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ABSTRACT

On-ine optimization is an effective approach for process operation and economic
improvement and source reduction in chemicd and refinery processes.  On-line optimization
involvesthree steps of work as: data validation, parameter eimation, and economic optimizetion.
This research evduated statistical algorithms for gross error detection, data reconciliation, and
parameter estimation, and devel oped an open-form steady state process model for the Monsanto
designed sulfuric acid process of IMC Agrico Company. The plant modd was used to
demongtrateimproved economics and reduced emissions from on-line optimizationand to test the
methodology of on-line optimization. Also, a modified compensation strategy was proposed to
improve the migrectification of data reconciliation adgorithms and it was compared with
measurement test method. In addition, two ways to conduct on-line optimization were studied.
One required two separated optimization problems to update parameters, and the other combined
data vdidation and parameter estimation into one optimization problem. Two-step estimation
demongtrated a better performance in estimation accuracy than one-step estimation for sulfuric
acid process, while one-step estimation required less computation time.

The measurement test method, Tjoa-Biegler’ contaminated Gaussian distribution method,
and robust method were evauated theoretically and numericdly to compare the performance of
these methods. Results from these eva uationwere used to recommend the best way to conduct
orHineoptimization. Theoptimal procedureisto conduct combined grosserror detection and data
reconciliation to detect and rectify gross errors in plant data from DCS uang Tjoa-Biegler's

method or robust method. This step generates a set of measurements containing only random

XVii



errors which is used for smultaneous data reconciliation and parameter estimation using the least
sguares method (the normd didtribution). Updated parameters are used in the plant modd for
economic optimization that generates optima set points for DCS.

Applying this procedure to the M onsanto sulfuric acid plant had anincreased profit of 3%
over current operating condition and an emisson reduction of 10% whichis congstent with other
reported gpplications. Also, this optima procedure to conduct on-line optimization has been
incorporated into an interactive onHine optimization program which used a window interface
developed with Visud Basic and GAMS to solve the nonlinear optimization problems. This

program is to be available through the EPA Technology Tool Program.



CHAPTER | INTRODUCTION

The objective of this research is to investigate the optimd implementation of on-line
optimization for indudtrid plants. This includes the establishment of a framework for on-line
optimization, the construction and validation of plant modes, the evaduation of dgorithms for
conducting gross error detection, data reconciliation, parameter estimation and economic
optimization, and the comparison of the available program languages. Theresultsof thisresearch
should help determine the optima way to perform on-line optimization.

This chapter introduces the structure of on-line optimization and describesthe relations of
the components in on-line optimization. It providesan overview of the detailed descriptions to be
presented in subsequent chapters.

A. An Overview of On-Line Optimization

On-ine optimization adjusts the operation of a plant based on product scheduling and
production control to maximize the plant’s profit. It providesthe meansfor continuoudy driving a
process toward its optimum operating point. 1n most industrid processes, the optima operating
point congtantly movesin response to changing market demands for products, fluctuating costs of
raw materids, products and utilities, and changing equipment efficiencies and capacities. In
addition, ambient conditions, variationsin feed qudity and avalability, and changesin equipment
configurationareadditional congtraintsthat can dter the location of the optima operationpoint. The
time frame over which these various changes can occur ranges from minutes to months. The

competitive economic environment requirestimey response to these changing factors. Thismeans
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that the optimizationmust be done on-lineto have the plant operate continually under thebest conditions

With the availability of distributed control systems (DCS) for process control and data
acquistion as wdl asthe application of multivariable controllers, large scae application of on-line
optimization has become feasiblee. DCS provides current plant operating data (plant
measurements) for updating the parametersin plant modesto avoid the plant-mode mismeatch.
Multivariable controllers ensure the control ability to quickly and accurately response to new
optima setpoints. Moreover, the decline in cost of computer hardware and software and the
increase in the cost of energy and pollution prevention have stimulated manufacturers to improve
and optimize their processes, which has boosted the development of on-line optimization.

There have been severa indudrid gpplications of on-line optimization reported recently
in refineries and chemica plants, and the improvementsin plant operations and economics ranged
froma5% to 20 % increaseinprofit (e.g., Lauks, et ., 1992; VanWijk and Pope, 1992; Hardin,
et d., 1995; Mudt, et d., 1995; and Kdly, et d, 1996). Also, on-line optimization applications
have been developing commercidly by advanced control and modeing technology companies.
Some of the advanced control companiesand their packagesindude Setpoints, Inc.-"OPTCOM™,
Treiber Controls, Inc.-"OPS', Profimatics, Inc.-"On-Opt”, and Dynamic Matrix Control (DMC)
Corporation-"CLRTO". Modeling technology companies market capabilities based on their
flowsheeting programs and graphica interface, and some of these are Smulation Science, Inc.-
"ROM", ChemShare, Inc.-"Mirror Modd" and Aspen Technology-"RT-Opt".

On-line optimization is the next growth area for improving the performance of chemica

plants and petroleum refineries. The advanced control and modeling technology companies are
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forming partnerships that capitalize on their individua capabilities. Recently, Aspen Technology
has merged with Setpoint, Inc. and DMC Corporation. Simulation Science, Inc. and Shell
Deveopment Company have entered into a cooperative agreement; and Profimatics has been
acquired by Honeywell (Basta, 1996). These changeswere caused by anindustry demanding for
the integrationof ontline optimizationand advanced control.  Thesecompanies objectivesinclude
conducting on-line optimization projectsfor dients and making a profit. They do not share details
of methodology to maintain a competitive advantage.

The main benefit from on-line optimizationisimproving the economic performanceinterms
of increasng the plant’s profit and reducing pollutant emissions, which is the immediate benefit
cdled on-line benefit. A number of other benefits are summarized in Figure 1.1 after Bayles at
Conoco (1996) and Kleinshrodt, et a., (1995). The detail operation information generated from
on-line optimization provides a better understanding of the processes; and thus, this can be used
to debottleneck the process and to improve operating difficulties. Also, abnorma measurement
information obtained from gross error detection can hdp indrument and process engineers to
trouble shoot the plant instrument errors. The parameter dataestimated from parameter estimation
is very useful for process engineers to evauate the equipment conditions and to identify the
bottlenecks and problem sources. Furthermore, the detail process smulation from on-line
optimizationcan be used for process monitoring and serves as a training tool for new operatorsto
obtain the first hand operating experience. InFigure 1.1, anumber of applications are summarized
for both on-line and off-line uses that employ the same rigorous process mode which was

developed for on-line optimization. Also, this rigorous process model can be used for process
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maintenance, advanced process control, process desgn and fadility planing, and process
monitoring.

InFigure 1.2, agenera description of the time and plant scales of optimizationis givenfor
processes and plants. As shown on this diagram, maximizing the corporate profit from multiple
plants requires the alocation of raw materids to meet the demand for products. Thisisan optimd

productionscheduling and control problem; typicaly, there are thousand of variables for whichthe

optima vaues need to be determined. Linear programming isthe
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optimization method usualy used for problems at thislevd. In generd, the frequency for thistype
of optimization isweekly or monthly. The resultsfrom the plant scheduling optimization assgn the
best production rates for the plants.

Onthe dngle plant scale, the task of optimization isto find the optima operation set points
for the plant that satisfy the assgnment fromoptima plant scheduling and minimize the production
cod. Thistype of optimization usualy involves nonlinear plant and economic
mode and has asize about hundreds or thousands of variables and congraints. It updates the
parameters in plant modds to diminate the plant-modd mismaich. Also, it provides information
for identifying the sources of abnormal operations, such as detecting leaking equipment or
mafunctioning ingruments,

For singleloop or individua unit optimization, the task is to optimize decison variables,
such as, reactor temperature and resident time a the existing catalyst activity or reflux ratios on
didillaion columns. This type of optimizationinvolves nonlinear plant mode with a size of tens of
variables and congraints.

B. Structure of On-Line Optimization

In Fgure 1.3, the structure of ontline optimization is shown aong with the components
which work together to maximize the profit fromthe operation of the plant. The key components
of orHine optimization include the plant and economic models, gross error detection, data
reconciliation and parameter estimation. Also, an efficent optimization agorithm is used to solve

thethreenonlinear optimizationproblemsshown in Figure 1.3, Referring to Figure 1.3, plant data
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is sampled from the digtributed control system, and grosserrorsare removed fromthe data. Then

the dataiis reconciled to be consistent with
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materid and energy balances of the process. Thisdatais then used to update the parametersin
the plant mode to ensure the plant mode predicts the operation of the plant. The updated plant
mode is used with the profit function (economic model) to generate the best operating conditions
for the plant. Then these are sent to the plant distributed control system as set points for the
controllers. Also, a coordinator programis used to supervise and control on-line optimization, the
frequency that it is repeated and the interaction with plant operators.

For asteady state plant mode, Figure 1.4 describes the implementation procedure of on-
line optimizationsystemmodified fromKdly, et a., (1996). Firs, the selected key measurements
areexamined to test if the processisat steady state. If not, testing of the processis continuing until
the processreaches steady state. When the processisat steady State, the plant measurementsare
extracted from DCS and are processed through the data validation step to remove or rectify the
grosserrorsinthe measurements. The measurementsinclude temperatures, pressures, flow rates,
compositions, for example. Then the vdidated plant datacanbe used to estimate the parameters
inthe plant model at parameter etimation step. These parameters are usually unmeasurable and
time-varyingconstants, suchascatalyst activity, heat exchanger foulingfactors, and tray efficiencies
of didtillationcolumns. They reflect the equipment conditionsthat change withtimeand arerdative
independent of plant operation conditions. Estimating these parameters on-line has the plant
smulaion mode match the plant operation at the current operating conditions.

The parametersinthe economic model indude sale pricesand demand for products, costs
and avalability of raw materids, utility cost, etc., which are determined by conditions that are

separated from process operations and are also subject to change. These parameters
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have to be adjusted to have an accurate description of the profit. Findly, current economic mode
incorporated with the updated and precise plant modd is used to determine the best operating
conditions (e.g. temperatures, pressures, and flowrates) for distributed control system to operate
the plant. These optima operating conditions maximize the profit and satisfy the plant mode!.

After the optimal set points are obtained from economic optimization, the operating Sate
must be examined again to ensure the process dill remaininthe same steady state as the plant data
was taken to update the plant parameters previoudy. If not, the optima set points is discarded
and the procedure is restarted again. If the process remain the same, then the optimal operation
St points are sent to the regulatory control system to implement.

As shown in Figure 1.4, ortline optimization system involves solving three nonlinear
optimization problems represented by three boxes: data validation, parameter estimation, and
economic optimization. These three nonlinear optimization problems share the same plant mode
as congraints and can be solved by the same optimization agorithm. A precise and robust plant
modd is essentia for orHine optimization. It serves as the condraints for data validation,
parameter estimation and economic optimizations. Therefore, a plant modd must be formulated
and validated before the onHline optimizationimplementation. The plant mode iswrittenbased on
the conservation laws, chemica kinetics and thermodynamic relations.

