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ABSTRACT

The discrete ordinates method of solution to the transport
equation is applied to the problem of characterizing a small light-
water, natural-uranium subcritical assembly. The uranium rods are
20.8 cm tall and are arranged in a hexagonal lattice 1.875 in. apart,
The fuel-moderator assembly is housed in a shortened 55-gallon oil
drum and mounted on a base equipped with casters.

The calculation of the neutron flux is performed with the
multipurpose DOT-II (Discrete Ordinates Transport) computer code,
which can be used to treat a variety of radiation transport problems.

As a result of this work, the code is now operable on the LSU IBM 360/65
system,

An experimental determination of the thermal (energy less than
about 0.1 ev) neutron flux was accomplished with a BF; detector. The
general shape of the fluxes compare favorably with the calculated ones,
but there is a significant difference in the magnitude of the calculated
values at large radial distances. Since the DOT results are less than
the measured data, a possible explanation for this discrepancy is the
inadequacy of the two-dimensional treatment of the subcritical system.
The computer model approximates the hexagonal fuel rings by cylindrical
shells which Possess a significantly higher surface area than that of
the corresponding rings. This increase of surface area causes an in-
Crease in the resonance capture of the neutrons, resulting in the de-
Crease in the flux at large radii in the computer model. The cross
8ection data and neutron energy structure lacks detail, which could also

POssibly explain some of the discrepancies in the results,

ix




Although the results of the DOT treatment to the suberitical
assembly are not highly successful, the code is a powerful one, and it
should prove to be valuable to several projects of interest at the
Nuclear Science Center. The small subcritical assembly that was con-

structed is a useful tool for education and research.




INTRODUCT ION#*

Over the past three decades, many methods of solving problems
involving particle transport have been developed, stimulated by the de-
velopment of nuclear reactors. The design and operation of these re-
actors depend upon a knowledge of the neutron and gamma fluxes within
the system. Core specifications and shielding requirements are avail-
able primarily through approximate ;Llutions of the Boltzmann transport
equation. Exact solutions in all but the simplest cases are impossible
due to the complexity of the problem.

Early attempts to solve the transport equation relied heavily
on mathematical expansions and other analytical techniques. Some of
the methods developed at that time, such as ordinary diffusion theory
and the spherical harmonics method, are still quite useful today. With
the advent of fast electronic digital computers, several new techniques,
such as the original Sn difference method and the '"Monte Carlo" statis-
tical approach, came into existence. The discrete ordinates (or dis-
crete Sn) method was introduced in 1958 after flux distortions in re-
actor calculations were noticed while using the earlier Sn methods.

Since then, many discrete ordinates codes have appeared. One of the

most recent, DOT-II (Discrete Ordinates Transport), was made available

in 1969,

*The material discussed in this Section is obtained in part from "A
Review of the Discrete Ordinates Sp Method for Radiation Transport
Calculations", D. K. Trubey and Betty Maskewitz, editors, from "The
Discrete Sp Approximation to Transport Theory', by Clarence E. Lee,
and from "Development of Two-Dimensional Discrete Ordinates Trans-

port Theory for Radiation Shielding'", by Mynatt, Muckenthaler, and
Stevens,




A description of the theory underlying the discrete ordinates
method is included in this work. A simple case of monoenergetic neu-
trons in plane geometry is discussed first., The added complexity en-
countered in going to a curved medium is illiustrated by considering
spherical geometry. Finally, the method of treating a two-dimensional
cylindrical-geometry problem is outlined.

The DOT computer code is¥a powerful, general-purpose code
which solves the linear, energy-dependent, Boltzmann transport equation
for two-dimentional geometries. The general-purpose nature of the code
was instrumental in its selection to treat the problem under investiga-
tion - the characterization of a small subcritical assembly. Such a
code made operable on the Louisiana State University digital computer,
an IBM Systems 360 Model 65, should prove invaluable for generating
solutions to many other problems in radiation transport and shielding.

The subcritical assembly under investigation is a light-water
moderated, natural-uranium assembly contained within a shortened 55-
gallon oil drum. Such features as its movability and the use of fuel
elements that are internally and externally moderated make the system
an attractive experimental and educational tool for nuclear engineering
studies. The thermal neutron distribution in the assembly was experi-
mentally determined so that a comparison could be made with the pre-
dictions of the DOT code.

Included in the appendix is a section containing useful sug-
gestions on running the DOT code, as well as changes and corrections
that must be made in the basic code package before it can be made

Operable on the LSU IBM 360/65.




CHAPTER 1
AN OUTLINE OF TRANSPORT THEORY

The use of simple diffusion theory to describe neutron motion
in a reactor is adequate for preliminary estimates of reactor design
problems. Modification of the theory by the introduction of the trans-
port mean free path and the extrapobation distance correct some of the
defects of diffusion theory. However, when there is need for accurate
flux data at a boundary, or when the reactor problem involves strong
absorption or proximity to a neutron source, one needs the more accu-
rate description provided by transport theory(l). The transport theory
treatment takes into account the instantaneous velocity vectors of all
the neutrons contained in a given volume element. In this way, the
neutron distribution is characterized more completely than it is by the
use of the scalar flux, as is the case in diffusion theory.

Transport theory is based upon the Boltzmann integro-
differential equation, a neutron balance equation which considers the
flows in and out of a volume element within a differential solid angle

in space. One form of the Boltzmann equation is:

P23 + L@@ 0E) = Javo (8,381 p)d
+ s(2,3.E) (1-1)

The first term is the leakage term, which corresponds to the net flow
of neutrons through the volume element in the direction of interest.
The second term considers both absorption of neutrons and scattering-

out of neutrons (in the same volume element and direction) since

T=Z +ZI. (1-2)




The last term is the source term, which corresponds to the number of
gource neutrons emitted in the volume element in the direction of in-
terest. The third term in the transport equation is the scattering-in
term. It is the integral over all angular space of neutrons which
jnitially have a direction 3’ before scattering and 8 after scattering.

The differential microscopic cross section for scattering, Iy is the

probability per nucleus of scattering from 3’ to Q.

Solution of the transport equation provides a description of
the distribution in space, energy, direction, and time of the neutrons
in the system. Since the dependence of cross sections on energy is SO
complicated, and geometrical arrangement of materials in a reactor is
so complex, the transport equation cannot be solved exactly except in
the simplest cases.

The most common procedure in handling the Boltzmann equation
{nvolves the expansion of the angular distribution of the neutron flux
(i.e., the dependence of 3 on the direction.fb in a complete set of
orthogonal functions, namely, the Legendre polynomials in simple geo-
metries and the spherical harmonics in general(g). For example, in
the case of monoenergetic neutrons in slab geometry, the expansion

would be

a(z,u) = F B 6,(22 (). (1-3)

By using the orthogonality of these polynomials, that is,

Ak
J:lpz(p,)Pm(p,)dp, =0 if m# 4

P
=sai =L (1-14)




The integro-differential equation (1-1) is transformed into a set of
differential equations from which the expansion coefficients ¢i can be
obtained. The P, approximation results from retaining omnly the first
two terms in the Legendre expansion (n = O, 1), and the equations that

need to be considered are

s 4 oo(x)o(x) = Solx), (1-5)
and
Lo 4 30,83 (x) = 381(x), (1-6)

in which the ¢i's, ai's and the Si's are the expansion coefficients in
the Legendre expansion of &, Oy and S, respectively. The first two
coefficients in the Legendre expansion of the angular flux have the
following physical meaning: the first, @y, is the scalar flux @, and

the second, @, is the neutron current J. If the source is isotropic,

S; = 0 and equation (1-6) becomes a form of Fick's law, namely

J(x) = -D(x) Q%ﬁil (1-7)

with D = 3%—. The result may be combined with equation (1-5) to give
1

a diffusion equation
- Lip(x) %y 4 o, (x)8(x) = solx). (1-8)

Thus, diffusion theory is an asymptotic form of transport theory which

holds in regions away from boundaries and sources, where the angular

distribution of neutron velocity vectors is, in fact, nearly isotropic
Although the P, and diffusion approximations are commonly

used in reactor calculations because of their simplicity, other higher

(3)




order approximations (Pg, Ps, etc.) are sometimes used when more accu-

rate results are desired.




CHAPTER 11
DISCRETE ORDINATES METHOD

The use of discrete ordinates in tramnsport theory was first
suggested by G. C. Wick in 19&3(3), but the more extensive development
of the method was carried out by S. Chandrasekhar in the following

(5.6)

years Their early work was limMited primarily to such simple
problems as the transport of monoenergetic neutrons in one-dimensional
slabs with isotropic scattering. The discrete ordinates (Sn) method,
which is also known as the second version of the Sn method, was first
introduced by B. G. Carlson in 1958(1). The two-dimensional discrete
ordinates method has, until recently, successfully treated only rela-
tively easy problems such as criticality calculations for highly en-
riched uranium cylinders. Mynatt, Muckenthaler, and Stevens recently
extended the two-dimensional discrete ordinates method in order to
provide accurate calculations for deep-penetration radiation transport
problems for shielding analysis(é).

The discrete ordinates and other related methods of numeric-
ally solving the energy-dependent neutron transport equation have been
used extensively in reactor calculations. The basis of these methods
lies in the evaluation of the angular flux in a number of discrete
directions, instead of using the expansion in spherical harmonics or
Legendre polynomials to eliminate the 3 dependence. By considering
enough directions, it is possible, in principle, to obtain a solution
to any desired degree of accuracy. However, memory and core restric-
tions of the computer limit the accuracy that can be achieved in solving

Complex problems.




In using the discrete ordinates technique to solve practical
problems, the energy variable is treated as discrete through a multi-
group approximation, and a discrete space mesh 1s used for the spatial
coordinates, Consequently, all the independent variables of the time-
independent neutron transport equation, namely, space, ?, direction, 5,
and energy, E, are treated as discrete.

In order to present the discrete ordinates method in as clear
and understandable a way as possible, it is necessary to consider first
the one-speed or one-group transport equation for plane geometry. oOnce
the basic method has been established, the complexity incurred when
dealing with curved geometries will be illustrated by treating a
problem in the most simple curved geometry, spherical geometry,
Finally, the treatment of the multigroup problem in cylindrical r-z geo-
metry will be presented.

A special aspect of plane geometry (or of rectangular carte-
sian coordinates in general) is that the direction cosines relative to
local coordinates do not change as the neutron streams, that is, moves
through the medium without making any collisions. In curved geometry
(in systems of spherical or cylindrical coordinates), however, the
Situation is different, as can be seen in Figure 1. The result is that
the discrete ordinates treatment is complicated by the fact that the
angular derivatives in the transport equation must be approximated,
These derivatives arise because, in streaming, the direction variable

of a neutron changes continuously in curved geometry.




