
To0 J = 10€0.2) 5569 - [ 100 ]
T
ocC T
+ L7007 . - 1535
66

Pot Setting

61 0.2000
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Outlet Plenum

d To [ Toc wc Cc
E[T(')B] (M_O)ETGB]‘W:)[EBJ
-10
32
[TOC
-1350- T
O—()— + (b
O— 0
1
O
Pot Setting
30 0.5000
32 0.6000
90 0.5000
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Piping Delay to Steam Generator:

Tix To
TO_(')'] = ['1—03] (t-D)
TO
+ [m]
@
1 1
40 @ 1 45
L \_/J 10
( 47)
NG
®
Pot Setting
40 0.9999
41 0.9999
42 0.9999

47 0.6000
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Steam Generator:

d-[TXJ_ZWCT]+ [S xx[ ]
dt 100 M.x 100 xC 100 M C 100
yAY) T
<7 X
M 100
X
M
-10
TS
L166
>

)
t—‘
O
o
QUD
o
Ll Ll
—

o

o

o
()

©
Pot Setting

22 0.5000

50 0.6000

57 0.8999
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Qut of Steam Generator:

Tox Tx Tix
m] = 10(0.2) [355] - 3551

T

0! N 10\ o

_[Eii] \\_// 27 100 N
100 1 / < >

Pot Setting
51 0.2000




Piping Delay to Inlet Plenum:

[Tﬂ] - [-T°—"] (t-D)
100 100

1 i
R0,
71
-[0X 12
100
©
1 1
1
75
1 70 71 10
(35 )
NG
@
Pot Setting
70 0.9999
71 0.9999
72 0.9999
75 0.6000
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Pot

80
82
85

Inlet Plenum:

d Ve 14 _ ¢ ric
[100] Mi [100] M. [100]

+10

85

[100

82 -icq
| 80 100 L

Setting

0.5000
0.5000
0.4000

LT“]
100
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Average Temperature:

T T T
avg.q _ oxX ix
[=3667 = 0-5(l350? * [360Y

Pot Setting

91 0.5000
92 0.5000
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Comparator:

T T
ref. avg.

[T%a] = [10] (1000 ) = [loqp ]

DAM 1

64 ’-"
- Gy ¢ |
@ 1 [—<
+ [Tav .] 96 100
O—

Pot Setting
Qo7 0.4000
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PI Controllerx:

3 1 e 3
[2(n *-n¥)] = (2x10°K *) JE [Top]de + (2000 K *7 )[355] -

o}

0.200{10n*] + 2 no*(O)

[Z(nq*-r}’f)]

(o5) '
\\_,/ﬁ 1| 95 R
1

100 97 Q(D

+ [10n*] f

)

Pot [ i i
Pot Betting f
66 0.2000 :
95 0.0200 :
96 0.1000 1
97 0.2000 £

0 SN s 2 2

azgEE
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Control Rods:

;2 L a 1<m1o3 [20(n_*-n*)]
—— — = )
2 [2000p] + (Tm) 35 [2000u] = (= —)—Tqgn*]

10

. 1 10

Pot  Setting

100 0.1000
107 0.2000

?i.,
;
%
g
3
%

frd
4,
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Reactivity:
Te
[20006k] = 10(20k) [107 - 10(0.8) [556] + 2000y
S
-[200u]

10
10

+[ 20006k ]

06
&
1

OO
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La|o] LL La|o!

Automatic Scram
+{100*]

D
Settin
0.9500

Pot
36
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Boiler - Power Demand:

T

dt (7601 = K, (1507 - [1001)

Where A = Throttle Opening

A is the fraction of full open throttle.

—=X

+[150
( : po | T
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VITA

Ernest Ivry Hamilton, Jr. was born in Lake Charles, Louisiana,
17 July, 1947.

Secondary education was obtained in Hackberry at Hackberry High
School, from which he graduated in 1965. In June, 1965, he entered

-

Louisiana State University at Baton Rouge, where he received a
Bachelor of Science in Chemical Engineering in May, 1970.

In September, 1970, he enrolled in the Graduate School of

Louisiana State University. At present he is a candidate for a

degree of Master of Science in the Department of Nuclear Engineering.
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