In order to perform on-line optimization for a plant as described above, both computer
hardware and software are required. First, the plant must have an automated control system to
sample the plant operating conditions. Also, dl of the key components for optimization need to be

programmed in a computer language and run on the plant computer system. In addition, a
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coordinator programis needed to coordinate the sequenceof executions of eachstep inFigure 1.4.
Thisprogramal so manipulatesthe plant sample datafromthe distributed control systemand returns
the optimal set-points to the distributed control system.
C. Execution of On-Line Optimization

The execution frequency of optimization is the time between conducting optimizations of
the process, and it has to be determined for each of the units in the process. It depends on the
settlingtime, i.e., the ime required for the unitsin the process to move fromone set of steady-state
operating condition to another. The settling time can be edimated from the time condant
determined by process step testing. The time period between two on-line optimization execution
must be longer thanthe settling timeto ensure that the unitshave returned to steady state operations
before the optimization is conducted again. Thisisillustrated in Figure 1.5, after Darby and White
(1988). Thefigure shows an execution frequency for optimization that was satisfactory for one
process may be too rgpid for another processwhichhas alonger settling time. In Figure 1.5a, the
process has returned to steedy-state operations and held that position until the next optimization.
However, inFigure 1.5b, the process did not have enough time to returnto steady-state operations
before the optimization atered the operating conditions; the process would not return to steady
date operations if such optimizationcontinued. The settling timefor an ethylene plant isfour hours
according to Darby and White (1988), and thistime for sulfuric acid contact processis twelve hour

according Hertwig (1997).
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D. Summary

Thergpid development incomputer hardware and software aswel automationtechnology
inthe last ten years has made it possible to consder on-line optimization of chemicd plants. On-
line optimization improves the economic and environmenta performances of chemicd plants and
refinery processes without requiring substantial capital investment, and it is a growth area for
modeling technology and advanced control companies.

On-line optimizationtakesadvantage of the fact that chemica plantsoperate at steady state
withtrangent periodsthet are rdaively short compared to steady state operations. Consequently,
steady-state process models are used to describe the plants. The idea of on-line optimization is
to reconcile data samppled fromdistributed control systemto update parametersinthe plant model
to have plant-modd matching. Then the current plant and economic models are used to conduct
economic optimizationand to generate aset of optima set points that achieve the maximum profit.
On-line optimizationis repeated astheinterna conditions (plant parametersand plant configuration)
and/or external conditions (economic parameters) change.

I nthe following sections, the current status for the methodol ogy of on-line optimizationwill
be reviewed. This will provide the bass for developing the best way to implement on-line
optimization in this research. In the subsequent section, the detall methodology of on-line
optimizationwill be investigated and evauated. Based on the eval uation results, the best procedure
to implement on-line optimization will be proposed. Also, an actud sulfuric acid plant from IMC
Agrico Company inLouisanawill be used to eva uate the efficiency and accuracy of the dgorithms

and to investigate the best way to implement on-line optimization.



CHAPTER Il LITERATURE REVIEW

Inthis chapter, industrid applications of on-line optimizationwill be summarizedfirs. The
key dements of on-line optimization will then be outlined, and the current status of the
methodology for on-line optimizationwill be reviewed. Based onthisinformation, the procedure
for implementing on-line optimization will be proposed and gpplied to actud plants.
A. Indusgtrid Applications of On-Line Optimization

Boston, et d., (1993) gave awide review for computer Smulation and optimization as
well as advanced control inchemica processindustries (CPl). Hedescribed thenew computing
power for process optimization and control that leads to higher product qualities and better
processes, which are cleaner, safer, more efficient, and less costly. Also, it results in speedier
response to changes in economics, regulatory, and technologica conditions, as wel as market
demands. As Parkinson and Fonhy (1995) reported, the globa market for distributed control
system (DCS) is about $6 hillion with the U.S. accounting for about $1.5 billion now, and it is
growing by over 20% per year in some Asan countries and by 5% per year inthe U.S. The
wide ingdlation of DCS in chemica plants and refinery processes provides the necessary
measurementsof processes for on-line optimization. The new optimizationtools are pushing the
plant performancesto aleve that was not felt possible before.

There have been severa industrid applications of ornHline optimization reported recently
inrefineriesand chemicd plants. They reported improvementsin plant operations and economics
in arange of 3% to 20%. However, details of methodology used is sketchy because proprietary

processes are being used.

15
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Lauks, et al., (1992) reviewed the indudtrid gpplications of on-line optimizationreported
in the literature from 1983 to 1991 and cited nine gpplications for five ethylene plants, arefinery,
agas plant, acrude unit and apower gation. Theseresults showed aprofitability increase of 3%
or $AM/year. Also, intangible profits from a better understanding of the plant behavior were
sgnificant. In addition, they gave resultsfor the OMV Deutschland GmbH complex including a
refinery unit, an ethylene plant and downstream treating units in Burghausen, Germany. An
equation oriented flowsheting programwas used for the process model having morethan 5,000
linear and nonlinear equations which led to anoptimization problemwith 106 congtraintsand 37
decison variables. Data reconciliation involved 450 points, and there were about 300 tuning
parameters.  The program was run on a DG-AVIION 4200 Unix system with a tota
computation time of 60 minutes. Optimization results were summarized in a setpoint report and
manudly implemented by plant operators on a TDC 2000 sysem. The improvement in
profitability has been between 1-3% depending on price structure, and it has provided better
ingght to operation of the plant.

Scott, et d., (1995 and 1994) reported that Texaco Refiningand Marketing Inc. (TRMI)
has implemented ROM from Smulation Sciences Inc. on a four unit complex. This on-line
optimization package providesintegrated modding of reactionunits, optimizationacross multiple
units, validation of laboratory and plant data, higher qudity control, and a large amount of
operating information. It was expected that the benefitsfromthis project would exceed $1 million
annudly. Also, this can be used as a versatile tool for troubleshooting, planning, and training of

the processes.
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Zhang (1993) had conducted a case study of on-line optimizationfor Monsanto designed
aulfuric acid plant fromlM C Agrico Company at Convent, LouiSana. The economic optimization
achieved 17% increase in plant profit and 25% reduction in sulfur dioxide emisson. The same
sulfuric acid plant will be used in this research to test the methodology of on-line optimization.

Krig, et d., (1994) described the development and implementation of a generic sysem
for on-line optimization (SOL O) in a benzene plant of Dow Bendux N.V. SOLO contains
generic modules and plant specific modules. The generic modules are used for data-retrieved,
dataandys's, datareconciliationand decisionmechaniam; and the plant specific modulesareused
for parameter estimationand find optimization. Thisoptimization increased the plant’ smargin by
an average of 4%.

Fatora, et a., (1992) reported that the use of closed-loop red-time optimization and
dynamic matrix control technology has achieved sgnificant economic benefitsin an olefin plant.
The pay-back period for the total project waslessthanone year. Inaddition, benefitsof thison-
line optimization system were that it pushed the unit to the mogt profitable constraints based on
current economics and operating objectives. Thisincreased the plant capacity, reduced energy
requirement, and improved product qualities.

Van Wijk and Pope (1992) described orHine optimization of the cataytic cracking
complex at Shell's Stanlow refinery inthe UK. Theon-line optimization system received process
and economic datafromthe refinery supervisory control syssemand performed optimizations on
a three hour cyde providing targets to the process controllers. The process and economic

modds were nonlinear, and areduced gradient agorithm was used for the optimization. Data
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reconciliation was performed on severa hundred points, and rotating equipment efficiencies and
heet transfer coefficients were two of the parameters updated in the processmodd. Benefitsof
orHine optimization were a 10% average increase in feed rate, a 9% increase in catalyst
circulation rate which resulted in a 9% increase in gasoline production.

OEMV, an Audrian company, had successfully ingtdled an on-line control and
optimizationsysteminthe fluid cataytic cracking units (FCCU) in 1987 (Rhemann, et d., 1989).
The advanced control and optimization project schedule was included in an overal project
providing anew digital ingrument control system (DCS) for FCCU, gasplant and tregting units,
consolidated in one common control area. The new DCS was installed and commissioned
without a plant shutdown during normal plant operations. The improved control fromadvanced
control and on-line optimization trandated into a large reduction in the standard deviation of
control variables. The advanced control and ornHine optimization gave a 4.3% increase in the
maximum operating feed rate for FCCU. Also, the controls showed both a high flexibility at
varying unit congraints and a high rdiability in daily operating.

Sourander, et a., (1984) described the on-line optimization of an ethylene plant usng
refinery heavy feedstocks. The plant produced 200,000 tpa of ethylene using nine cracking
furnaces which had a computer control system with set point supervisory controls of analog
controllers. Gas chromatographs usng dedicated microcomputers sampled feed and product
streams, and analyseswere sent to the main process computer. Seven different feedstocksand
three different recycle streams were sent to the nine heaters at varying rates to meet production

demand for seven products. The economic model was based on gross margin, and linear
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programming was used to maximize gross margin subject to market demand, feed availability and
the plant condraints (material and energy baances and process unit capacities). The on-line
optimizationcycde was executed everyfour hours. Error detection wasvery important, especialy
for the heater effluent, and abad analysesnot detected and included inthe model updeating caused
errorsto be carried through to the control system. The results of using orHine optimizationwere
reported to be increased furnace run times of 30%, efficiencies of 3%, capacities of 4% and
increased ethylene yields of 2%.

Saha, et d., (1990) of Amoco Production Company reported results for the on-line
optimizationof a240 MM scfd gas-processing plant in Evangton, Wyomingusingthe ChemShare
ProCAM systemwhichhas data reconciliationand a proprietary process modding system using
a smultaneous solution technique. More than 550 data points were taken from the plant's
digtributed control system (DCS) and reconciled for optimization using a plant model with 170
pieces of equipment and detailed economic mode. The optimization anaysis determined the best
operating conditions for 40 process variables which were reported to the plant operator for
implementing via the DCS. Preliminary estimates were approximately $9,000 per day for an
increased pretax profit and 50% higher than this for a high ethane recovery mode.

Moore and Corripio (1991) reported on the on-line optimization of didtillation columns
in serieswhichused dynamic programming with steepest descent and asmple model for product
recovery for two and three didtillationcolumnsinseries. Applied to atwo and three column train
a Dow Chemicad Company's Louisiana Divison, the control system performed successfully to

reduce operating costs beyond what was anticipated.
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Balley, etd., (1993) reported onthe on-line optimization of a hydrocracker fractionation
plant usng MINOS as optimizer. The full plant model contains 2891 variables with 10 degree
of freedom. Detailed methodologiesincluding modding and numerical techniqueswere outlined.
They showed that theimportant factorsfor implementing the model -based optimizer were scding,
darting points, sparsity patterns and thermodynamic approximations. The on-line optimization
system gave an 3% increase in profit.

Gott, Roubidoux and Heersink(1991) described an on-line optimization system for the
Conoco's Billings refinery flud cataytic cracking (FCC) units using Profimatics Inc. FCC-
SIMOPT package. The on-line optimizer generates both optima control targets as well asthe
optima operating strategy for the advanced FCC condraint control.  The on-line optimization
was divided into five phases. 1) process data monitoring, 2) program scheduling, 3) data
reconciliation, 4) mode update, 5) optimization. The results are sent to the advanced control
system. They concluded that this systemincreased the profit and provided better ingght into the
operation of the FCC units.