NEUTRON

Change in Direction Cosine of Streaming Neutron

FIGURE 1.
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Discrete Ordinates for One Speed in Plane Geometry(g)

The one-speed transport equation in plane geometry for iso-

tropic scattering and a generalized source may be written as

u a@g:—iﬁ + o(x)®(x,u) = E.(_’EEM& Ii@(x’ul)dui + Qlx,p), (2-1)

in which c¢(x) is the mean number of neutrons emerging from a collision

at x, and o(x) is the macroscopic cro¥s section. Let us represent the
*

integral by a numerical quadrature formula involving é(x,ui) with quad-

rature weights (or weighting factors) w3

1 N
’ o -
J:lé(xsu )du T i§1 Wié(xsui)° (2 2)

Substitution of this into equation (2-1) yields a set of N coupled

first-order differential equations for Q(x,ui):

28 (x,0.)
by o o) = SESE) B G a(,) + Qi) (2:3)

j =1,2,...N,

which can be solved readily by finite-difference techniques once the
boundary conditions and character of the problem are specified.

The choice of the set of direction cosines and associated
weights directly affects the accuracy achieved in solving the equations

(2-3) for a given N. The set that is usually chosen is the Gauss quad-

Tature set which is widely used in numerical integration(lg). This set

*
A quadrature formula is an approximating series, each term of which is

t:‘Zeighted" appropriately in order to obtain a more accurate representa-
on,

- .
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possesses the desirable properties necessary for the chosen quadra-

ture(ll). The cosines, ui's, of the Gauss quadrature are chosen to

be the zeroes of the Legendre polynomials; i.e., PN(ui) =0, If a
unit sphere is drawn about any spatial mesh position X:s the weights
of the quadrature are that fraction of the surface area of the sphere
which surrounds the intersection of the vector associated with the
direction cosine and the surface of the sphere. A common set of quad-

rature angles for a fourth order (S,) calculation is shown in Figure 2.

In the figure, i and N are direction cosines with respect to the x and

z axes respectively, and €2 =1 - h® - 2, oOnly four of the octants

are shown because the geometry is identical for + or - values of &.

In this example, all of the weights are the same, resulting in the
"blocks" of the "igloo" having the same surface area. Angles 1, L, 9,
and 12 of Figure 2 are necessary for solution of the quadrature problem,

(12)

but they each have zero weight associated with them The values of

By and w, in the Gauss quadrature set for N = 2, L4, and 6 are presented

i
in Table I.

TABLE I. CONSTANTS FOR THE GAUSS QUADRATURE FORMULA

N = 2: wy, = wp = 1,000 p1 = =p2 = 0.57735
N = L wy, = wy = 0,65215 p1 = -pg = 0.33998
Wo = Wg = 0-3)4785 pa2 T “ps < 0.86114
N=6 w,=we=0.46791 W1 = -pe = 0.23862
Wo = Wg = 0.5&76 wa = “us i 0.66121
Wg = Wg = 0.17132 ps = ~Wpa = 0.952)47

For anisotropic scattering, the treatment is somewhat differ-

€at. Let the right side of equation (2-1) be represented by q(x,u) so




(12)

Symmetric S, Quadrants on Unit Sphere

FIGURE 2.

12
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that (assuming scattering depends only on ;)

Q(x:li) = c(x)faf(x,uo)ﬂx,u')da' + Q(xapa)a (2')4’)

in which f(x,u0) is the transfer probability function for scattering
from (1’ to 5, and yo is the cosine of the scattering angle in the
laboratory system (i.e., {1’*fl = uo). Expanding of in Legendre polyno-
mials:

f= g BB o2 (o). (2-5)

Using the functional relationship of the associated Legendre polynomials,
4 1
= ’ £=m)i m m, , wy -
Boluo) = By(up (u’) + 2 24 0mi® (WP (1 )cos m(d-8"),  (2-6)

and integrating over azimuthal angles (multiplying by 21) gives

alxw) = 2= B (21) 2 ([ 2, (408 0xu )0’ + Qlin).  (2-7)

Introducing the quadrature (2-2) into equation (2-7) yields

N
a(xug) = 228 (2041)0 2o (u,) B ® ()8 (tony) + Qlapg)e (2-8)

In practice, the sum over g will be cut off at some finite value L; it
1s then necessary to specify L cross sections, Oy in order to perform
the summation. Otherwise, the procedure is identical to that for iso-
tropic scattering.

The first step in solving the system of equations (2-3) is to
introduce a space mesh, i.e., a set of discrete values of x, namely X s
where k = 0, 1, 2,...,K, such that the left boundary of the system is
4t x5 and the right boundary at Xy Points are usually chosen to lie

On interfaces if present. The derivative terms can then be approximated

e
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by finite differences:

aQ(Z;ﬂj) . - Q(xk+1;uj):i(xk’uj) ’ (2-9)
Xi+i K+l %k

specifying that xk+% = i(xk+xk+1). Agaln representing the right-hand
side of equation (2-3) by q(x,uj) to allow for anisotropic scattering,
this equation at the point xk+% bgsomes

é(xk+1au-)'§(xk’u')
3 T ol e ngeny) T alggen).  (210)

n

The method of solution is by iteration., Assume, first of all,
that q(x,uj) is knownj; a value is estimated the first time and there-
after it is available as a result of each preceding iteration. We will

assume the flux to be slowly varying over any mesh so that

B(x, ,pu. )+8(x L ou.)
é(kaﬂb,uj)E ety 2xk+1u . (2-11)

Substitution of equation (2-11) into (2-10) results in an expression

that can be solved for §(xk+1,uj) in terms of @(xk,uj), or vice versa.

Letting

Bevd = M1 T %

and dropping the arguments of quantities at xk+%, it 1s found from equa-

tion (2-10) that

1 gl
2
= —4a
Q(xk+1’uj) A oh é(xk,uj) + q (1 ol ) ’ (2'12)
By e

and
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B(xomy) = I:ng LIC ORI (1ilé_
2y ST

. (2-13)

With vacuum boundary conditions, Q(xo,uj) is zero for all posi-
tive uj; hence, Q(xk,uj) for positive By can be found by repeated ap-
plication of equation (2-12). Similarly é(xK,uj) is zero for all nega-
tive %jand equation (2-13) can be applied to determine @(xk,uj) for
negative values of uj' Then, knowing é(xk+ﬁ’uj) from equation (2-11),
the value of q can be recalculated using equation (2-8), and the problem
solved by iteration.

If reflecting boundaries are present at x = X then Q(xK,uj)

may be found for negative uj by using

é(xK,uj) = §(xK,-uj)-
If there are reflecting boundaries at both interfaces, i.e., at X, and
Xys then it is possible to run a series of #N problems (N = number of

directions considered), which for the nth problem the boundary condi-

tion at x is
o
Q(xo’“‘j) = ajn’

in which ajn is the Kronecker delta defined by

ajn

ajn

1 for j = n,

0 for j # n.

By taking an appropriate linear combination of these #N conditions, the

reflecting boundary conditions

Q(Xo,uj) = Q(xo,-p.j)

€an be gatigfied,
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Recall that equation (2-12) is to be used for positive b
and equation (2-13) for negative uj. In both cases, the coefficient
of @ on the right-hand side is less than unity. Consequently, errors
in &, which may be introduced in the numerical approximation, are at-
tenuated rather than amplified during the process of obtaining a solu-
tion,

Notice also that if A is large in comparison with Qlel/U
the coefficients of & on the right side of the equations become nega-
tive. Thus if q is small, negative values of 3 are obtained, a result
which is both physically and numerically undesirable. It will be seen
later that computer codes correct for this phenomena to a certain extent.

As the number of angular directions, N, in equation (2-2) are
increased, some of the values of uj’ especilally My /o will become in-
creasingly closer to zero. In order to avoid large values of OA/“N/Q’
it is therefore necessary to increase simultaneously the number of

space points,

Discrete Ordinates for One Speed in Curved Geometries(g)

Now that the basic_method for applying discrete ordinates in
the simplest case has been outlined, it becomes necessary to examine
the more complex situation encountered when dealing with curved geo-
metries., It was mentioned earlier that a problem arises in curved
8eometry because the angular coordinate of the neutron, in a local co-
ordinate system, changes because of streaming. The result 1s a further
Coupling between equations describing neutron flows in discrete direc-

tions, For simplicity and clarity, spherical geometry will be consi-

dered here,
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The one-speed transport equation in spherical geometry can be

written as

m Mai + %(11&2) ——(—"‘*laéa; + o(r)e{r,p) = q(r,u), (2-14)

in which q(r,p), the source term, may include anisotropic scattering
and sources. Here, the treatment of the source term is identical to
that for plane geometry. In more géneral geometries, the only difference
is that the expansion is done is spherical harmonics rather than Legendre
polynomials.

The spherical harmonics are functions which are orthonormal
over a spherical surface; i.e., they are orthonormal with respect to the

azimuthal angle @ and the polar angle 6. They are defined by

Y:(G,Q)) = /———221-;1 F, P:(cose)eim¢,

in which P:(cose) are the associated Legendre polynomials defined by

m

where Pn(x) are the Legendre polynomials(ii).

The problem in spherical geometry is how to approximate the
second term in equation (2-14), especially 38/3u. One solution was
Proposed by B. Carlson(l) in his original SN method. The dependence of
§(r,p.) on |, was approximated by a series of connected straight line seg-
ments between |, = -1 and y = 1, as shown in Figure 3. In one dimensional
geometries, N indicates the number of segments chosen to represent the

angular flux distribution. In Figure 3 the actual distribution, in-

dicated by the broken line, is approximated by four linear segments;
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FIGURE 3. Linear Segments Approximating Actual Angular Flux Distribution
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V= h/}ﬂ(ri+l-r?).

In evaluating the integral over p, one term of the quadrature formula,

i.e.,

[ T W) (),

has been used, and a and & are the second moments of the volumetric

averages over the cell, e.g.,

- 4T pF 141
Q(ri&’“'n) ~ _v'_rri r#q(r,p )dr.