Simulation Sciences Inc. uses the flowsheet smulator PRO/II and data reconciliation
package DATACON as the main engines in thar On-line Rigorous Model (ROM) (Mullick,
1993). ROM was gpplied to a refinery crude unit for on-line planning, scheduling and
optimization. They concluded that ROM providearapid and robust mode of the current plant
operations and isavauable tool to improve profitability and operations through case studiesand

optimization.
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ChemPlant technology has developed a data reconciliation program, RECON, to
reconcile process measurements (Madron, 1997). RECON isaPC oriented software for mass
and heat badancing. Problems are defined interactively in the graphica user interface. Also,
RECON can be used for balancing in the stage of process design.

Strand (1989) described ortline optimization of a mechanica pulping sysems in his
dissertation. Detailed process modding of the pulping system and data reconciliation based on
a gmple linear models were discussed. Sequentia Linear Programming (SLP) was used to
optimize the pulping system operations by maintaining the pulp quaitywhile minimizing the energy
consumption. When this system was agpplied in the pulping system, 6% reduction in energy
consumption and 0.5T/hr production rate increase was achieved.

Mahadec (1993) of Aspen Technology Inc. examined the on-line, closed loop
optimization of continuoudy operating plants from aviewpoint of software requirements. The
open form of mode equations was considered to be a basic requirement for a successful long-
termimplementationof the closed-loop optimization. Thisopen form equation-oriented structure
was demongtrated to provide user friendliness and enable the plant engineersto maintainthe on-
line optimizer more eesly.

Leung and Pang (1990) of SmulationSciencesInc. described their company’ scodes for
datareconciliation and gross error detection. The package DATACON usesthe measurement
test (MT) and provides a friendly user interface (Smsd, Inc., 1991). It accesses PROII's

component library for thermodynamic data and reconciles the raw data with both process



22

materid and energy balances. This DATACON package iswiddy used in their company's on-
line monitoring and optimization system.

Canfidd and Nair (1992) of ChemShare, Inc. described their company’ scodesfor data
reconciliation and gross error detection using complete and rigorous process models with least
sguare methods.  The ChemShar€'s package was implemented on-line a& Amoco Production
Company's Painter Complex NGL Recovery/Nitrogen Rgection Unit which had atotal of 170
pieces of equipment including didtillation columns, multi-stream plate fin heat exchangers, a heat
pump and a propane refrigeration system. Initidly, ten percent of a total of 550 measurements
were found to have gross errors by the program. The subsequent analysis of the ingrumentsin
the plant verified that al of the flagged instruments were indeed faulty. In most cases the
instruments require recdibration. In one case, an incorrect flow rate was caused by the orifice
plates being ingtdled backwards. Also, they showed that reconciliation with a complete and
rigorous process modd was superior to reconciliation with only materiad and energy baances.

May and Payne (1992) of Monsanto described automating plant-tested techniques
derived directly from the operator experience. All of the techniques outlined in their peper are
engineering common sense, have been adready field-tested and proven manualy by years of
experience among operators, engineersand mechanics. They point out that thiskind of operator-
interactive computer program is more vauable when provision is made for updates and
modifications as experience with the system grows.

Hardin, et ., (1995) of Conoco and AspenTech reported that a rigorous crude unit

optimizer has been implemented at Conoco’s Lake Charles, Louisana refinery.  The benefits
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were a profit increase in $0.03 when a BBL crude was processed and better understanding of
the plants.

Kely at DMCC and Fatora and Davenport at Lyondell Petrochemical Co. has applied
aclosed loop red-time optimization system to alarge scae ethylene plant (Kely, et d., 1996).
Thar results indicated a project payback period of less than 9 months. In addition to the
economic improvement, the optimization system improved the understanding of process
operations and the analysis of the equipment performance. Also, Edwards and Masaki of
Setpoint (1994) reported that an average project payback ratio over tenyears period can exceed
ten to one from on-line optimization for atypicd refinery with 130 MBPD capacity.

There have been a number of papers and presentations that proposed various ways to
conduct on-line optimization (Darby and White, 1988; Macchietto and Stuart, 1989; L ojek and
Whitehead, 1989; Chen and Joseph, 1987; Fisher, et d., 1990; Pierucci and Rovaglio, 1991,
and Koninckx, et a., 1988). Many of the authors are with companies that provide process
control and flowsheeting services to the chemica and refining indudtry.

Insummary, onHline optimizationsgnificantly improved profitability, plant operation, and
emissionreduction; and it provided better understanding of processes. Typicdly, profitability was
increased by 5 to 10% with comparable improvementsin plant operations. Also, it wasreported
that a more thorough understanding of the plant performance was very vauable but is difficult to
quantify economicaly.

B. Key Elements of On-Line Optimization
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The objective of ontline optimizationis to determine optimal process setpoints based on
plant’ scurrent operating and economic conditions. As shown in Figure 1.3, the key eements of

ortline optimization are;

Gross Error Detection

Data Reconciliation

- Parameter Estimation

Economic Modd (Profit Function)

Plant Modd (Process Smulation)

Optimization Algorithm
A procedure for implementing on-line optimization is illustrated in Figure 1.4. It involves the
detection of steady State, data vaidaion, parameter estimation, and economic optimization
sequentid as discussed previoudy.

The rationship betweenthese key dementsisoutlined in Figure 2.1. FromFgure2.1,
both plant model and optimization dgorithms are required in the three steps of on-line
optimization. Ontline optimization involves solving three nonlinear optimization problems:
economic optimizetion, parameter estimation, and datavaideation. The plant model servesasthe
condraint equations inthese three nonlinear optimizationproblems and the optimizationagorithm
is used to solve the nonlinear optimization problems. For economic optimization, the plant model
is used with economic model to maximize the plant profit and provide the optima setpoints for
the distributed control system to operate. For parameter estimation, parameters in the plant

model are estimated by optimizing an objective function,
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such as minmizing the sum of squares of measurement errors, subject to the condraintsin the
plant model. For data vaidation, the errors in plant measurements are rectified by optimizing a
joint probability distribution function subject to plant modd, and atest Satistic is used to detect
the gross errorsin the measurements.

Datareconciliaionisconducted incombined gross error detectionand datareconciliation
and smultaneous datareconciliationand parameter estimation. Incombined grosserror detection
and data reconciliation, datareconciliationis required to reconciled process data and to estimate
the measurement errors for gross error identification. In smultaneous data reconciliation and
parameter estimation, datareconciliationis required to estimate process parameters and process
variables. These two data reconciliation optimization problems use the same plant model, and
the only differenceistheat the process parameters are constantsin combined gross error detection
and data reconciliation and are variables in smultaneous data reconciliation and parameter
edimation. Data reconciliation in combined gross error detection and data reconciliation step
should use current values of the process parameters for the plant modd, but current parameters
come from the subsequent parameter estimation step.  Consequently, it is necessary to use
previous vauesof process parametersfor combined grosserror detectionand data reconciliation.
Hence, updated vaues of the parameters strongly dependent on previous (old) values of the
parametersif dl reconciled measurements are used for estimating the parameters.

Some authors (Almasy and Sztano, 1975; Mah, et al., 1976) suggested separated
procedure for gross error identification (such as globa or nodal test), data reconciliation, and

parameter estimate. Theothersproposed combined grosserror detectionwith datareconciliation
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(such as measurement test) or combined parameter estimation with data reconciliation. Seber
and Wild (1989) described a robust method that has an ability of automaticaly regecting the
extreme observations ( with gross errors). This method improves the performance of data
vaidation and will be a potentialy powerful method for combining parameter estimate with data
vaidation.

The following paragraphs present areview of the literature giving the status of these key
eements. Firgt, the methodology for data reconciliation, gross error detection, combined gross
error detectionand datareconciliation, parameter estimation, and Smultaneous data reconciliation
and parameter estimationwill be reviewed sequentidly. Thenthestatusof economic optimization,
plant modd formulation, and optimization agorithms will be described.

B-1. Data Reconciliation

Resultsof research on data reconciliation have been reported for both steady state and
dynamic process. They were reviewed and evauated in detail through 1988 by Mah (1990) for
steady state processes. Generally, raw process data is subject to two types of errors, random
and gross errors.  Random errors come from the randomness of measurements and are
commonly assumed to be independently and normaly distributed with zero mean. Gross errors
are caused by non-random event such as process leaks, biases in indrument measuring or
mafunction of instrument measuring, and so on. Data reconciliation is a procedure to adjust or
reconcile process dataand to obtain more accurate values for the sampled data by requiring the

reconciled data consgent with materid and energy baances, for example. The data
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reconciliation problem can be formulated as a constrained optimization problem, eg., least
squares estimation problem if the measurements contains only random errors.

The vector of measurement errors e is defined as.

e=y-x (2-1)

wherevector y represents measured process variableswithsampled vauesand vector x denotes
the true vaues of the measured variables. The basic idea to reconcile the process datausing a
datistical method isto find a set of reconciled datax =y + a that maximizesthe joint distribution
function (objective function) and satisfies the congraints.

If al measurements are subject to only random errors with known normd distributions,

the normd digtribution function for the individua messurement error is
1} 24)” (2-2)
2 c,

where g, is the sandard deviationof ameasurement error, €. The measurement error g hasthe

same meaning asin Eq. 2-1. If the measurement errors areindependent of each other, then the
joint digtribution for al measurement errors (or likelihood function) isthe product of digtributions
for individual measurement error, i.e,

(2-3)

it 1
P IS 1gy/2
Hﬂ W’ﬂ’l(‘ )/ 2,

where X is the known variance matrix of measurement errorse, % = {0%;} .
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The measurement errors are estimated by maximizingthejoint probability density function
in Eqg. 2-3 or minimizing sum sguares of standardized measurement errors, e % e, subject to a
set of condraintsthat describe the relationship among the variables, i.e., the processmodd. This
isthe well known least squares method, and it is expressed as.
Minimize: e'zle=(y-x)"=y - x) (2-4)
Sut;}ect to.  f(x)=0.
Eq. 2-4 is a nonlinear optimization problem of data reconciliation. Solving Eq. 2-4 gives the
reconciled values of process variables and the estimated measurement errors.
If the congtraints are linear, and they can be written as
Ax=0 (2-5)
then, the optimization problem of Eq. 2-4 has an andyticd solution (Mah and Tamhane, 1982),
whichis
X =y - ZAT(AZAT)'Ay (2-6)
and the vector of measurement adjusmentsis:
a=x-y=-ZAT(AZAT)'Ay (2-7)
This linear data reconciliation problem can be extended to include component meaterid
balances, energy flowtreated as additiona components, stoichiometric constraintsand elementa
balances (Mah, 1990). Incomponent materia balances, there are products of composition and
total flow rateinthe congraint equations, and these balance equations arebilinear. Intheenergy

equiation, species entha piesare not measurable and are usudly expressed as a nonlinear function

of the measured variables (temperature and species massflowrate). Hence, the energy balance
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equations are nonlinear. When congtraintsare nonlinear, the optimization problem must be solved
by nonlinear programming techniques.

The solution of data recondiligtion givenin Eq. 2-6 is for the case that condraints are
lineer and dl varigbles in the congraints are measured. Crowe, et a., (1983) proposed a
projection matrix technique to decompose the data reconciliation problem that has linear
congtraintsand unmeasured variablesinto the solution of two subproblems. First, theunmeasured
variablesincondraints are removed by multiplying a matrix (projection matrix) and the varigbles
in condraints are dl measured, thenthe solution of this subproblemis obtained by Eq. 2-6. Then
the solution of the unmeasured variables can be determined through the origind congtraints

(before multiplying the projection matrix) and the reconciled values of the measured variables.

Crowe (1986) extended the projection matrix technique to the case of nonlinear
congraintsusng aniterative dgorithm. Firgt, theinitia values are assigned to measured variables
with the measurements and to unmeasured variables with guessed vaues, and the nonlinear
congraints are linearized at the initidized point. Then, the data reconciliation problem with
linearized congtraints can be solved by projection matrix technique discussed Crowe, et al.,
(1983). The solution of thisdatareconciliationisused astheinitid point to linearize the nonlinear
congraints. This procedure iteratively updated the values of variables until convergence is
achieved.

Pai and Fisher (1988) surveyed Crowe'siterative methods(Crowe, 1986) and proposed

an gpplication of Broyden's method to update derivatives from the matrix of last iteration. This
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modified scheme has the smplicity of the constant-direction gpproach and retains the efficiency
of the repeated computation of the Jacobian matrix. The method solved the nonlinear least
squares objective function subject to nonlinear material and energy baance congtraints and had
rapid convergence to a solution.

Ramamurthi and Bequette (1990) recommended the nonlinear program techniques,
successive quadratic programming and the generdized reduced gradient method, to solve the
nonlinear data reconciliation problem. Based on the resultsfromseveral test problems induding
the one from Pai and Fisher (1988). They showed that the iterative linearization can not handle
the nonlinear congtraints well and resulted in Significant bias, when measurement errorsarelarge
and congraints are highly nonlinear. The reason is the gpproximation from Taylor expanson
results in larger errors when condraints are highly nonlinear or measured variables have
measurements far from the true vaues (larger errors). Also, the nonlinear program techniques
can explicitly indudethe bounds of variables and dlow the unmeasured variablesin congraints.

Sanchez, et d., (1992) described the successful applicationof aplant datareconciliation
program PLADAT which firgt classified the measured and unmeasured variables to reduce the
problem size and then used successive quadratic programming for the constrained nonlinear least
sguares problem. This programwas applied to an ethylene plant with 150 process streams and
45 units with an unspecified gross error detection procedure prior to data reconciliation. They
showed that the norms of the residuds errors of the balance equations have beenreduced by two

order of magnitude.



32

Meyer, etd., (1993) presented data reconciliation on multicomponent network process,
with or without chemica reactions. The basic rules to classfy the measured variables into
redundant and non-redundant and the unmessured variables into observable and unobservable
were proposed for formulaing the linear process modd. Specia numerical methods were
designed to obtain amatrix structure enabling the solution of large-scae syssems. The proposed
dgorithms were tested in three industrial examples and successfully reconciled a set of data
representing 34 streams and 11 components of a ditillation process.

In summary, the constrained least squares method was widely used to reconcile the
process data by assuming that the measurement errors are normaly distributed. Data
reconciliation is a nonlinear optimization problem that can be solved by the successive linear
programming (successive linearization of nonlinear equations) or nonlinear programming
techniques, such as successve quadratic programming or the generalized reduced gradient
method. The nonlinear program techniques have been reported to successfully solve this
nonlinear programming problem, and they are more robust than successive linearization as
reported by Ramamurthi and Bequette (1990). For the gpplicationsof on-line optimization, data
reconciliaion usudly is conducted with gross error detection and/or parameter estimation. The
nonlinear program techniques will be used to solve the nonlinear optimization problems in our
research work.

B-2. Gross Error Detection
Theresults for gross error detection have been reviewed and evauated indetail through

1988 by Mah (1990) and through 1993 by Crowe (1994). As mentioned previoudy, raw
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process datais subject to two typesof errors, random errors and grosserrors. Grosserrorsare
caused by non-random event such as process leaks, biases in instrument measurements,
mafunction of instruments, inadequate accounting of departures from steady State operations
and/or inaccurate process models. The random errors come from the randomness of
measurements, and they are normaly distributed.

Sgnificant reduction in product variability can be made through advanced control.
However, thereisalimitationof understanding ingrumentationerrors. Sanders (1995) reported
that nearly two-thirds of the process upsets, which were severe enough to result inthe retriction
and downgrading of the product, could be traced to indrument faults On-line gross error
detection is the method for identifying instruments that produce abonorma  information.

Severa approaches, suchastime series screening, tatistical methods, or neural network
method, have been practiced or proposed for grosserror detection. Time series screening has
been practiced inindudtrid applications. People use so cdled horizonta time screening to check
for the steady state data and use the vertical screening to filter out the outliers (gross errors) in
sampled data. Thismethod issmple and easy to conduct. However, it can not detect persistent
gross errorswhichare typica inthe sampled data of chemica processes. Instrument errors and
process |lesks usudly resultsin persstent grosserrors, and they can not be detected or diminated
by time series screening methods.

Hoskins, Kaiyur and Himmeblau(1991) and others(V enkatasubraamanian, etd., 1990;
Ferrada, et d., 1989; Leonard and Kramer, 1990; Karuri, et al., 1992; Chen and Modarres,

1992; Martin, 1997; Keeler and Boe, 1997; Himmdblauand Karjala, 1996) showedthat trained
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atificid neurd networkswere effective for fault detection and diagnosis for a complex chemica
plant. Neurd networksconsist of anumber of smple, highly interconnected processing e ements,
and they process information obtained from dynamic responses to externa inputs. These
networks can be trained to learn associaions between system faults and the vector of sensor
measurements. They accommodated noise in process measurements, and therefore, effectively
detect and identify system faults. However, it is computationaly expensive, if thousands of
sensorsareto be used in training these networks. Also, the models used in neurd networksare
empiricd and they do not use the fundamenta laws of chemica engineering. Thereisno physica
meaning for the modd in neura networks and the parameters in this modd.

The statistical approach hasbeen proposed inthe literature for gross error detection. It
requires adetall plant modd to relate the individual measurement and provides the resolution for
adjudting the measurement vauesand detecting the grosserrors. Also, the knowledge about the
measurement error structure is required for adjusting the measurements, and it is the bass to
verify the measurements. Thedtatistical gpproach usudly requiressolving acomplicated nonlinear
optimization problem to estimate the measurement errors and reconcile measurement vaues. It
is effective in detecting the persstent gross errors.

The datigtica approach has been found to be the most effective method for detecting
grosserrorsinmeasurements. Also, theoretical background usingin statistical approach for gross
error detectionis consstent withone for parameter estimation. Grosserror detection, parameter
edimation, and economic optimization uses the same plant modd, whichis established based on

the fundamenta laws and knowledge of chemica engineering. The fallowing givesthe review on
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gross error detection with statistical methods, and the combined gross error detection and data
reconciliation methods will be reviewed in the following section.

Themost commonly used method for detecting gross errors isstatistical hypothesistesting
which requires sdecting a ddidic for the test with a known distribution and performance
characterigtics. A gross error is declared if the computed test Satistic exceeds a critica value
which is selected from the table of didtribution. If the value of the test Satistic does not exceed
the critica vaue, then the null hypothesis H, is accepted, and this means the measurement does
not contain a gross error.  If the value of the test gatistic exceeds the critica vaue, then the
dternative hypothesis H, isaccepted and this means that the measurement contains agrosserror.
The test daidic may cause faulty decisons in dassifying the measurements as normal
measurements (no grosserrors) or abnorma measurements (withgrosserrors). Thesearecdled
typel or typell errors. If thenull hypothesisistruefor ameasurement (i.e., ameasurement does
not contain gross error) and the test rejects the null hypothesis (i.e., the test misidentifies the
measurement with gross error), then thisiscaled atype | error. The number of type | errors
indicates quditetivey the degree of the migrectification from data reconciliation of a dgorithm.
If the null hypothesisis not true for ameasurement (i.e., a measurement contain gross error) and
the test accepts the null hypothesis (i.e., the test misdentifies the measurement without gross
error), thenthisiscaled atype Il error. The number of type Il error represents the number of
gross errors that are not detected.

The datidtica hypothesis tests include globd test, nodal or congtraint test, measurement

test, generdized likdihood ratio (GLR) method, Akaike s Information criterion (AIC) method,
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and unbiased egtimation technique (UBET), and they have been described by a number of
authors (Almasy and Sztano, 1975; Mah, etd., 1976; Willsky and Jones, 1974; Naras mhanand
Mah, 1987 and 1988; Yamamura and coworkers, 1988; Rollins and Davis, 1992; Mah and
Tamhane, 1982). If the covariance matrices of congtraint resduas or measurement adjustments
are not diagond, the assumption that measurement errors are independent of each other is not
satisfied, and this affectsthe power of the Satistical tests. The methods of maximum power (MP)
test (Tamhane, 1982) and principa component andyss (PCA) (Tong and Crowe, 1994 and
1995) were devel oped to overcome this weakness.

Thereare two typica approachesfor detecting grosserror usng statistica methods. One
is based on the distribution of condraint resduds; the other is based on the distribution of
measurement adjustments. The condraint resdud r is given by (Mah, 1990)

r=Ay-c (2-8)
where A isthe coefficient matrix of condraint equationsin Eq. 2-5 and c isacongtant vector in
the congraints. The vector of measurement adjustments a is given by

a=x-y (2-9)

Methods based on the congtraint residua are represented by global test, nodd test, and
GLR. These gross error detection methods do not require Smultaneous data reconciliation.
However, these methods require that the congtraints are linear and that al variables must be
measured (or the unmeasured variables must be removed from constraints by the projection
matrix method before grosserror detection). They are not applicable to on-line optimizationfor

complicated and highly nonlinear chemical processes. Methods based on the vector of
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measurement adjustments include measurement test method, Tjoa and Biegler’s contaminated
Gaussandidtribution method and robust functionmethod. These methods reconcile the process
data firdt, and then they use the reconciled data to examine if a measurement contains a gross
eror. They are classified as combined gross error detection and data reconciliation methods.
These methods can be gpplied to nonlinear condtraints. Also, they dlows unmeasured varigbles
in the plant modd, if nonlinear programming techniques are used to solve the datareconciliation
problem. They have great flexibility in plant model formulation. The combined gross error
detection and data reconciliation method will be reviewed later.

Globd Test (GT): This method was developed by Almasy and Sztano (1975). Global

test uses a chi-square distribution to detect the presence of gross errors. For a quantity x? that
is the sum of the squared differences between the observed values and their theoretica
predictions, suitably weighted by the errors of measurements, i.e,
Z;} ® [yi Ii]2
¥

il o

This quantity 2 will follow the chi-square distribution, if the sampled data isindependent and if

(2-10)

(Vs - X)/o; follows standard normd ditribution (Barlow, 1989; Larsen and Marx, 1986). The

chi-square digtribution is given by (Barlow, 1989)

P 2™ a1, pp (2-11)

The distributiondepends on the number of pointsinthe sum, n. Thisnumber iscaled the number

of degrees of freedom. The global test uses atest datidtic that satisfies the requirement of chi-
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square digtribution, i.e. to find arandom varigble that follow a standard normd distributed and
whose sample data is independent of each other under null hypothesis. If the null hypothesisis
true (N0 gross errors in measurements), then the summation in Eq. 2-10 should follow a chi-
squares distribution, and 2 will be smdler than the threshold (critical) vaue determined by chi-
square didribution at the sdected significant levd. I1F null hypothesis is not
true (measurements contain gross errors), then the
summation in Eq. 2-10 will not follow a chi-squares
distribution, and x> will exceed the threshold (criticd) vaue.