The first term on the left of equation (2-15) can be inte-
grated by using the same approximation for the partial integral to

give
oMb LAy 41 2 (F gy o) = B30T Hup) ] (2-19)

The second term can be integrated first over the limited range of p,, and

then over the volume of the cell, which results in

r
81T2 ri'flr[(l'ug.'_%)é(r,un&) = (1'u§_%)§(r,un_%)]dr. (2-20)
This can be written simply as

m[anﬁé(ri&,un&) - an_ @(ri&,pn_%)], (2-21)

in which the coefficients an+% are to be determined.
Combining equations (2-18), (2-19), and (2-21), the complete
difference equation resulting from the integration of the one-speed

transport equation over a r,y mesh is
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PRUARLICIRETN LS

an_%é(ri&,uﬂ)-an_g(riﬁ:%_é)
+ ‘

n

= V(q-03). (2-22)

A recurrence relation for the an+%'s exists for the case of
an infinite medium in which the flux is constant and isotropic. In
this case there is no net current, and the conservation principle re-

quires that

q = o?,
From equation (2-22) this requires that

”‘nwn(Ai+l-Ai) = -an+§+an_%. (2—25)

Since it can be shown that a% is zero(g), equation (2-23) allows the
determination of all values of a.

The terms in equation (2-22) can be interpreted in the follow-
ing manner. When multiplied by LA the first two terms on the left side
are the neutron flows across the areas of radii Tl and ry in the n
i interval. The a terms represent streaming flows which transfer neu-
trons from the n-# direction into the n interval and from the n interval
into the n+§ direction, respectively; the terms on the right-hand side
are, of course, the source and the sink.

The one-speed transport equation (2-15) has been changed into
2 difference equation (2-22), which now needs to be solved. As it
8tands, however, equation (2-22) cannot be solved because there are

tPO'many $(r,u) values; i.e., there are too few equations for the number
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of unknowns. Consequently, some further relations must be postulated.
Suppose the problem being solved 1is one with a boundary condition at
the outer radius, rre As in the case for plane geometry, some value is
assigned to q(r,u) so that q is known. Starting at the outer boundary
with the boundary condition given as the incoming angular flux &(r,p)
for p < 0, the direction i = -1 is considered. It is obvious that for
this direction the transport equatfon, equation (2-1k4), is the same as
that for plane geometry, equation (2-1). As in plane geometry, inte-
gration is performed inward to the center along this direction, so that
Q(ri+§’”%) can be determined for all values of i, with by = -1,

Next, the inward integration is started for T at any step
in this process @(ri+%,u%) is known and @(rt+1,p1) is obtained from
the preceding step or initially from the boundary conditions. Thus,
in equation (2-22), for mn = 1, the quantities @(ri+%,u%) and @(rt+1,ul)
are known, but three quantities, @(ri,pl), @(ri+%,u%), and 5(ri+%,p1),
are still unknown. In general, for any T < 0, the unknown quantities
in equation (2-22) are @(ri,un), Q(ri+%’un+%)’ and 3(r1+%,un). As was
mentioned before, we need two additional relations between these three
quantities to solve the equationm.

Many such relations have been proposed and implemented, but
there are two essential requirements: First, the equation relating
the centered flux and the two end-point fluxes should provide a good
approximation to the true variation of the flux in the neighborhood of
the cell; and second, these equations, when combined with equation (2-22),

must produce a final set of equations which may be easily and quickly

solved on the computer(g)
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One simple relation, the "diamond-difference method"(l&),
assumes & to be linear between adjacent r,u mesh points (Figure 5)s

thus,
29(1'1.,_%’%) = Q(ri_ﬂ_sun) + Q(ri’un): (2'-'2)‘1’)
= 8(r, gounyy) + (g gam g (2-25)

Equations (2-2L) and (2-25) may be wsed in equation (2-22) to eliminate
two unknowns, @(ri,un) and @(ri+%,pn+%). Using equation (2-23) to
write the denominator in symmetrical form, equation (2-22) can be solved

for §(ri+%,un) to give

a(ri%slln)

1 -
-“‘n(Ai+Ai+l)§(ri+l ,I-Ln) + ;;;(an +8n_%)§(ri.|_35.:un_%) + Vq

l . (2-26)
-un(A{+Ai_l) +-ﬁ;(an+%¢an_%) + oV
Once ® has been determined, by using the Q(ri+l,un) and @(ri+%,un_%)
obtained above, equations (2-2L)and (2-25) may be used to calculate
@(ri,un) and Q(ri+%’un+%)’ which will be required for subsequent steps.
By repeating the steps outlined above, the values of & may be
found for all space points and all ingoing directiom, 1i.e., for p <o0.
For outgoing directiomns, i.e., for T > 0, the method is similar except

that integration is performed outward. As a boundary or initial con-

dition, isotropy of the neutron flux at the center may be used so that

#(o,u) = #(o,mp ), (2-27)

where, for positive T the right-hand side is known from the inward
integration. Hence, @(o,un) is available for starting the outward

integration. In this direction, Q(ri,pn) is known and Q(ri+l,pn) is
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The r,u Mesh for a "Diamond-difference'" Scheme
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hence, in this case N is 4. Obviously, the larger the number of direc-
tions, (N + 1), used to express the angular flux distribution, the
better the approximation.

The SN method was used for several years and was regarded to
be quite accurate; however, flux aberrations were observed particularly
near the center of spheres. It was found that this difficulty was
caused by the use of an unsymmetric” quadrature. Further shortcomings
were that the original SN technique could not be extended to higher
dimension geometries and was limited to isotropic scattering(g).

These difficulties led to the development of the discrete S, method,

N
which will now be described.

In deriving the numerical approximation to the transport
equation, a conservation law is closely followed. Each term in the
equation represents a physical component in neutron conservation, such

as absorption in the cell or flow across a face.

Equation (2-14) may be written
) 13 =
55, (r%) +;a—u[(1-u2)§] + 0% = q. (2-15)

A conservation relationship can be derived by integrating equation
(2-15) over a region in r, ,, space. Thus, upon integration over a
volume from r,tor, (L.e., multiplication by 4Tr2 and integration

over r from r, to ri+l) and over all directions (i.e., multiplication

by 211 and integration over u from -1 to 1), the first term in equation

(2‘15) becomes

1 1
MTCey, ) )22f ud(ey, ) ou)du = AM(e)2) LB (x ou)d

= AT - ATy (2-16)




in which A, = hﬁrf is the area of the surface of radius r, and

i

1
Ji = zrrjilﬂé(ri’u)d W

is the outward radial current at r = r,. (Subscripts i+l have similar
meanings.) The second term in equation (2-15) becomes zero after in-

tegration; hence, the net result is

A J

ril & 3
- 2f i+l _o - -
Ai lJi 1 191 8n |ri r erl(q od)dy, (2-17)

source - sink,

gince the q term represents the neutron source and o& the neutrons lost

in various collisions. Thus, a conservation relationship is established.

The foregoing procedure will now be followed, except that the

integration will be over a limited range of p, rather than from -1 to 1.
Figure L4 illustrates a T,y mesh in which the {ri} are points on boun-

daries between regions and the cross sections are assumed to be constant

within an interval Ty Tind the points u  are selected to coincide with
the y values in the quadrature formula of equation (2-2) .

Consider a typical cell bounded by Tis Ty and by bin-d IMEY
as shown in Figure 4. If equation (2-15) were integrated over the

volume of the cell and over a segment of p between bn-g and pn+%, then

the source (q) minus collision (0%) terms become
8ﬁ2fzi+lr2drfﬂ[q(r’u)-oé(r,u)]du
i Hn-i
~ srrewnj:“ra[q(r,un)-aé(r,un)]dr
= 2ﬂwnv[a(ri+%,pn)-05(ri+#,pn)], (2-18)

in which vV is the volume of the spherical shell between r, and L
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unknown so that instead of equation (2-26) we have
5(r.j..'_%’p‘n)
1 -
u‘n(Ai+Ai+l)§(ri’“'n) + w_(an +an__'$_)§(ri+%’p‘n_%) + Vq
n

- - . (2-28)
“n(Ai+Ai+1) + ﬁ;(an+%+an_%) + gV

Therefore & can be found for all angles w, and all space points Ti4g
L4
Using these calculated values, a new value for q can be computed and
the process repeated until convergence is reached. There are techniques,

such as the method of scaling, by which convergence can be accelerated(li).

(8)

Multigroup Discrete Ordinates for Cylindrical r-z Geometry

The previous development of the discrete ordinates method for
one-dimensional plane and spherical geometries facilitates the presen-
tation of the multigroup problem in cylindrical r-z geometry. The pre-
sentation of the derivation of the difference equations for this two-
dimensional geometry is, of necessity, merely an outline of the actual
method., The rigorous derivation is somewhat lengthy and the reader is
referred to the work by Mynatt, Muckenthaler, and Stevens(§) for a de-

tailed explanation of the steps.

The derivation of the difference equation (corresponding to

equation (2-22) for spherical geometry) is accomplished in a term-wise
consistent manner directly from the energy-dependent, cylindrical geo-

metry form of the transport equation

d
B(2.2.0.0.0.8) 4 o(r,5,0,8)8(x,2,8,1,¥,E) = 5(x,2,8,1,¥,E)

+1 2o
+f1f Jo (r,2,0:8" ,0'"~E,f)a(x,z,6,n’ ¥/ ,E/)dE d¥ dn’. (2-29)
=L00
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The coordinate system for cylindrical geometry is shown in Figure 6.
As can be seen, | is the azimuthal angle, and h and , define the loca-
tion of the neutron direction vector (i with respect to z and £, re-
spectively.

Using Figure 6, d3/ds can be expressed as derivatives of the

various spatial and angular coordinates. Defining

Q(P) = §(r’z’e’h"l”g)’ )
(2-30)
3(p’) = &(r,z,8,n',y’,E’),

and noting that for two-dimensional r-z geometry, the material composi-
tion and geometry are invariant with respect to 8, equation (2-29)

becomes

K agrp +n gﬁzp - '5%%31 + o(r,z,E)8(P) = s(P)

+1 2o . .
+[[] as(r,z;E’,Q’-E,Q)¢(P’)dE’d¢’dn’. (2-31)
-loo

In the derivation of the difference equations for the one-
speed spherical geometry case, integration was performed over the volume
of an r,y mesh cell and over a limited range of p. In an analagous
manner, the difference equations here will be derived by integrating
equation (2-31) over a finite difference cell. Since we are dealing
with the energy-dependent transport equation, the differential cell will

be ‘a phase space cell given by
dP = 2ffr dr dz dnh dy dE. (2-32)

The finite difference phase space cell, AP, results from integrating

€quation (2-32) over a five-dimensional finite cell




’N)

-+

Ny

<>

»

FIGURE 6. The Coordinate System for Cylindrical Geometry
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& = J‘i+1.[‘ j+1.rhk lf IEyIZTrdrdzdhd\ydE, (2_55)

Yol

with the ¢n mesh constructed such that n increases as § decreases. We

then have
or
Mp = Wy AN ApyAF. (2-34)

The lower case subscripts, 1, j, k, n, g, refer to a quantity evaluated
at a surface of the finite phase space cell, and upper case subscripts,
I, J, K, N, G, refer to quantities defined for the cell as a whole or
having been averaged or integrated over the cell.