It is assumed that dl measurements are subject to only random errors with known
norma digtributions under null hypothesis and that measurement errors are independent of each
other. The condraint resduas defined in Eq. 2-8 are rewritten as.

r=Ay-c=A(e+x)-c=Ae+(Ax-c)=Ae (2-12)
Under null hypothesi's, the expected values of r can be determined by the expected vaues of e
and the coefficient matrix of congraints, i.e,

E(r) = E(Ae) = AE(e) = 0 (2-13)
and the covariance matrix of r is the expected vaues of the squared differences between the
individua condraint resdud and its mean, i.e,

Cov(r) = E[{r-E(n}{r - E(N} '] = E[{Ae}{Ae}T] (2-14)
=E[A (ee")AT]=AEee| AT=AZAT =H

where H is the covariance matrix of constraint resduas. The congraint resduds r follow a

norma digtribution with zero mean and covariance matrix H under nul hypothess (no gross
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errors in measurements). Hence, the sum of squared r; weighted by the variancewill follow the
chi-square digtribution, if no gross errors are present in measurements.

The test Satistic of globa test is (Almasy and Sztano, 1975; Mah, 1990):

rTHr ~ 52, if Hyistrue. (2-15)
Eq. 2-15 meansthat r"Hr follows a chi-square distribution y,,,> with m degrees of freedom
under null hypothess wherem is therank of A.

If the value of test Satistic exceedsthe critica vaue C, thenat least one grosserror exists
inthe condraint resduds. C isdetermined from chi-square distribution at selected « Sgnificant
levd. Sgnificant level « is equal to 1 - selected confidentia level, and it represents the
probability of type | errorsthat are possibly committed by the test atidtic, i.e,

o = P(Typel error) = P(regject H, | Hy istrue) (2-16)

If a gross errors is detected, then it can be identified by trid deletion of one or more
condraint resduds until the tet statistic r"H*r does not exceed the critica vaue C. The
procedure is deleting one or more of the congtraint residuas and recaculating the test datidtic
vaue until the test satistic does not exceed the criticd value. Then the deleted residuals are
suspected containing gross errors.

The merit of thismethod isthat it does not require the data reconciliation, and r is easy
to caculate. However, the globd test only indicates the presence of grosserrors, and it can not
directly identify the source of gross errors. This method requires triad deletion of congtraint
resduds to detect gross errors. Also, it is restricted to the cases of linear congdraints. The

reason is that the digtribution of the congraint residuds used in globd test is derived from the
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lineer combination of measurement errors. If the congraints are not linear, the means and
covariances of the condraint resduas can not be obtained as Eq. 2-13 and 2-14, and the
condraint residuas may not follow the norma didtributions.

Nodal/Congraint Test: This test has the same assumption as globd test and thetest is

based on the congraint residualsr. Asdiscussed in globa test, the congraint resdudsfollowa
norma didribution, if the measurement errors are normaly distributed. Therefore, Mah, et d.,
(1976) proposed the condraint test method to detect grosserrors. Thetest statistic of congtraint
test is

[/H; ~N(O, 1), if Hyistrue. (2-17)
Eq. 2-17 means that the standardized constraint resdud, |r;|//H;;, follows a standard normal
distribution N(O, 1) under null hypothesis, where H; is the variance of congtraint residud .

If the value of test Satidtic for condraint resdua j exceeds the critical vaue C, then this
condraint contains grosserror. Thecritical vaue C is sdected from the table of standard normal
digtribution function at the sgnificant level p for individud condraint resdud. The overal
donificant level for dl condraint resduas (the overdl probability of type | error) can be
determined by the sgnificant leve for individua congraint resdua p (the probability of type |

error for individua congraint resdud), if the condraint resduas are independent of each other.

Let A be the probability that the test gatistic accepts the null hypothesis when null
hypothesisistrue for al condraint resduds, i.e,

A =P(accept H, | Hyistrue r) =1 - P(rgject Hy | Hy istrue r) = 1-a (2-18)
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and }; be the probability that the test statistic accepts the null hypothesis whennull hypothesisiis
true for congraint resdud |, i.e,

A; = P(accept Hy | Hyistrue; 1) = 1 - P(reject Hy | Hyistrue 1) = 1- B; (2-19)
If the condraint resduas are independent of each other, the joint probability A for dl condraint
resdualsis equa to the product of the probability 4; for individua congtraint residua, i.e.,

A=Ay hp e A (2-20)
or (I-a) = (1-B1)((1-B2) -+ (1-Brm) (2-21)
If the individua significant levels are st to the same as 8, then Eq.2-21 becomes:

(1-«) = (1-p)" (2-22)
Eq. 2-22 can be rewritten as.

p=1- (L-o)Um (2-23)
Eq. 2-23 is used to determined the dgnificant leve for individual constraint residua p. Itis
determined by overdl sgnificant leve o and the dimension of condraint resdudsm. It must be
noted that Eqg. 2-23 is true only when the condraint resduas are independert of each other,
otherwise the individua sgnificant leve p can not be determined by Eq 2-23.

Although the condraint test can identify the constraint associated with gross errors, the
same drawback as globd test till remains. It can not locate the source that creates the nodal
gross error, i.e., it can not indicate which measurement contains a gross error. Because the
condraint that is identified having gross error is associated with a number of the measurements
that are present in this condraint and with possible process leak in the unit for which this

condraint equation describes. Also, multiple gross errors present in the same condraint may be
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canceled each other, and they may not be detected. In addition, the gpplications of this method
are limited to linear condraints.

Generdized Likdihood Retio Tedt: This test was origindly developed by Willsky and

Jones (1974) to identify abrupt falures in dynamic sysem. Narasmhan and Mah (1987 and
1988) proposed a genera framework for identifying different types of gross errors, caused by
ether measurement biasesand/or process|eaks, withthe generdized likelihoodratio (GLR) test.
This test requires a model that describes the effect of each type of gross errors. The
measurement mode with instrument bias is defined as:

y=x+e+ad, (2-24)
wherey and x have the same meaning asin Eq 2-1, and e represents random errors. In Eq. 2-
24, &; isaunit vector with onein postion i and zero dsawhere, and ais the unknown magnitude
of abias (gross error).

A leak occurring inaprocess unit will not affect the measurement modd in Eq. 2-24, but
it affects the condraint equations associated with the leak. The linear process model, Ax =0,
can be rewritten as following equations with a leak.

Ax-am =0 (2-25)
where m; is a vector representing different constraints, and a in Eq. 2-25 is the unknown
meagnitude of leak in a condraint. With either measurement bias or aprocess|esk, the congtraint
resdud is defined as:

r=A(x+e +ad,) (2-26)

or r=A(x+e)-am (2-27)
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If no grosserrorsare present, thenthe meanand variances of congtraint resduas will be
the same as given in Eq. 2-13 and 2-14 discussed in global test section. Narasmhan and Mah
proposed to test the null hypothesis H,, E(r) = 0 that assumesno grosserrors are present, against
the dternative hypothesis H,, E(r) = aAg; or am; that assumes one gross error is present ineither
measurement bias or process leak, by the likelihood ratio test. This test aso estimates the
unknown magnitude of gross error if agross error isindicated,. Thelikeihood retio test isgiven

by (Mah, 1990):

Pr (r|H,)

A supremm —m———
br (r|H,)

(2-28)

where P(r |H,) and P(r |H) are the probability of congraint resduas under dternative and null
hypothesis respectively. The supremum in Eq. 2-28 is computed over al possible vaues of the
parameters (&;, m and a) present in the hypotheses.

If congraint resdudsr are normaly distributed, thenthe digtributionfunction of P(r |H,)

and P(r |H,) are written as.

- 1 r HY (2-29)
PrlHy HP(’E'HQ |21%m|H|m:m 3 }
and
n 1 rad'H\r qﬁ)} (2- 30)
P X
el .

Substituting Eq. 2-29 and 2-30 into Eq. 2-28 and taking alogarithm of Eq. 2-28 gives.
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where

fie (A8,i=12.,nm,j=12.,m) (2-32)
In Eq. 2-31, the possble outcome from either measurement error Ag; or process lesk my is
combined and represented by f; as shown in Eq. 2-32.

The computationof T proceeds asfollows. For any given vector f;, the estimated gross
error magnitude ais determined by maximizing Eq. 2-31. The solution of the maximization of Eq,
2-31 for given vector f; is

a=(fiHM f)*(FiHr) (2-33)
Substituting Eq. 2-33 into Eq. 2-31 gives test Satistic T; for each casef; as:

T =(fiH 2/ (Fi H! F) (2-34)
Thiscdculationis performed for every possible vector f; and the test Satistic istherefore obtained
as.

T =supremum T, (2-35)
Let f* bethe vector that leadsto the supremuminEq. 2-35. Thetest Satistic T is compared with
apre-specified threshold (critical values) C determined by the digtribution function of T &t the
sdlected ggnificat level o. If T exceeds C, then the measurement or congraint that

corresponding to f* isidentified as having agrosserror or alesk, and its magnitude is estimated
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by Eq. 2-33 using ¥ for f;. Foreachcaseof f ;, T ; hasacentrd chi-square digtribution with
one degree of freedom under null hypothesis H,.

Generdized Likelihood Retio Test for Multiple Gross Errors: It isassumed that only one

gross error exigs in ether measurement model or congraint model for each application of
generdized likdihood ratio test. For multiple gross error cases, the compensation strategy has
been proposed to adjust the measurement or congtraint that is declared containing gross error
(Narasmhanand Mah, 1987). If agrosserror isidentified, the estimated magnitude of the error
isused to compensate (adjust) the measurement or constraint associated withthe detected gross
error. And then the GLR test is repeated again until no gross error is detected.

The advantage of GLR test isthat it canidentify the gross error source asingrument error
or process leak. However, its applications are sill restrict to linear process congtraint or
gpproximate linear ones. The linearization of nonlinear condraints brings in great errors in
gpproximation of nonlinear congraints and distribution when the process is highly nonlinear and
gross errors are large.  Also, the implementation of GLR for searching gross errors is not
effidency. It is not gpplicable for complicated and highly nonlinear process of on-line

optimization.

Other Gross Error Detection Methods: Rallins and Davis (1992) proposed an unbiased
edimation technique (UBET) for gross error detection which considers both bias measurement
and processleaks. The conditionsfor thistechnique arerestricted to normaly distributed errors,
steady state, and linear congtraints. First, a globa test is conducted to test for the presence of

gross errors. Then, UBET isused to detect the number and location of gross errors by trid and
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error searchfor the unbiased estimators, wheretwo test Satistics, F test and Bonferroni test, are
used as the criteria for the identification of gross errors.  Also, Rollins and Roelfs (1992)
extended this gpproach to the case where condraints are bilinear.