Upon integrating each of the six terms in equation (2-31) by
applying the integral operator (2-33) in a consistent manner to each
term (a very tedious process), the result is the discrete ordinates

difference equation for cylindrical r-z geometry:

znAzJuD(ri+l§G,i+1,J,D-riéG,i,J,D) + 2Mr ey,

- —i -
x (8 1 441,07%,1,5,0) * v (Ynt1%6,1,3,0+L K Yole,1,7,n,K)

T —
VI,JEGQG,I,J,D - VI,JSG,I,J,D
LMAX 4, S NOA
’ ) _
V1,5 %o ufo c’§1 G, G’D‘zlAD’ ’1,3,0""p’ (2-35)

The relationships between the mean angles denoted by subscript D and
the angle end points (n,K,) and (n+l,K) is clarified in the discussion
of the space-angle mesh sweep. The curvature coefficients, vy, are de-

fineq by
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Y, = %ArIAnKQn = %ArIAniVl-hﬁsinwn. (2-36)

The last term of equation (2-35) is der}ved from the scattering integral
in the transport equation (2-31). During the derivation, the scattering
cross section was expanded in Legendre polynomials, and the energy
integral was replaced by a sum of group integrals.

Just as in the case of fpherical geometry, supplementary dif-
ference equations must be combined with equation (2-35) in order to ob-

tain a solution. A possible set of additional difference equations is

given by
%,1,3,0 = 2%, 141,50+ (1-8)% 4 5 ps 0w > 03 (2-37)
%,1,9,0 - (1-a)§G,i+l,J,D +ad; g gpr B <05 (2-38)
%,1,3,0 = ®%,1,5+1,0 * (1P)%g 1 5 p» M >0 (2-39)
81,00 - (P)% 1 sy p t D8 5 5 p, M <05 (2-10)
%,1,3,0 - %, 1,0,01,k * (l-c)QG’I,J’n,K' (2-11)

If a=b =c =%, the method of solution is called the "diamond-
difference method", and if a = b = ¢ = 1, it is the "step-function
methodn (18)

If the diamond-difference equations are combined with equation
(2‘35), a solution for the fluxes can be found. For the final form of
these equations, the reader is referred to the appendix. Through the
application of these equations, the complete flux array for a given
8ource can be determined. The order of calculation, called the mesh
8weep, is determined primarily by the sequence of cosines, ED and ﬁD'
Detailed information concerning this sequence can be found in the work

Of Mynatt, e_ta_1,(§),




CHAPTER III
THE DOT CODE

DOT (Discrete Ordinates Transport) is a general-purpose
Fortran IV program which solves the energy-dependent, Boltzmann trans-
port equation for two-dimensional r-z, x-y, or r-0 geometries. The
" basic form of the solution is the €lux, E(ri,zj,Eg,Qd)AEg = Qijgd’
averaged in the spatial interval surrounding s zj, integrated over
the energy group g, and averaged in the solid segment surrounding Qd.

As outlined in the previous chapter on the discrete ordinates
method, the gradient or convection term in the Boltzmann equation is
approximated by a finite-difference technique. The in scatter inte-
gral is approximated by expanding the differential cross-section in a
Legendre series which allows the integral to be computed by quadrature.
The diamond-difference technique provides the additional relations

needed for a solution.

Selection of Code

The general purpose nature of the DOT code was instrumental
in its selection as a means of calculating the neutron flux within the
8mall subcritical assembly. Not only can it solve the problem at hand,
but once mastered and adapted to the computer system at LSU, it will
be an invaluable tool for the Nuclear Science Center in treating a

wide variety of problems.

DOT will calculate either scaler or angular flux, or if one
desires’ the adjoint flux so important in perturbation theory. Adjoint

fluxes are proportional to the gain or loss in reactivity of a reactor

32
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due to the insertion or removal of one neutron per second at a parti-
cular point in the system(lz).

DOT will solve inhomogeneous problems which may have either
a volume distributed source or a specified angular flux at the right
or top boundaries. Fissions may also be included for a subcritical
system. Problems consisting of homogeneous systems (eigenvalued prob-
’lems), may be solved with DOT. The“user has a choice of the following
alternatives to be calculated:

1. The static multiplication factor, "k" (ratio of sources to
losses in the time independent Boltzmann equation);

2. Determination of ¢ in time absorption, a/v, where v is the
neutron velocity and ¢ is a number (related to the reciprocal
of the reactor period) such that

0(2,8,t) = o(T,d)ext (@)
3., Fuel concentration necessary to obtain a specified k.
4., Zone thickness for a specified k.

A variety of boundary conditions may be imposed, and activities induced

within the system are readily available(l§). The usefulness of such a

computer code for nuclear engineering studies is obvious.

The advantage of transport theory over diffusion theory in

certain situations has already been mentioned. In particular, calcula-
tions of the neutron flux within the fuel cells themselves are more
valid when transport theory is applied. Since the flux is rapidly
Varying due to the absorption of neutrons by the surrounding fuel, the
DT code is better suited than a diffusion code to handle the problem,

The DOT computer code package was obtained from the Radiation

Shielding Information Center (RSIC) at Oak Ridge National Laboratory.
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The code package contains both a referenced document and a reel of
magnetic tape on which is written in separate files: (1) the source
card decks; and (2) binary coded decimal (BCD) input and output listing
from a sample problem. The version obtained, ccc-89C/DOTII, is oper-
able on the LSU IBM 360/65 Operating System using 0S-360 Fortran H

Compiler.

Features Within the Code

DOT was first made available in 1966. Since that time, the
code has undergone various improvements in technique. The DOT-II ver-
sion, made available in 1969, possesses interesting features which,
among other things, accelerate convergence and corrects for any nega-
tive fluxes that may be calculated. The general-purpose nature of the
code results from its many built-in options, allowing the user to
select those which pertain to his particular problem.

The following sectionswill outline some of the various tech-
niques within DOT, and illustrate their importance in obtaining valid
results. The options built into the code will be mentioned, and the
actual flow of calculations within the program will be presented by a
flow chart and an explanation of the purpose of some of the key sub-

routines,

Negative Flux Fix-up

Recall that under certain circumstances it is possible for
negative fluxes to be calculated in the discrete ordinates method. In
particular, if the flux is decreasing rapidly such that the centered

flux is less than half the magnitude of the previous end point flux,
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the extrapolated end point flux will be negative, a phenomenon called
ndiamond-difference breakdown". If this situation exists throughout
the system, then the space-angle mesh 1is inadequate and must be refined.
In spite of this correction it is still possible (especially for pene-
tration problems) to generate negative fluxes which have no physical
significance.
The simplest method for “negative flux fix-up" is to use the
step-function option (where a =b =c = 1 in equations (2-3T)to (2-41)),
which always give positive fluxes when the incoming fluxes and the
gsource are positive. DOT employs difference equations based on the
"diamond-difference” method as standard procedure, and if a negative
end point flux is generated for any point, all fluxes for that cell
are immediately recalculated using the "gtep" equations. This technique
is valid for problems where the space-angle mesh is, for the most part, |
adequate or more than adequate for accurate calculations using 'diamond !
|

n (_8_) R

difference

In addition to the "mixed-mode" method described above, DOT
also provides options for using the linear diamond-difference method
only or the step-function method only. A comparison of the calcula= ;
tional results using the mixed mode and the linear diamond-difference ﬁ
mode for different sized mesh intervals is illustrated by Figure 7(§). ﬂ
The problem is one of neutron transport in a water slab exposed to an

1sotropic fission surface source. Notice that the mixed-mode calcula-

tion is always as good or better than the pure linear mode.

Acceleration of Convergence

There are three levels of iteration in DOT: 1inner iteration

for within group scattering, fissiomn source iteration, and iteration
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for eigenvalue searches. If one assumes that particles undergoing
scattering always degrade in energy, then the flux of the highest
energy group should be calculated first, the second highest energy
group next, and so on., The downscatter source for any particular group
is completely determined, and may therefore be treated as a fixed compo-
nent in the source for the next lowest energy group. The within-group
'scattering for any group involves fluxes yet to be determined for that
group, and inner iterations are necessary. If fissions are present
within the system, the fission source is determined by the flux cal-
culated by inner iterations, and this source then constitutes an addi-
tional source which requires a repeat of the inmer iterations until
these outer fission iterations converge. The iteration for eigenvalue
searches are of no concern here and will not be described.

The DOT code incorporates a choice of four techniques by
which the scalar flux solution may be converged on inner iterations:
regular or Gaussian, successive overrelaxation, point-scaled, and
Chebyshev(é). The Gaussian iteration is the simplest method and re-
quires less core storage than the others, but also requires the greatest
number of iterations to converge. Successive overrelaxation is an ac-
celerating technique which is applied after every fourth Gaussian
iteration. Except for deep penetration problems, this method usually
converges more quickly than the Gaussian technique. The Point-scaled
method is a technique which is applied after a predetermined number of
Gaussian iterations have been completed. This method is particularly
useful for deep penetration problems. Chebyshev acceleration is applied

€very iteration after the third Gaussian iteration(lg).
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The user of the DOT code must choose the acceleration tech-

nique that fits his problem. In general, the Chebyshev acceleration

technique should not be used. For difficult problems, and in problems
where data storage is not a limiting factor, the point-scaled method

should be used. Where data storage is limited, successive overrelaxa-
tion is best. The Gaussian technique can be used for simple problems

or those plagued by extreme data torage 1imitations(l§).

Additional Improvements

The approximations made in the development of discrete
ordinates transport do not limit the accuracy of the method, since,
at least in principle, the number of energy groups, solid angle seg-

ments and space intervals, and the order of expansion of the differential
scattering cross sections may be increased as necessary to obtain the
desired solution. In practice, the only limiting factor is the finite
computer speed and memory size. In order to extend the capabilities

of DOT, a combination of efficient programming and analytical techniques
are used. The programming techniques involve methods for efficient

and flexible allocation of the main computer memory, handling of large
blocks of data on external storage devices, and the concentration of

the innermost loops into a single, small subroutine which is programmed
in agsembler language.

One of the analytical techniques used in DOT is the analytic
first collision source. This technique reduces the "ray effect", which
1s noticeable in a problem with a source that is small compared to the
total geometry. Another techmique that can be used in DOT is the in-

troduction of a biased quadrature set. In some problems, such a set
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will give significantly better results than a symmetrical quadrature

set(§). DOT can also be used to determine the flux in an external

void outside of a shield.