Y amamuraand coworkers(1988) presented a method for the detection of multiple gross
errorsin process data based on Akaike's information criterion (AIC). The AIC isdefined as:

AIC=-2L +2p (2-36)

whereL isthe logarithm of alikelihood functionand p isthe number of parameters (or the number
of systemerrors) inthe modd. Thiscriterion dividesthe measured variablesinto two types. One
isonly subject to the random error that is normally distributed withzero mean, i.e., N(0, 02). The
other is subject to randomerror plus grosserror that isnormaly distributed with non-zero mean,
i.e., N(u, 0. The gross errors are identified by comparing the vaues of AIC function for dll
possible combination states. The combination state with minimum vaue of AIC is declared as
the most probably faulty state; the gross errors presumed in this combination state will be
identified asthe gross errors. Each measurement has two possible outcomes, either no bias or
withbias. For the syssemwith n measurements, the number of possiblefaulty satesis2". Hence,
this method will be computation expengve if n is large and congraints are nonlinear. To
overcome this problem, the authors provided abranch-and-bound strategy for their agorithmand
demondtrated its effectivenessina hypothetica petroleum refinery systemwith 22 measurements
and 13 linear condraints.

To improve the power of the statistical tests, Tanhane

(1982) proposed the maximum power (MP) measurement test method. This method has the



a7

greatest probability of correctly detecting a Sngle gross error in measurements when only one
gross error is present.  The maximum power of the detection is achieved by using a linear
trandformation, i.e., the measurement error vector is transformed by multiplying a non-singular
matrix, the inverse of the variance-covariance matrix of measurement errors,
d=3"e (2-37)

thenthis transformed measurement errorsd will have the maximum power indetectinggrosserror
with measurement test method. Mah and Tamhane (1982) have given an extensve discussion
of the power of thistes.

Crowe (1989) extended the concept of maximum power for gross error detectionto the
condraint test. In addition, Crowe (1992) extended MP test for gross errors to bilinear
congtraint cases. Crowe concluded that MP gatigtic for the origind congraintsis precisdy the
square root of the corresponding generalized likelihood ratio test of Narasmhan, Eq. 2-28.

Similar to the MP test, Tong and Crowe (1994 and 1995) introduced the principal
component technique into the gross error detection based on the idea of Pearson and Hotelling
onthe principal component andysis (PCA). PCA isan effectivetool in multivariate dataanadysis.
In this technique, a set of correlated variables is transformed into a new set of uncorrelated
variables, known as principa component (PC), through a orthonormal matrix constructed by the
elgenvectors of the covariance matrix H for the projected congraint residuds, i.e.,

d=WTr (2-38)
whereW is congtructed from the eigenvector of covariance matrix H of condraint residuas and

sidfies



48

W = UA 22 (2-39)
wherematrix A isdiagond, consgting of the eigenvaues of H on its diagona and satisfies

A=UHU. (2-40)
Thematrix U conggts of the orthonomalized eigenvectors of H o that

uuT =1 (2-41)
Through this transformation, the new vector d becomes anew set of uncorrelated variablesand
isnormdly digtributed, i.e., d ~ N(O, 1). Then the gross errors are detected by the nodal test
method as discussed previoudy. This new test has been implemented in two examples and
compared with univariate, maximum power, and chi-square tests. The authors concluded that
PC test is sharper and has shown a capability of detecting gross errors of amdl magnitudeswhen
the other tetsfail.

The principa component method improves the power in detecting gross errors.
However, the drawback on noda test method <till remainsin principal component test method,
i.e., the congtraints must be linear and additiond identification for the sources of congtraint
resdua gross errors is required. Also, the errors in plant sampled data are related to the
respective instruments and the measuring of different instrumentsis independent of each other.
Therefore, the assumption that measurement errors for different measured variables are
independent of each other is true for the sampled datafromdistributed control sysem. Thenthe
variance-covariance matrix of errors should be diagonal, and the maximum power and principa
component techniques are not necessary for improving the power of gross error detection

agorithms for the process sampled data of on-line optimization.
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Narasmhan and Mah (1989) described four datistical tests for gross error detection:
global test, condraint test, measurement test and generalized likelihood ratio test. They aso
presented a procedure for transforming a genera steady-state model into a form required by
these tests.

Almasy and Uhrin (1993) proposed a new theoretical base for the identificationof gross
errors subject to linear condraints. Traditionaly, gross errors are considered as non-random
quantities caused by non-randomevents. Almasy and Uhrin presented adifferent opinion for the
concept of gross errors. They viewed the gross errors as random variables for a broader time
horizon. Based on this concept, they identified the measurement biases and process leaks as
gross errors because of the random nature of these errors. However, both model mismatches
and departure fromsteady state are not considered as gross errors because they are not random
events. Model mismatches cause deterministicerrors,adthe
departurefromsteady state can be counted in a dynamic model. They
proposed two families of probability distributions, Gamma distribution and non-zero mean
Gaussandidribution, for theresidudswithgrosserrors. Also, themaximum likelihood estimation
was suggested asabetter approach for gross error detections.

In summary, the time series screening method has been practiced in industriad
gpplications. It issmple and easy to conduct. However, it can not detect the persstent gross
errors. The satistical gpproach is effective in detecting perdstent gross errors in sampled data
through other norma measurements. This gpproach identifies the grosserror of a measurement

by other normal measurements through the process congtraints. It requires adetail and precise
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plant model ascongraintsto integrate individua measurement together and the knowledge of the
digtribution pattern of errors as basis for adjusting the measurements. The gross error detection
udng datisticad methods has been studied by university researchers with smple and smdl
hypothesis plant modds (Crowe, 1989 and 1992; Tamhane, 1982; Mah and Tamhane, 1982;
and Narasmhan and Mah, 1987 and 1988)

The test statistic of the gross error detection methods reviewed above are constructed
based on the assumption that the condtraint resduas are normaly distributed with known
variance marix. These methods are easy to implement and the gross error can be detected
without reconciling the process data. However, the applications of these methods are limited to
linear constraint cases and requires that al variables in the model must be measured. These
methods are not applicable for an actud plant that is highly nonlinear and in which large portion
of process variables are unmeasured. Also, grosserrorsare identified by the trial deetion of the
suspected residuds and thisis inefficient.

B-3. Combined Gross Error Detection and Data Reconciliation

Thereare several efficient methods to conduct combined gross error detectionand data
reconciliation. All these methods are based on the distribution function of measurement errors.
The procedure of these methods is first reconciling al process data by maximizing the joint
distributionfunctionsubject to process condraints. Thenthegrosserrorsareidentified according
to the estimated errors and a tet datistic. These methods have less restrictions on the
applications than the methods based on constraint residuals discussed above. They can be

gpplied to anonlinear plant model and alow unmeasured variablesinthe congraints of the plant
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modd. Also, gross errors can be directly identified by the test gatistic without atrial deletion
drategy. Thefollowing describes several combined grosserror detection and datareconciliation
methods and gives areview of their application.

Measurement Test Method: This method was firs proposed by Mah and Tamhane

(1982) to directly detect the sensor biases. It assumes that the measurement errors are
independent of each other, and al measurements are normaly distributed when no gross error
is present. Then the joint digtribution for dl measurement errors (or likeihood function) is the

product of the norma digtributions for individua measurement error as given in Eq. 2-3, i.e,

g ——
il RE |
where X is the known variance matrix of measurement grrors e.

P (2-3)

expy (2TE loy/2;

The measurement errors are estimated by maximizingthejoint probability density function
or minimizing the sum sguares of standardized measurement errors, e' X %e, subject to a set of
congraintsthat describe the relationship among the variables, i.e., the process modd. Thisisthe
well known least squares method and it is expressed as:

Minimize: e'zle=(y-x)"=y - x) (2-42)
X

Subjectto: f(x) =0.
Eq 2-42 isanonlinear optimization problem of data reconciliation thet isthe same as Eq. 2-4 for
data reconailiation. Solving Eq. 2-42 gives the reconciled values of process variables and the
estimated messurement errors. These estimated measurement errorsare used to determineif the

messurements contain gross errors. I the congraintsare linear, the optimization problemin Eq,.
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2-42 has an andyticd solution as shown in Eq. 2-6 and 2-7 for the reconciled vaues and
estimated measurement adjustments.

The test Satistic of measurement test method is:

€ = |&lo; | ~N(0,1), if Hyistrue. (2-43)
Eqg. 2-43 means tha the standardized measurement error, ¢;, follows a standard norma
digtribution N(0,1) under null hypothesis.

If the estimated standardized error i (¢; = |&/o; |) does not exceed the critical value C,
thenmeasurement | does not contain agrosserror. Otherwise, the measurement containsagross
error. The critica value C is selected fromthetable of standard normal distribution functionbased
on the selected sgnificant leve B for individua messurement. The sgnificant leve for individua
measurement 3 iscalculated by Eq. 2-23 from agiven overdl sgnificant levd «. TheminEq 2-
23 isthe number of didtinct vaues of |e |/o; for dl measurement errors.

Measurement test method is able to identify the sources of gross errors, but it requires
data reconciliation first to determine the measurement errors.  These estimated measurement
errors are the basis for the gross error identification. Compared with the global test and nodal
test, measurement test not only has the advantage in directly identifying the sources of gross
errors, but aso it is not restricted to the linear congtraint case. It dlows unmeasured process
varigblesin the modd if anonlinear programming technique (optimization dgorithm) is used to
solve the data reconciliation problem of measurement test method. However, the measurement
test method dill can not overcome the man deficit of traditional methods for gross error

detection, which assumes that the errors are normally distributed. This digtribution function can
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not describe the distribution behavior of gross errors, and bias esimations are obtained when
gross errors exist, epecidly for very large gross errors.
For independent measurements, the variance-covariance matrix of measurement errors

isdiagond, and the least squaresfunctionin Eq. 2-42 can be rewrittenas following linear function

using afirg order Taylor expanson:
22 2e] %
™S 1o -=i- =( e
.5: ¢ * (2-44)
w, (e ef) w,(e, cb ow (e, e:)

where W, 22? I6is the weight coefficient of a measurement error g in the objective function
of Eq. 2-42 evauated at the last feasible point °. As shown in Eq. 2-44, the least squares
function is gpproximated as the sum of the products of weight coefficient w and Ae, Ae; = ;-
€°,, for dl measurements. Eq. 2-42 for measurement test method is a minimization optimization
problem. When the optimization agorithm searchfor aoptimd solutionof Eq. 2-42, it looks for
aset of g’ svauesthat satisfy the congraints in Eq. 2-42 and have smdler weight coefficientsfor
each measurement error . Thismeansameasurement having alarger coefficient will have more
sgnificant effect on the minimization than one having a smdler weight coefficient. The weight
coefficient of ameasurement in least squares function is proportiona to the measurement error
Sze of the measurement as shown inEq. 2-44, i.e., ameasurement withalarger error hasalarger
weight coefficient inthe least squares function. Thismeansthat ameasurement with alarger error

has more sgnificant effect on the minimizationof measurement test method than one withasmaler
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error, and this resultsin biased estimationwhen measurementswithgross errors are used in data
reconciliation. This biased estimation from measurement test method has been pointed out by
Mah (1990) and Crowe (1994). When a set of process data
iIssubject to constrained least-squares reconciliation,
a high penalty that is the weight coefficientin Eq. 2-44
is imposed on making any single large correction to
the measurement with a larger gross error.