The DOT Program Itself

The nature of the physical protlems that DOT solves and the
general techniques used have al ready been discussed. Theoretically,
the solution of the linear Boltzmann transport equation will approach
the exact solution with increasing orders of approximation as the
space, angle, and energy mesh approaches differential size.

The DOT code utilizes variable dimensioning to allow dynamic
core data storage allocation at execution time, thus eliminating the
necessity for recompilation for different size problems. Because of
this variable dimensioning technique, no size restriction is imposed
on any given data array, only on the length of the sum of all arrays(ig).

The DOT-II code is written in standard FORTRAN IV, with the
exception of one of the subroutines, GRIND, which is also available in
COMPASS assembler language(lg). GRIND contains most of the computa=
tions, and the assembly version allows problems to run two or more
times faster than the all-FORTRAN version(lg”gg).

The DOT input is divided into nine data sets(gg):

1. Overall problem storage allocation, tape and disk assign-

ments, and boundary source input tape parameters
Problem title and parameters specifying code options
Cross section data

Initial flux guess data




. Fixed distributed source data

.. Fixed boundary source data

p)
6
7. Angular quadrature (direction cosine: u,N) data

8. Angular quadrature (weight: w) data

9. Remainder of data.

Data set No. 1 is entered on the "units assign card", the

first data card. Data set No. 2 c&nsists of the title card and 43
fixed parameters on the next nine cards. The remainder of the data

sets are read in the form of data arrays, but not all of these data

arrays are necessary for any given problem.

The use of an adequate mesh spacing in a DOT calculation is
necessary to obtain an accurate solution utilizing as little core as
possible. Too large a spacing would result in the generation of the
negative fluxes discussed earlier, while two small a spacing would
needlessly waste core and computer time. Westinghouse Electric Corpor-
ation has developed empirical relationmships for approximating maximum
mesh interval Spacing(ig).

The importance of obtaining flux convergence in the inner
iterations cannot be overstated. In problems with scattering to a
higher energy (upscatter) or fission sources, the outer iterations
proceed on the basis of inner iteration convergence. A good initial
estimate for the flux will accelerate the convergence of these inner
iterations(lg). '

The overall flow diagram of DOT is shown in Figure 8, and

Table II briefly describes the function of the principal subroutines in
por(12)
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TABLE II

LIST OF DOT CODE SUBROUTINES AND THEIR FUNCTION

Subroutine
’ Name Function
ACTVTY Activity Calculation
CLEAR Clears Discrete Areas of Core Storage
CNNP Covergence Tests and Upscatter Scaling
DOT Overall Control of Program Information Flow
ERROZ2 Writes Error Messages
FIDO Generalized Input Read Routine
FISCAL Fission Sum Calculation and Normalization
FLUXP Angular Flux Print
GRIND Inner Iteration Calculation
INIT Inital Calculations and Setup
INNER Inner Iteration Control
INP Variable Dimension and Input Data Read Control
MAPR Prints Picture Plot
OUTER Outer Iteration Control
PCON Calculates PL Coefficients
S860 Reads Cross Sections
§862 Reads Fluxes and/or Distributed Source

Reads Top or Right Boundary Source
Monitor Line Printout

Group Totals Calculation

Final Print

Tape Cross Section Read Routine
General Print Routine

General Print Routine

Iteration Control During Point Scaling

k2
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The computer printout of a DOT calculation is contained on
an on-line printer and, if desired, on two binary tapes. The first
part of the printed output is a listing of the input data. All para-
meters and data arrays are printed along with two-dimensional zone and
material maps. The value of LAST, the amount of variable dimension
data storage locations used in the problem, is also printed.

The remainder of the printed output consists of quantities
calculated by DOT. Of these, the one of particular interest in this
problem is the scalar fluxes. These are printed for every spatial mesh
point by energy groups. Besides having the flux data available in the
printed output, both the scalar and angular fluxes may be read out on
tape. This is especlally useful if one plans to use this data as input

to another problem or as an initial flux guess for the same problem.




CHAPTER 1V

SUBCRITICAL ASSEMBLY

Basic Theory

A subcritical assembly is an arrangement of nuclear fuel and

moderator that will not sustain a fission chain reaction. While neu-

@

trons from an external source are multiplied by the fission process,
the neutron population decreases after the source is removed. In an
assembly consisting of light water and natural uranium, the neutron-
related characteristics of both the moderator and the fuel prevent the
possibility of criticality being reached(gl). A small assembly of this
type is very far subcritical due to large neutron leakage.

For a chain reaction to be maintained, the ratio of the
number of neutrons of any one generation to the number in the preceding
generation must be at least unity. For an infinitely-large system, the
requirement is that k_ = 1, where k, is the infinite multiplication
factor. For finite-sized reactors, there is the probability that neu-
trons may escape, so that k = k P defines an effective multiplication
factor, k, and P is the probability that a neutron remains in the system
during a cycle(i).

The measurement of the neutron flux distribution within the
assembly allows one to determine various reactor parameters such as
the buckling, Fermi age, diffusion length, and migration area. Once

these quantities are known, the multiplication factors, k and k°° can be

Obtained.

Lk
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The buckling, B2, is a measure of the spatial rate of change
of the curvature of the neutron flux at a given point per unit flux.

In general, the buckling is defined by

-

32 = |0 ae (4-1)
where V2 is the Laplace Operator(gg).

There are two different“kinds of buckling -- the material
buckling, Bj, which is a specific property of the materials of the
multiplying medium; and the geometric buckling, Bg, which involves the
size and shape of the reactor. For a critical or near critical system
Bé = B;, while for a subcritical one, BZ is greater than Bi(gg).

If the subcritical assembly is relatively large, the thermal

neutron flux distribution (away from boundaries and extraneous source)

can be represented quite closely by the wave equation (3):
v3(r,z) + B3(r,z) = o. (4-2)

For cylindrical geometry, the boundary conditions imposed when solving
this equation are that the flux is finite throughout the core and

vanishes at the extrapolated radius, R. The solution is
2.405r, -vYz
B(r,z) = @Bolo(Z22E)e™V2, (4-3)

where J, is the zero-order Bessel function and Y is a constant, The

material buckling is related by(i)

B2 = (.2'_1):.25)2 - va, ()4,-)4,)

If the neutron flux measured along the vertical central line

of the assembly is plotted against z on semilog paper, the slope of the
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straight line over the region away from the source and the boundary is
-y as seen from equation (4-3). Substitution of this value into equa-
tion (L=L) allows one to determine the material buckling Bs(gg).

*  Other fundamental_properties that can be found once the flux
distributions are known, are the migration area, M2, diffusion length,
L2, and Fermi age, T(gi). These may be experimentally determined in-
dependently, or one can use the relation, M2 = L2 + 7.

The migration area is the mean square distance from the point
of birth as a fast neutron to death in thermal capture(g). Fermi age
is a measure of the distance that a neutron travels before it is ther-
malized, and diffusion length is a measure of the distance it travels
as a thermal neutron(ll).

The diffusion length for a subcritical system using internally.
and externally light water moderated annular natural uranium fuel slugs
has been calculated as 1.2 cm(gg). The Fermi age for the system has
been found to be 32.5 cma(g&), thus yielding a migration area of 33.8L0
cm?,

If the reactor is assumed to be large and near criticality,

th;.an (i)

k, = 1 + M%B (4=5)
and
ke K,
o ok +IB2 = ThRiBg? (k-6)
where
B2 = GR2 + @) (47)

In equation (L4-T), R’ and H’ are the extrapolated values of the radius
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and the height. These extrapolated dimensions measure the size of the
system as it appears to thermal neutrons.

The value of k calculated from equation (4-6) can be used to
determine a subcritical multiplication constant, m. This '"m" is de-
fined as the ratio between thermal neutron flux due to both the pri-

mary source and fission, and that due to the primary source alone(gg).

The multiplication is v
s 1
1-k’

Assembly Design

The LSU Nuclear Science Center already possesses a large sub-
critical assembly nicknamed the "Tiger Pile". In order to provide a
system with different characteristics, a smaller assembly with fuel
elements that have both internal and external moderation was constructed.
The new assembly would serve as a teaching aid for reactor physics and
radiation shielding studies. Its neutron multiplication properties
could provide a higher flux for short half-life activation analysis
studies than could normally be obtained in pure moderators.

The foremost considerations in the design and construction of

this subcritical assembly, nicknamed the 'Mini Pile", were low cost and

utilization of existing materials. The natural uranium fuel slugs used
were left over from the construction of the Tiger Pile. The tank it-
self is constructed from a 55-gallon drum mounted on a caster-equipped
base. All other materials were purchased from local sources for less

than thirty dollars.
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The fuel elements used are cylindrical natural uranium slugs
on loan from the AEC. These slugs are clad in aluminum jackets .0Lo
inches thick for protection and ease of handling. The cylinders aver-
age 8.2 inches in length, and are 1.20 inches in diameter with a .50-
inch central hole extending the length of the slug. Each slug con-
tains approximately 3.9 pounds of uranium,

The upper part of the wall of the 55-gallon drum is cut away
so that the shortened drum wall is 23 inches high. The interior of the
drum is coated with an epoxy* paint to prevent corrosion and water
leakage.

The rods are held in a vertical position by an epoxy-painted
wooden plate on the bottom, and aluminum strips at the top (see Figure
9). No nuts or fasteners of any kind are used; the holes in both the
bottom plate and the aluminum strips are drilled so that a close fit
is provided. Three other aluminum strips are used to brace the forest
of rods against the side of the tank.

The fuel rods consist of two slugs secured end-to-end by a
3=inch strip of .50-inch o.d. Plexiglas'r tubing. The Plexiglas tubing
1s slit lengthwise in order to decrease its diameter slightly so that
it fits snugly within the fuel slugs. The same size tubing is inserted
in both ends of the fuel rod for mounting in position as in Figure 9.
This type of plastic was chosen because its neutronic characteristics

are gsimilar to those of water,

e ——

;CHEM-O-PON Epoxy Coating", manufactured by Jones-Blair Paint Co.,
nc,

Registered trademark for acrylic sheet manufactured by Rohm and Haas
Company,




Aluminum Strips
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Plexiglas Tubing

\

Fuel Slugs
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L

FIGURE 9. Fuel Rod Assembly
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The hexagonal lattice geometry is similar to that of the
Tiger Pile, but the spacing between adjacent fuel rods is smaller
(Figure 10). The actual lattice spacing in the Tiger Pile is greater
than the theoretical spacing for maximum multiplication because of the
necessity of allowing for passage of the neutron detector(gi). A
tighter lattice to increase neutron multiplication was suggested(gé),
and previous work support this proﬁosal(gg’gl).