The presence of grosserrorsinvaidatesthe statistica basis of reconciliationprocedures.
Therefore, they must be detected or corrected. This weakness of measurement test method
motivated a number of researchersto devel op the strategiesto overcome the bias estimationand
improve the performance of measurement test method.

Thedrategiesto improve the misrectificationof measurement test method arerepresented
by iterative dimination methods (Ripps, 1965; Nogita, 1972; Serth and Heenan, 1986), series
compensation method (Naras mhanand Mah, 1987), and modified iterative dimination methods
(Serth and Heenan, 1986 and 1987; Rosenberg, et d., 1987). These drategies improve the
detection of multiple gross errors, and they avoid the misrectification caused by the presence of
large gross errors. However, the methods are inefficient. They require the reconstruction of
condraintsin plant modd, and this resultsin frequent modification of the optimization programs
during search for the gross errors.  This brings in difficulties for their use in the automatic

implementation of orHine optimization.
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Serth and Heenan (1986) performed a detailed
comparison of seven algorithms for combined gross
error detection and data reconciliation in a steam-
metering system. They found that the modified
iterative measurement test (MIMT) method was superior
to theothersintermsofpower todetectgross errors,
power to reduce random errors and computational
efficiency. The MIMT algorithm detected 80% of the
gross errors and achieved a total error reduction
over 60% for a steam-metering process in a methanol
synthesis unit. Iterative elimination and bounds on
the variables are the strategies used in this MIMT
method. This MIMT algorithm represents probably the
best data screening algorithm for linear equality
process models among the traditional gross error
detection methods. However, the implementation is
still inefficient compared with Tjoa-Biegler'’'s
contaminated Gaussian distribution method and

robust function methodswhich will be reviewed later.
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The fdlowing will illudrate the dgorithms of messurement test (MT), iterative

measurement test (IMT), and modified iterative measurement test (MIMT) describedinSerthand

Heenan' s paper (Serth and Heenan, 1986).

Step 1

Step 2

Step 3

Step 4

The implement procedure of measurement test (MT) method is:

Compute reconciled values X and measurement adjustments a for the full sysem usng
Eq. 2-6 and Eq. 2-7.

Compute standardized measurement adjustments for each measurement, ¢; = a /o;.
Compare each ¢; with the critical vdue of test statistic, C, selected from the table of
standard normd digtribution at the selected sgnificant leve B. If |¢|> C, then denote
measurement i as a suspected measurement containing systematic errors and add the
suspected measurements to set S. If |¢;| < Cfor dl measurements, then goto Step 7.
If the set Sisempty, proceedto step 7. Otherwise, remove measurements contained in
S from the systemby nodal aggregation. This process diminates some of the congraints
and variablesand yiddsa new systemwithreduced number of condraintsand variables,
and the origind condraints (Ax = 0) are reduced as Bd =0. Inthe reduced congtraints,
d represents the varigble vector as x excluding the variables that are diminated by the
nodal aggregation, and B represents the congdraint coefficient matrix as A exduding the
rows and columns that are corresponding to the diminated congtraintsand variablesfrom
the nodal aggregation. Also, the measurement vector y is reduced to vector w that
excludes the diminated measurements from noda aggregation, and let T denote the set

of measurements contained in w. In addition, the variance and covariance matrix of
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Step 6
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messurement errors X isreduced to matrix P that excludesthe variancesand covariances
of the eiminated measurements.

Repeat Step 1 to compute the estimated values of process variables and measurement
adjusmentshby Eq. 2-6 and 2-7 with A, y, and X replaced by B, w, and P, respectively.
Compute corrected vaues of variablesin S by solving Ax = 0 with the variables in set
T specified with the estimated vauesfromstep 5 and the variablesin set R specified with
the origind measured vaues. Risasat of variablesthat were eiminated during the noda
aggregationand whose measured data does not contain grosserror, i.e.,, R=U - (SUT),
where U isthe set of dl variablesin the system. Then go back to Step 2.

If the sat Sis empty, thendl measurementsdo not contain grosserror, and the estimated
vaues of process variablesin step 1 by Eq. 2-6 are the reconciled valuesof dl process
variables. Otherwise, the set of reconciled valuesis obtained from the vaues computed
instep 6 for thevariablescontaining grosserrorsinset S, the reconciled vaues computed
ingep 5 for the variables in sat T, and the origind measured vaues for the variablesin
st R.

As noted by Mah and Tamhane (1982), Serthand Heenan (1986), and Chen and Pike

(1996), EQ. 2-23 that is used to determine the individud sgnificant levd B proposed by Mahand

Tamhane (1982) is too conservative. The critica vaue for the test statistic in Eq. 2-43 is

determined by the individud sgnificant level p and the normal distributionfunction. For example,

if 0.05 overdl sgnificant leve (95% confidentia level) is used and the number of measurements

is43, then the sgnificant leve for individua measurement B is
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B=1- (1-¢)¥™ = 1-(1-0.05)"43 = 0.0012.

At the p/2=0.006 point, the critical vaue C is determined from the sandard norma distribution

with accumulated probability at 0.994, and the vedue is 3.2. This means that only the

standardized measurement adjustment larger than3.2 will be identified ashaving grosserror. This
isvery easy to commit typell error whenthe magnitude of gross errors are less than 5 times the

standard deviation. Also, the measurement test method tendsto spread the grosserrorsover dl

measurements, thereby creeting large resduas corresponding to good measurements. When

these residuds fail the test for gross errors, the corresponding measurements are erroneoudy
identified as containing gross errors, which results in alarge number of type | errors. Therefore,
an iterative dimination strategy was proposed to improve this problemby Ripps (1965), Nogita

(1972), and Serth and Heenan (1986 and 1987) and is incorporated with measurement test

method. It is caled iterative or series measurement test (IMT).
The procedure of iterative measurement test (IMT) is.

Step 1 Compute reconciled vector X and measurement adjustments vector a asin MT.

Step 2 Cdculate the stlandardized measurement adjustments e as MT.

Step 3 Compare each ¢; with the critical vdue C of test datigtic asin MT. If |¢;| < Cfor dl
measurement, go to step 6. Otherwise, select the measurement corresponding to the
largest vdueof |¢; | and add it to set S as suspected measurement that contains a gross
error. |f two or more measurements have the same maximum vaues of |¢; |, select the

one with lower index.
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If set Sisempty, proceed to Step 6. Otherwise, remove the measurements contained
in S from system by noda aggregation to obtain a lower dimenson of system with
condraint coefficient matrix B, measurement vector w, and covariance matrix PasMT
(B, w, and P have the same meaning as givenin MT). Let T denote the measurements
contained in w. Repeat Step 1 to computex and awithA, y, and = replaced by B, w,
and P, respectively.

Compuite corrected vaues for measurementsin set S by solving equations Ax = 0 with
the variables in set T specified with the reconciled vaues from step 4 and the variables
in set R specified with the origind measured values. R is a set of variables that were
eliminated duringthe nodal aggregationand whose measured data does not contain gross
error, i.e, R=U - (SuT), where U is the set of dl variables in the sysem. Then, go
back to Step 2.

If the set Sisempty, thendl measurementsdo not contain gross error, and the estimated
vaues of process variablesin step 1 by Eq. 2-6 are the reconciled values of al process
variables. Otherwise, the set of reconciled valuesis obtained from the computed vaues
iNnstep5 for the variablescontaininggrosserrors
iNn set S, the reconciled values computed in step 4
for the variables Iin set T, and the original
measured values for the variables in set R.

TheIMT described hereis dightly different fromseriesdiminationstrategy proposed by

Ripps(1965). InIMT method, only the measurement corresponding to the largest standardized
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measurement error is deleted at each application of MT, and it is automatically identified as
containingagross error. The least squares ca culaionis thus made only once at each gpplication
of MT. In Ripps series dimination strategy, each suspect measurement is deleted and least
sguares caculation is repeated each time.  If more than one gross error is present, the entire
procedure must be repeated with combination of two, three, etc., measurements until a
combination is found that results in the remaining data satisfying the test statistic of MT.

IMT dgnificantly reduces the type | errors committed by measurement test. However,
the drawback that the set of reconciled flow rates may contain negative vauesor absurdly large
vauesremans. This Stuation generdly indicatesthe fallure of the dgorithm to correctly identify
the grosserrorsin the data. To avoid this problem, a modified iterative Strategy was proposed
and incorporated in measurement test. It is so called modified iterative measurement test
(MIMT).

TheMIMT is essentia the same as IMT. Theonly different isthat it adds one more step
to check if dl reconciled data satisfies the pre-specified bounds after IMTimplementation. If one
or more of reconciled data does not satify the bounds, it returns to step 3 of IMT and del ete the
last entry inset S and replacesit withthe measurement corresponding to next largest vaue of |e;
|. Then the procedure continuesasinIMT. The bounds checking is a safeguard to ensure that
the reconciliation from least squares does not conflict with the process smulation rules.

The procedure of modified iterative measurement test (MIMT) is.

Step 1 Compute reconciled vector X and measurement adjustment vector a asin MT.

Step 2 Cdculate the standardized measurement errors e as MT.
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Compare each ¢; with the criticd vaue C of test datidic asin MT. If |¢| < Cfor dl
measurement, go to step 7. Otherwise, select the measurement corresponding to the
largest vdueof |¢; | and add it to set S as suspected measurement that contains agross
error. |f two or more measurements have the same maximum vaues of |¢; |, select the
one with lower index.

If set Sisempty, proceed to Step 7. Otherwise, remove the measurements contained
in S from system by noda aggregetion to obtain a lower dimension of system with
condraint coefficient matrix B, measurement vector w, and covariance matrix PasMT
(B, w, and P have the same meaning asgiven in MT). Let T denote the measurements
containedinw. Repeat Step 1 to compute X and awith A, y, and X replaced by B, w,
and P, respectively.

Compuite corrected vaues for measurementsin set S by solving equations Ax = 0 with
the variablesin set T specified with the reconciled vaues from step 4 and the variables
in set R specified with the origind measured values. R is a set of variables that were
eliminated during the nodal aggregationand whose measured data doesnot contain gross
error, i.e, R=U - (SuT), where U isthe st of dl variablesin the system.

Check the reconciled values of processvariableswiththe pre-specified bounds. If one
or more of reconciled data does not satisfy the bounds, thendiscard the reconciled data
and return to step 3, delete the last entry in set S, and replace it with the measurement
corresponding to next largest value of |¢; |. If no bound violation isfound, go back to

Step 2.
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Step 7 Ifthe set Sisempty, thendl measurementsdo not contain gross error, and the estimated
vaues of process variablesin step 1 by Eq. 2-6 are the reconciled values of al process
variables. Otherwise, the set of reconciled valuesis obtained from the computed vaues
iNnstep5 for the variablescontaininggrosserrors
iNn set S, the reconciled values computed in step 4
for the variables INn set T, and the original
measured values for the variables in set R.

In a subsequent study, Serth and Heenan (1987) extended their linear data screening
techniques to the nonlinear case. They linearized the nonlinear condraints and used Smilar
drategies asthe linear MIMT agorithm to reconcile the linearized condtrained data. However,
the successve linearizationof the nonlinear congtraint equations had to be used to determine the
reconciled data and estimated measurement errors by Eq. 2-6 and 2-7. They tested the
dgorithm in ametdlurgica grinding circuit problem and concluded that the overal performance
of thisagorithm on the nonlinear systemwas comparable to that exhibited on alinear system of
gpproximately the same sze. Theadgorithm correctly detected about 80% of al systematic errors
in the data and achieved an average reduction in total error of more than 60%. However, this
agorithm for nonlinear problemsis computationa inefficient. 1t requires numerous linearization
of the nonlinear equations for each deletion of suspected measurement to search for the gross
errors.