A useful feature of the Mini Pile not found in the Tiger Pile
is the access to the interior of the fuel elements. The plastic tubing
inserts have 3/8-inch nominal inner diameter, sufficient to allow pas-
sage of the 3/8-inch diameter BF5 probe. This provides easier and more
accurate positioning of the probe, and allows one to study the self-
shielding of the uranium fuel. The fuel is moderated both internally
and externally with light water.

The source holder, also constructed of Plexiglas, is designed
to accommodate both PuBe and Cf-252 external neutron sources (Figure 11).
The polyethylene cylinder, which serves as a source stop, is of the
proper length so that the source position corresponds to the axial mesh
block specified in the input for the DOT code. A tapered hole in the
upper end of the cylinder allows for easy positioning of the californium
capsule. When a PuBe source is used, it is merely inserted into the
holder, and the three flat Plexiglas strips guide it onto the polyethy-
lene stop. The holder itself is attached to the innermost hexagonal

ring of fuel rods by the holes in the upper plate of the holder.
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FIGURE 11, Plexiglas Source Holder
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Measurement Technigques

The measurement of the flux distribution within the Mini Pile
was accomplished through the use of a Nuclear Chicago Model NC202 BFg
probe and associated counting equipment. A trolley and track assisted
in accurately positioning the detector.

The boron trifluoride (BF;) gas-filled detector uses the B1°-
(n,¢)Li? reaction for thermal-neutrdn detection. The alpha particle
and the recoil lithium nucleus produce ionization within the gas, and
the resulting voltage pulse is amplified and fed into a scaler. The
block diagram for the circuit is shown in Figure 12, The cross-sectiom
of the reaction (Figure 13), the simple energy dependence over a wide
range of energy values, and the ability to count in high gamma fluxes
because of the difference in specific ionization, make the BFs detector
an attractive neutron counter.

In order to insure a count rate that is relatively independent
of the voltage applied to the tube, one must operate the detector on
the plateau region of the curve of count rate vs voltage as shown in
Figure 14, The discriminator setting on the scaler must be adjusted
80 that most of the smaller gamma-induced pulses are rejected.

Calibration of the detector system is accomplished through
foil activation methods(gg). A point neutron source is suspended in
the moderator, and a comparison is made between the flux distribution
obtained through foil activation and the count rate of the detector
8ystem. This provides a value for the sensitivity of the detector sys-

~tem (the number of flux units corresponding to one count per second by

the detector).




BNC Portabin

Amplifier Scaler-Timer:
Hv
Power Preamp Power
Supply
Preamp

BFS Tube

h-(— Sensitive Volume

DCHV Power Supply - Canberra Model 6516 A
Amplifier - Canberra Model 816
Scaler-Timer ~ Canberra Model 895

Instrument Case and Power Supply - Berkeley Nucleonics Corp. Portabin
Model AP-1

Preamp - Stabilized %-transistor, high gain, low output impedance;
made by J. J. Philips, LSU Nuclear Science Center

BF; Tube - Nuclear Chicago NC202

FIGURE 12. Block Diagram of BFy Detector System
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CHAPTER V

CALCULATED AND EXPERIMENTAL RESULTS

The neutron fluxes calculated by the DOT code are printed
out by mesh blocks and by energy groups. The thermal fluxes of group
16 (< 0.1 ev) are of particular interest since these roughly correspond
to the neutrons detected experimentally by the BF5; detector. Table
III(jl) lists the sixteen energy groups used in the calculations by
energy intervals, and also compares the fission source neutron of
Cf-252 and U-235.

Three different models were used to treat the Mini Pile
problem (see Appendix C). The first model overestimated the amount of
uranium in each hexagonal ring. The second model was constructed such
that the uranium/water ratio was identical to that of the Mini Pile.
The last model was identical to the second, except that the axial mesh
blocks were smaller. Only the results of the last model are presented,
since it provides the best description of the problem,

The problem was first treated with Py cross sections for all
mateéials, which is actually an assumption of isotropic scattering.
This resulted in the calculation of fluxes consistently lower than the
€xperimentally-determined ones by several orders of magnitude. The
addition of anisotropic P, cross sections for hydrogen yielded much
better results.

The calculated thermal fluxes (Figure 15) clearly show the
flux depression within the fuel rods. The radial traverse above the

rod region illustrates a deflection of the flux near the fuel rods.
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TABLE III
GROUP STRUCTURE AND FISSION NEUTRON SOURCE SPECTRA OF Cf-252 AND U-235
Energy Distribution
Group Energy Interval Cf-252 U-235%
1 3= MeV 0.2308 0.204
2 1.4-3 MeV 0.3570 0.3h4k
3 0.9-1.4 Mev * 0.1789 0.168
L 0.4-0.9 Mev 0.1954 0.180
5 0.1-0.4 MeV 0.0328 0.090
6 17-100 keV 0.0051 0.01%
T 3-1T7 keV
8 0.55-3 keV
9 100-550 eV
10 30-100 eV
11 10-30 ev
12 3=10 eV
13 1-3 ev
1L 0.4-1 ev
15‘ 0.1-0.4 ev
16 0-0.1 eV

*Spectrum given for U-235 is appropriate for thermal neutron fission.
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Calculated Thermal Neutron Flux (n/cm®/sec)
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FIGURE 15. Calculated Thermal (< 0.1 ev) Neutron Flux versus

Radial Distance for Various Heights.
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This deflection is also evident in the experimental measurements
(Figure 16).

A comparison of experimental and calculated thermal fluxes
is shown in Figure 17. The calculated fluxes appear to be slightly
higher near the source, approximately the same (except in the fuel) in
the region from 5 to 10 cm, and much lower at larger distances (by 2-3
orders of magnitude). The flux dgpression in the fuel is also much
greater for the calculated results.

Figures 18 and 19 compare the experimental and calculated
thermal fluxes as a function of axial distance at different radii.

The comparison is somewhat better than for radial traverses. Again,
calculated fluxes are slightly higher near the source and lower at
larger distances. The greater flux depression within the fuel is also
noticeable. The experimental flux peaks at large distances in Figure
19, but no such increase is apparent in the calculated flux.

Figures 20 and 21 provide values for the extrapolated radius
R and vertical buckling Yy, which may be substituted into equation (L4-1)
to give the value of the material buckling. Since the core is reflected,
"R" in equation (L4-1) is replaced by R, + s, where Ro is the geometric
radiugs of the core and s is the diffusion length of the reflector. The
value of y is 0.120 cm~1, The material buckling for the Mini Pile is
therefore -3.30 x 1072 cm™2, The geometric buckling, obtainable from

€quation (4-7), 1s 1.62 x 102 cm~2,

The effective multiplication factor, k, can be found from
€quation (L-6).
sumeq (24,27)

A value of kw obtained for similar lattices is as-

» and, using a value of 33.8L4 cm® for the migration area,

the valye of k is




Experimental Thermal Neutron Flux (n/cm®-sec)
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_ 0.981 _
k = T(33.84) (.oiga) - 0-63k

The subcritical multiplication constant m is 2.73.
The values for these parameters have been calculated from
the experimentally determined fluxes. The calculated fluxes are such

that they would not yield meaningful results for the Mini Pile reactor

parameters.




CHAPTER VI

CONCLUSIONS AND CRITIQUE

In deriving the discrete ordinates equations, the major ap-
Proximations consist of the definition of a finite phase space mesh and
the subsequent integration of the differential equation over a mesh
cell. By choosing a space, angle, and energy mesh sufficiently fine,
it i1s theoretically possible to obtain solutions of the transport
equation to any desired degree of accuracy. In practice, however, com-
puter core storage space places a limitation on the degree of accuracy
of certain problems.

Besides the limitation of core storage, the uéer of DOT is
restricted to radiation transport problems which can be treated in
two-dimensional geometry, The hexagonal array of fuel rods in the Mini
Pile require three dimensions for a rigorous description. Due to the
Symmetry of the system, an attempt was made to treat the problem in
two-dimensional r-z geometry.

The fluxes calculated by the DOT code are substantially
smaller than the experimentally determined fluxes at large radii. A
Possible explanation for the large discrepancy between experimental
and calculated results is that the hexagonal rings are approximated by
¢ylindrical shells whose surface-to-mass ratio (s/M) is substantially
larger than that of the corresponding hexagonal ring. Resonance capture
of neutrons while they are slowing down increases as S/M increases,
Since less uranium is shielded. This increase in resonance capture

8reatly reduces the amount of neutrons available to cause fission.
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The surface area of the uranium in the model becomes increasingly
greater than in the actual lattice as the number of fuel rods in a
hexagonal ring increase (see Table IV). This would account for some,
if not all, of the tremendous decrease in calculated thermal flux at
large radii. The discrepancy in the axial direction was not as pro-

nounced, since no fuel cylinders were traversed.

«

TABLE IV

COMPARISON OF SURFACE AREA OF URANIUM FUEL IN
MODEL AND IN ACTUAL LATTICE

(Actual Area)

Lattice Ring Number of Rods Model Area
1 6 0.32
2 12 0.16
3 18 0.11
L 24 0.08

The large flux depression in the fuel rods for the calculated
fluxes 1s probably due to the explanation above, and also to the lack
of moderator within the uranium in the third model.

The determination of the experimental fluxes was accomplished
by a BF; probe with an active region 5.5 cm in length and 0.6 cm in
diameter. The sensitive volume is larger than the mesh blocks. This
finite volume makes positioning of the probe at a particular point very
difficult, especially if the axial direction is being traversed. For
example, the rise in the experimental flux in Figure 19 is probably

due to a portion of the BF; chamber extending above the rod forest and
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detecting neutrons in the reflector., The probe also causes a local
flux depression, which makes accurate determination of the flux impos-
sible. A poor voltage plateau (Figure 14) causes variations in the
measured count rate,

Another limitation of the DOT code as well as other radiation
transport codes is the accuracy of the cross sections. A significant
weakness is the knowledge of tBe cross sections in the resonance re-
glon, and the results of the Mini Pile calculations are attributable,
at least in part, to the deficiencies in the cross section data(gg),

Although the treatment of the Mini Pile problem with the DOT
code did not produce results with the desired accuracy, the differences
between calculations and measurements can be explained. The Nuclear
Science Center now has a multipurpose discrete ordinates transport
computer code operable on the LSU IBM 360/65 system. DOT may be used
to treat a variety of problems in radiation transport and shielding.

The Center also possesses a small subcritical assembly which should

prove valuable as an educational and research tool.
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APPENDIX A

FINAL FORM OF DIFFERENCE EQUATIONS TO BE SOLVED(Q)

When the diamond-difference equations, (2-37)-(2-41), are

combined with equation (2-35), the solution for the flux at the center

of a mesh in cylindrical geometry is:

«

é

G,i+1,J,D _
¢G,I,J,D = (|uD|2ﬂ?IAZJ or + |ﬂD|2ﬂ?IArI
G,i,J3,D
)
G,I,j+l,D Az
p or + v WP,1,3,0,K
G,I,j,D
, _ —
+ 3% Vi35 G’I’J,D)/(lp,DlAsz'n'EI + [Ty |2 ar,
AZ
J — T
Where YN = i(Yn_'_l + Yn)'
s’ includes the fixed source and all scattering sources that

G,I,J,D

have been computed with previous fluxes. The upper term in the first
bracket is for Eb < 0 and the upper term in the second bracket for
ﬁD < 0. The lower terms are used for positive values of these direc-
tion cosines. The subscripts in the equation have the following signi-
ficance: "I" and "i" denote the indices in the mesh sweep over r,
"J" and "j" over z, "k" and "K" over T, "N" and "n" over {, "G" and
"g" over the energy E, and D over the quadrature set.

After solving equation (A-1) for the centered flux, the un-

determined end point fluxes are given by

Th
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G,1,J,D G,1+1,J,D i

= 20 - ) =

5 G,1,3,0 " | 8

LG,ZH"].,J,EJ LG,i,J,D ‘t

N 8

E’G,I,J,D %G,I,j+l,D

s = 25,1,00 " s ’ 3

G,I,§+1,D G,1,i,D

- J - 8

and
8e,1,0,0¢1,k = P, 1,00 " ,1,3,n,K°

For a detailed account of rules governing the mesh sweep,

the reader is referred to the original work@).
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APPENDIX B

SUPPLEMENT TO USER'S MANUAL FOR DOT FOR AN IBM 360/65

The following section provides information to a potential
user of the DOT-II computer code package from RSIC. To prepare the
reader for the suggestions and hints that will be presented, it is
urged that he first read "A Usefﬂs Manual for DOT"(lé) and "User's
Manual for the DOT-IIW"(LQ). The latter publication is extremely
useful as a reference even though it describes a slightly modified
version of the DOT-II code.

This section consists of information resulting from personal
experience in running the code on the LSU computer, private communica-

tion with others that are associated with DOT, and some important but

subtle points in the DOT manuals Ehat may be overlooked by a potential

user,

Changes and Additions to the DOT Code Itself

The following points must be considered before DOT can be

made operable on an IBM 360/65:

1. ICLOCK, a timing subroutine in assembler language, should be
obtained from RSIC and entered into the DOT program. Other-
wise, an unresolved external reference error will occur. A
dummy subroutine containing the executable statement "ICLOCK =
0" was attempted at LSU, but failed to solve the problem.

2. In the subroutines WOT and WAT, there are transfer-of-control

statements (IF statements) ending DO loops, an intolerable
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situation on LSU's G-1 compiler. By using the system utility
IEBUPDTE, the statement numbers can be eliminated from the IF
statements and placed on CONTINUE cards immediately following
the transfer-of-control statements.
A WRITE statement in subroutine WWESOL refers to an undefined
output unit 51. IEBUPDTE can be used to insert
COMMON NINP ,NOUT
after the SUBROUTINE st;;ement, and to change the incorrect
WRITE statement to
999 WRITE(NOUT,10)K,ERR.
The dimension of the array "A" as specified in MAIN is 90,000.
This is much larger than is needed for most problems. The
value of LAST in the printout is the amount of variable dimen-
sion used, and this value should replace 90,000 in the state-
ment
COMMON/SUPRBU/ISIZE,A(90000).
The value of ISIZE should also be subsequently adjusted on the
units assign card.
The use of the assembler GRIND instead of the F@RTRAN version
is strongly recommended since it decreases computer time by a
factor of from two to five(lg’gg). The first two comment
cards in the assembler version must have a "C" replaced by "¥",
and one statement in the subroutine must have V(IBCOM) changed
to V(IBCOM#) or an unresolved external reference will occur
("#' becomes "=" when printed).
Errors in the program that have return severity codes of )4 need

not be corrected.
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The use of hierarchy instead of the overlay structure that ac-
companied DOT will result in the use of approximately the
same amount of CPU time. However, less high-speed core is
needed with hierarchy, and faster turn-arounds are possible.
The user of the LSU computer is limited to 260K of high-speed
core, while some computer facilities allow the user much more.
To employ hierarchy, simp%y omit the overlay cards and insert

//LKED.SYSIN DD *
HIARCHY 1,SUPRBU.

Also change the word OVLY to HIAR on the PARM.LKED parameter.
Also change the REGION.GO parameter to

REGION.GO=(AK ,BK)
where A = amount of high speed core needed

and B = amount of low speed core needed.

Job Control Language (JCL) Hints

The following are some suggestions concerning the use of JCL

in conjunction with running DOT:

l.

The SPACE parameter for SYSLIN, the output from the compiler,
must be overridden:

//FORT.SYSLIN DD SPACE=(800,(400,50),RLSE).
The REGION parameter in the GO step defaults to 52K unless
overridden. The new value should coincide with the High Water
Core Mark (HWCM) on the JOB card.
When using the FORTRAN compiler, the PARM parameter should in-
clude "NOTERM", which indicates that input/output (I/0)

operations are not at a terminal.
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The DOT source program contains not only FORTRAN, but also
the assembler subroutines ICLOCK and GRIND. To compile the
program, it is necessary to write an on-line catalogued pro-
cedure (PROC) similar to FORTASM, except that the program
IEUASM is executed in two separate steps to compile the two
assembler subroutines. The PROC, called DOT, is entered in
the deck as shown below:

-

(JOB card)
//DOT PROC
(cards for PROC)
/ /ENDPROC PEND

In the DD statements assigning storage allocation, the RECFM
in the DCB parameters should be VBS.
If the program listing of DOT is not desired after every job,
include:

//SYSPRINT DD DUMMY,SYSOUT=
This is appropriate for the LSU system which is operating on

Release 20.,6.

Suggestions in Technique and Miscellaneous Information

The following suggestions may prove helpful in simplifying data

input and minimizing the amount of computer storage and time for solving

a problem.

l.

It is sometimes possible to simplify a mesh model by using
symmetry properties and appropriate reflecting boundary con-
ditions. For example, Figure 22 shows a two-dimensional

representation of a cylindrical volume (the cylinder is

el a Sl L T
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generated by rotating the figure about the dotted axis) con-
taining a source at the origin. The simplified mesh model is
also shown with the reflective boundaries indicated. The

upper portion was chosen as the mesh model because the direc-

tion of the mesh sweep during calculations (shown by the arrows)

would allow fluxes to be available for reflection at the re-
flecting boundaries.

In a problem with an fgotropic source, it is much simpler to
use the distributed source option instead of the boundary
source. The input data is easier to handle and no angular
flux entries are required. If the source is situated at a
boundary, merely include it in one or more of the outermost
mesh blocks near a reflecting surface.

The data storage designations specified on the units assign
card are not all required. Those that are not required in a
particular problem should have their corresponding parameter
values set equal to the value of a unit that is required,
Either magnetic tapes or direct access (disk) space can be
used for data storage.

The space that needs to be allocated to the storage units is
related to the value of some parameters associated with a
particular problem. If fluxes and moments are out on disk

(or tape), then NCRL, NSCRAT, and NFLUXl must have enough

room for(gg)

¥*
]:M-)(-JM*[AO 20 +3) 1] + [DHIM]*A0k words/group.
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5. Quadrature weights and direction cosine data are given on the

i 2T AR

ETLles

original code package tape.

6. The use of the characters R, I, and F in the data input is

B,

strongly recommended to simplify keypunching. A description

saaliste

of their uses can be found on pages 5 and 6 in the DOT-IIW

Tt

manual(la). Data can also be entered in exponential (base 10)

Lyt e T

form. P

L=k

T. Suggested initial values of the inner iteration parameters
(20)

T

SOL and GOT are 8 and 18 respectively

8. The input sequence of the data arrays are as specified in the

]
ir
a
g
1
|
2
z
]
#
-

DOT manual(;§). All other arrays not mentioned follow these
in any order.

9. Convergence of inner iterations is vital to insure meaningful
solutions; therefore, the use of the pointwise flux convergence
criteria (GO6#0.0) is suggested.

10. The rate of convergence of the inner iterations can be accele-
rated by increasing the value of the convergence criteria,

EPS and GO6, or by providing a better initial flux estimate.
GO6 should equal EPS for source calculations.

11. 1If the normalization factor (SOl) in distributed source prob-
lems is 1.0, fluxes are in units of n/cm®-sec-source neutron.
1f SOl is equal to the distributed source strength in n/sec,
fluxes are in units of n/cm®-sec.

12. The mixed-mode flux calculation option is recommended for
most problems,

13, The value of LAMBDA, the ratio of sources, is printed after

every other iteration.




1k,

15,

16.

17.

18.
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The mesh spacing requirements specified on page 59 of the
DOT-I1Iw manual(ég) are too stringent for most problems. Meshes
approximately a centimeter or two in height and width are rea-
sonable except where large flux gradients appear. The dis-
advantage in going to smaller (and therefore more) meshes to
describe a problem is that the resulting computer time increases,
When dealing with neutron transport in materials containing
low atomic mass numbers*such as H 0, the anisotropic option in
DOT must be employed to obtain reasonable results., This is
done by using Pz cross sections, where £ is the order of
scattering. The higher the order of scattering, the more ac-
curate the treatment, but the greater the amount of core and
computer time needed. If the order of scattering chosen is i
(A03=1), then the P> Pyse..P; cross sections for that aniso-
tropic material must be entered.

The method of handling the input for the cross sections and the
use of the mixing table to compute the macroscopic cross sec-
tions for a particular problem are described clearly in the
DOT-IIW manual(lg). Complications arise when the material in
a4 zone is a mixture or a compound of both isotropic and aniso-
tropic elements. The reader is referred to the mixing table
of the Mini Pile problem for the handling of such a situation,
For problems involving natural uranium, the cross sections
used should be corrected for the resonance integral(gg).
Recent cross section data are available from RSIC in card

form in the format used by DOT. The cards must be translated

from BCD to EBCDIC. The LSU system has a data-handling
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19.

2l.

22.

23.

2L,

25,

8L
procedure TOEBCDIC to accomplish this. The PL cross sections
must be multiplied by 24 + 1, which can be done when consi-
dering the density of that element in the mixing table. The
length of the cross section table (ITL) of these cards is nine.
If Hansen and Roach cross sections(ig) are used instead, those
having y(E) spectrum weighting should be used(ga).
If an "overflow" error message is encountered during the
inner iterations whiIe using the point-scaling technique, it
is probably caused by an error in either the cross sections or
the mixing table resulting in the dominance ratio(ig):

A Zgg/Zt <1.0

being violated.
If an "OOCL" error message is encountered, the dimension of
"A" is probably too small for that problem.
To check the input data for errors, specify D05=0 for the
first run. This will result in a printout of the DOT input.
Placing the load module (compiled DOT program) on disk saves
over three minutes CPU time every run.
To obtain quicker "turn-arounds", the card deck used can be
duplicated and two decks submitted independently. Care
should be taken in keeping track of what changes are made in
each deck.
To use the calculated fluxes written out on NFLSV as an ini-
tial guess, the unit designations must be switched so that

the tape used for NFLSV is designated as NFLUXl. Six areas

require consideration when using this method:
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(a) The DD statements assignment storage allocations to NFLSV
and NFLUX1l must contain the correct disposition (l,g., OLD,
KEEP or NEW,KEEP). The DCB parameter is:

DCB=(RECFM=VS ,LRECL~=3516,BLKSIZE=3520).

(b) The &esignations on the units assign card for NFLSV and
NFLUX1 must correspond to the units specified in (a)
above, .

(¢) Enter MOT=5 for initial flux guesses from tape.

(d) In problems involving fission or upscatter, DO5 may have
to be adjusted to a low enough value so that the fluxes
will be printed before the specified maximum CPU time is
reached. If the outer iterations fail to converge in
this alloted time, and if DO5 is not sufficiently small,
then no fluxes will be written.

(e) NFLUX1 is also used as a scratch tape. The flux guess is
read in and subsequently written over and lost. Thus, a
flux guess can only be used once unless another copy 1is
available,

The pointwise flux convergence option (GO06#0.0) requires con-

vergence in every mesh block before DOT calculates the flux

in the lower energy groups. This results in much time being

spent on attempting to converge in regions which may be of

little interest, such as in corners of the model. The integral
iteration test (G06=0.0) can be used for problems that require
many outer ilterations. Using this option, inner iteration
convergence 1s required over the entire system rather than in

the individual meshblocks.




27.

28.
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The zone of convergence option is available if convergence of
some particular zone of interest is desired.
The following is an outline of the deck (including JCL) used
by the author to run the DOT code on the LSU IBM 360/65:

(JOB CARD)

(SETUP CARD)
(ON-LINE PROC NAMED DOT)

//STEP EXEC DOT ,PARM.FORT= MAP ,OPT=0,NOTERM’,

// TIME=19 ,REGION.ASM1=150K,

// PARM.LKED=" XREF ,LET ,LIST,HIAR’,

// REGION.GO=(200K,250K ),

// PARM.GO=" 10=-1,ID=-1,EO=-1,EV=-1,FD=-1"’

//FORT .SYSLIN DD SPACE=(800,(L400,50),RLSE)
//FORT.SYSIN DD DSN=DT011l.PL0O010.LANDRY.DOTNOG,
// UNIT=231L,VOL=SER=LSUOOT,DISP=(OLD ,KEEP),

// DCB=(RECFM=FB ,LRECL=80 , BLKSIZE=T280)

//ASM1,.SYSIN DD UNIT=231L,VOL=SER=LSUOOT,

// DSN=DT011.PL0O010.LANDRY .ASSGND,

// DISP=(OLD ,KEEP ) ,DCB=(RECFM=FB , LRECL=80 ,BLKSIZE=T280)

//ASM2.SYSIN DD *

(ICLOCK CARDS)
//LKED.SYSIN DD *
HIARCHY 1,SUPRBU
//GO.FT10FO01 DD UNIT=SYSDA ,SPACE=(TRK,(800,100),RLSE),
// DCB=(RECFM=VBS ,LRECL=3516 ,BLKSIZE=3520)
//GO.FT11FOO1 DD UNIT=SYSDA’,SPACE=(TRK, (800,100),RLSE),

// DCB=(RECFM=VBS ,LRECL=3516,BLKSIZE=3520)
//G0.FT12FO01 DD UNIT=TAPE,

// DSNAME=EDTWO ., GUESS . TWO , VOL=SER=T1903,
// DCB=(RECFM=VS ,LRECL~3516 ,BLKSIZE=3520),
// DISP=(OLD ,KEEP ) ,LABEL=(1,SL)

//GO.FT1L4FOO1l DD UNIT=TAPE,
// DSNAME=FLUX . EDTWO , VOL=SER=T1267,




// DCB=(RECFM=VS,LRECL=3516,BLKSIZE=3520),
// DISP=(NEW,KEEP),LABEL=(2,SL)
//GO.SYSIN pp *

(DATA CARDS)

//
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APPENDIX C

DATA INPUT TO DOT FOR THE MINIPILE PROBLEM

One of the useful features of the DOT code is the simplicity
with which one can alter the problem under consideration. Three dif-
ferent models were used to describe the Mini Pile problem, and the
modification of the input to handle each was a relatively simple task.

Tables V and VI contain sample input parameters and data arrays for the

Mini Pile problem. Some of these values may be different when using

e A TR Th A e A

special techniques, such as an initial flux guess from tape.

Since the DOT code handles only two-dimensional problems,

5
;)
1

the hexagonal lattice structure was approximated by concentric, cylin-
drical shells of natural uranium separated by water. The first model
consisted of uranium shells of thickness equal to that of the rods.
These shells were located at the radial position corresponding to the
hexagonal array that they represented.

The second model was constructed to provide a more realistic
representation by considering the ratio of the fuel to moderator in
the shell, and utilizing an effective thickness of uranium (see Figure
23). Using the notation in Figure 23, the areas of the entire annular

ring, of the uranium, and of the water are:

Ay oy m(xg - %) (c-1)
Ay = nf(x8 - r$ (c-2)
AHED - Arlﬂrs - Au (c-3)

where n = number of fuel rods.
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TABLE v

INPUT PARAMETERS FOR MINI PILE PROBLEM

ISIZE = 31160 A0l =1 ™M = 30 BOL = 1
NINP = 5 A02 = JM =8 BO2 = 0
NCR1l = 10 AO3 = 1 104 =0 BO3 = 0O
NSCRAT = 11 AOL = 16 EV = 0.0 BO4 = 1
NBSO = 10 IGE =1 EVM = 0.0 MOT = O i
NPSO = 10 IzZM = 2 EPS = .1 MODE = 1 s
NFLUX1 = 12 3
NAFT = 10 :
NFLSV = 1k A
ML = 8 S02 = 0 S0l = 6.8x107 §
MOl = 8 S03 = 0.0 NACT = L4 :
MCR = 5 IGM = 16 MO6 = 3 §
MIP = 0O IHT = 3 so4 = 8
1z =0 IHS = 4 D05 = 10
JZ =0 ITL = 9 GOT = 18
TMAX = 20 IAFT = O ITI = 0
Go6 = .1 1ZC =0 IPl = 2
LAL = 0.0 IMG = O IP2 = 0
LAH = 0.0 ISC = 0 IP3 = 0
POD = 0.0 1S2 = 0 IPL = 0
EPSA = ,001 1S3 = 0 IP5 =0
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TABLE v1

DATA ARRAYS FOR MINIPILE PROBLEM

Number
Array of Entries Description of Entries
g
T* 32 Direction cosines: 16 u's, 16 M's 3
6* 16 Quadrature weights 7
1h* 720 Cross secgions from cards: H(Po), H(P,), ?%
Oxygen, U-235, U-238 5
3-17* 16, 30, 8 Volume distributed fixed source: C£-252 spec- 2
#
trum by groups; one 1.0 entry followed by 2
u
twenty-nine 0.0's; one 1.0 entry followed by 8
seven 0.0's Z
3% 16 Initial flux: all entries are 0.0 L
&
L 31 Radial interval boundaries ¢
2% 9 Axial interval boundaries ¢
8% 210 Zone numbers by interval
9¢ 2 Material numbers by zone: -6 and 8
1% 16 Fission spectrum
5% 16 Velocities: all entries are 1.0
10$ 8 Mixing table, sums: 6, 7, 6, 7, 6, 8, 8, 8
11$ 8 Mixing table, components: 0, 0, 1, 2, 3, 0,
b, 5
12% 8 Mixing table, atomic densities: 0.0, 0.0,
p(H), p(H)x3, p(0), 0.0, p(U-235), p(u-238)
19% L Material numbers for activity print: 5, 6, 6,
6
20$ ok Cross section table position for activity

print: 1, 1, 2, 3
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The radii ry, r,, r,, >, and r, are known. The effective
radii, T and Iy, are to be found. If the area of uranium is to be the

same in the model as in the system,

W(r§ - ?z) = off(r§ - r3)

or ;
£2 - £2 = u(ef - £2) (c-4)
B~ %A 3
%
For the shell of uranium to be centered, i
rs - rB = rA - rl ,:‘;:
or ‘
%
Ty =STitrg -, (c-5) g
and .f
i

Ty =71y +rg - r, (c-6)

=]
&
H
H]
E J

Substituting (C-5) into (C-1) and solving for rp glves:

LR o

2
e o

Substituting (C-6) into (C-4) and solving for r, glves:

2
r - n - r2
rA = (rl + 2?31 = ré;& 4) (C"8)

From Figure » T'a = r; = 2r,

or o ='£§-%-£i (c-9)

Substituting (C-9) into (C-7) and (C-8) yields general expressions for

the effective radii of the uranium fuel shells:

CEESY e (4 1)

r, = (c-10)

B 2(1‘1 + rs)
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() - al(REYT Ly

A" 2(r; + rg) (c-11)

Table V contains the values of the effective radii for the

second model of the Mini Pile.

TABLE VII

VALUES OF EFFECTIVE RADII FOR CYLINDRICAIL URANIUM SHELLS

-

Number of
Fuel Rods
n r, (em) ry (cm)
6 4,16 5.36
12 8.92 10.12
18 13.67 14.87
24 18.4h 19.64

The third model representing the Mini Pile is identical to
the second except that more axial mesh blocks were congidered. The
second model consisted of 8 axial mesh blocks, 3.45 cm in height. To

reduce the size of these, 18 mesh blocks were considered, each approxi-

mately 1.5 cm in height.
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