Kim, etd., (1997) have conductedthe MIM T (modified iterative measurement test) with

asmple CSTR example and compared the result using the nonlinear programtechniqueswithone
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using a successive linearization method applied by origind MIMT’ s author, Serth and Heenan
(1986). They found the nonlinear programming techniques has more advantage in explicitly
handling the nonlinear congtraintsand bounds. Thesetechniques gaveamore accurate result than
successve linearizationdid whenthe congtraints are highly nonlinear and the measurement errors
arelarger. Also, thenonlinear programming techniquesalow unmeasured variablesin condraints
equations, but the successive linearization method used by Serth and Heenan was not adle to
incorporate the unmeasured variables explicitly. The unmeasured variables must be removed
before data reconciliation.

Kao, Tamhane, and Mah (1990) evauated the effect of seridly or chronologically
correl ated measurementsonthe grosserror detection. Their smulation results indicated thet the
measurement test (MT) based on the independence assumption was extreme sensitive to the
presence of correlationamong measurements. Two agorithms have been outlined in their paper.
The firg involves suitably adjudting the variance of the test satistics, and the second involves
filtering out the correlations and then applying the desired test based on the independence
assumption. They concluded that both of these two methods were robust, effective and smple
touse. IT the sample data is correlated each other, the
independence assumption used IinNn the gross error
detection techniques is improper. However, each
measurement error is associated with the individual
instrument, and the measuring of different

iNnstruments is independent of each other. Therefore,
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the independence assumption is true for the
measurements from distributed control system.

In summary, the measurement test method requires data reconciliation to estimate the
measurement errors. This method can directly locate the sources of gross errors and explicitly
handle nonlinear constraints and unmeasured variables of the plant modd if an nonlinear
programming technique is used to solve the data reconciliation optimizationproblem. However,
the norma didtribution used in messurement test method can not describe the distribution
behavior of grosserrors, and the presence of gross errors invalidates the Satistica basis for data
reconciliation. Thus, this results in bias estimation and alarge number of typel errors. Toavoid
this problem, seriesdimination, iterative dimination, modified iterative diminationgtrategies have
been proposed to improve the performance of measurement test method. These strategies
sonificantly reduce the number of type | errors committed by measurement test method.
However, they require the reconstruction of constraints and the reclassification of measured and
unmeasured variables during searching for grosserrors. Thisisdifficult toincorporateinagenerd
computer program. Also, themethod of solutionused inMT, MIT, and MIMT can not explicitly
deal with the unmeasured variables and bounds, and the successve linearization of nonlinesr
equationresultsinlower solutionaccuracy whenthe plant mode is highly nonlineer and errorsare
larger. The nonlinear program techniques, such as generalized reduced gradient and successve
quadratic programming should be used to solve this nonlinear data reconciliation problem

(Ramamurthi and Bequette, 1990). In addition, the test statistic of measurement test proposed
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by Mah and Tamhane (1982) istoo conservative. It isvery easy to commit type Il error when
the magnitude of gross errorsis smal.

Contaminated Gaussan Didribution Method: This method was developed by Tjoa and

Biegler (1991) for combined gross error detectionand datareconciliation. They proposed using
atwo modes (random and gross errors) Gaussian distribution. A measurement can have ether
arandom or agross error. Thetwo possible outcomes are: G = { Gross error occurred} with
prior probability n and R ={Randomerror occurred} withprior probability 1-n. Therefore, the
distribution function of measurement error i is
Py; | ) = (@-n)P(y; | %, R) +n P(y; | %, G) (2-45)
where P(y; | %, R) isthe probability distribution function for the random error and P(y; | x;, G)
is the probability distribution function for the gross error.
It is assumed that the random error is normaly distributed with a zero mean and known

variance ¢, then the digtribution of arandom error is:

o
Pylx. B \/%:Ioe % (2- 46)

Alsp, it isassumed that the gross error is subject to anorma distribution which has a zero mean
and alarger variance (bo)?, (b>>1). Therefore, the distribution function for a gross error can

be expressed as.

Pylr.0d — ¢ B¢ (2-47)
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If the measurement errorsare independent of each other, then the likelihood function for

al measurementsis the product of the distribution functions for individua measurements i.e,
P(y[x) =q P(y; | %) =III{ (L-n)PY; | %, R) +n P(y; | %, G)} (2-48)

TjoaBiegler caled Eq. 2-48 acontaminated Gaussian digtribution, and it was used to
reconcile the vaues of process variables by maximizing the likelihood function (joint distribution
function of measurement errors) inEq. 2-48 or minimizing the negative logarithm of the likeihood

function subject to the condraintsin plant modd, i.e.,

Minimize Thil e 2 Do 2% ju /53
X . b g

(2- 49)

Subjectto:  f(x)=0

x- < x <xY

where f(x) = 0 isthe process equality congtraints of plant modedl. xt < x < xV is the bounds for
the processvariables. Eq. 2-49isanonlinear datareconciliation optimization problem and it can
be solved by nonlinear programming techniques. Solving Eq. 2-49 gives the reconciled data for
dl process variables, which maximizes the joint probability P(y | x) and satisfies the process
congtraints.

After data reconciliation, each measurement is examined with atest datistic to see if it

containsagross error. The test Satitic for gross error detection is.

If nPYi %, G) > (1-n)P(yi[%, R) (2-50)

or if >
&l V‘x‘!>$ 2 h[”“ “’} (2-51)
n
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then measurement i contains gross error.  Otherwise, no gross error is present in this

measurement.

The procedure to conduct contaminated Gaussian distribution method is:

1. Solve EqQ. 2-49 to determined the reconciled vaues for measured variables and
unmeasured variables, and thenthe measurement adjustments, a=x - y, are determined
by the measurements'y and reconciled data x.

2. Examine the stlandardized measurement adjustment ¢;, ¢, = & / g;, usng the criterion
givenEq. 2-51 to determine if ameasurement contains agross error. 1f ameasurement
contains agross error, then its value is replaced with the reconciled data. A new st of
measurements is constructed usng the reconciled data to replace the measurements
containing gross errors dong with the origind measurements that contain only random
errors. This new set of measurements contains only random errors, and it is used in
smultaneous data reconciliation and parameter estimation to update plant parameters
for on-line optimization.

The authors applied this dgorithm to two smple examples. One was a Smple model
having eight variables and six congraints given by Pai and Fisher (1988). The other one wasa
smple hypothesis heat exchanger process modd having 16 measured variables, 14 unmeasured
variables, and 17 condraints. The results showed that the method gave unbiased estimates and
it iseffective inidentifying grosserrors. Also, the authors exploited the properties of thisfunction

and designed a better gpproximation of the Hessian matrix rather than using a general BFGS
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update formula to yidd a better convergence of successive quadratic programming (SQP) for
solving this optimization problem.

The contaminated Gauss andistribution describes the distribution pattern of both random
and gross errors. Thelogarithm of joint distribution (objective function in Eq. 2-49) isthe sum
of thelogarithm of the contaminated Gauss andidtributionfor each measurement. Thismeansthat
the individud contaminated Gaussan didribution function for each measurement has a
contribution on the joint distribution function (objective function). Due to the characteristic of
contaminated Gaussian didribution, the individuad contaminated Gaussan distribution for a
measurement with alarger error has a amdler contribution on the joint distribution than one for
ameasurement with asmaller error. This can be seen by weight coefficients of measurementsin
the linearized joint distribution, which is described in the following.

The objective function in Eq. 2-49 canbe gpproximated asalinear function usng afirg
order Taylor expangion, i.e., P=Yw; [(Y; - X)-(Yi - X)°] =YW (¢ - €°), where w; isthe weight
coefficient of measurement y; on the joint distribution function (objective function in Eq. 2-49)
evauated at the last feasble point x° or ¢° This coefficient is the derivative of the joint
contaminated Gaussian distribution function with respect to the variable x as shown as in

fallowing,
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=

(2-52)

=4
W,
%]

where the weight coefficient is afunction of the standardized measurement error, €; = (Yi-X)/o;.
For samdler error, e.g., €; < 2, the exponentia terminthe Eq. 2-52 ismuch larger thanthe second
term n/b? (or n/b), The weight function can be smplified as:

W, = (Yi-X)/o;% = €/o; (2-53a)
For larger error, e.g., €; > 4, the exponentia term in the equationis muchsmdler thanthe second
term n/b? (or n/b). The weight function can be smplified as:

W; < (Yi-%)/(bo;)? = €il(0; b?) (2-53b)
Therefore, the weight coefficient w; in Eqg. 5-52 can be approximated as.

0 fore <2 2-54
b [qcoib’>fore.->4 (254
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Comparison of weight coefficient functions for smdl (random) errorsin Eq. 2-53a and

for large (gross) errors in Eq. 2-53b shows that the weight coefficient for measurements with
gross errors is reduced b? times compared with those with random errors. The shows that the
measurement with asmaler error has a larger contribution on the linearized objective function
(joint digtribution function) than one with alarger error, and it has more sgnificant effect on the
minimization of Eq. 2-49 than a measurement with alarger error.
Since the measurements with larger errors has a very wesk effect on the minimization, the
reconciled data will depend on the measurements without gross errors. Therefore, it issaid that
contaminated Gaussian distribution method has an ability to reduce the effect of measurements
with gross errors on the reconciled data and give an unbiased estimation for reconciled data.

In contaminated Gaussian digtribution, b is a tuning parameter to shape the ditribution.
Increasing b will reduce the effect of agross error on the estimation and increase the robustness
of this approach. However, it will decrease the asymptoatic efficiency to the normdity. Inthe
practica applications, b isusudly chosenas 10-20, and the weight coefficient for ameasurement
with agross error is 100-400 times smaler than one with arandomerror. Theprior probability
of a gross error, 7, is another parameter in contaminated Gaussian distribution. If no prior
information about the errors available, then the equal prior probability, i.e, n = 0.5, is
recommended.

The contaminated Gaussiandistributionmethod is more effective than measurement test
method. It incorporates the distribution patternfor both random and gross errors, and it isable

to rectify both random and gross errors in measruements.  This method can directly locate the
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gross errors and gives an unbiased estimation for al reconciled data. It can be used for the
combined gross detection and data reconciliation, and it will be extended to Smultaneous gross
error detection, data reconciliation, and parameter estimation of on-line optimization in this
research.

Bayesan Method: Albuquerque and Biegler (1995) and Johnston and Kramer (1995)
extended the contaminated Gaussan didtribution method usng Bayesan theorem and
incorporated the contaminated distribution in the posterior dendty function. Bayesian theorem
gives (Bretthorst, 1989 and Barlow, 1989):

P(x | y) =Py | x) PX)/P(y) (2-55)
where P(x | y) isthe probability that variables have the true values under given measurements,
and it is cdled a pogterior dendity function. In Eqg. 2-55, P(y|x) is the probability of the
measurements'y under condition that variables have true vaues x, and it is often referred as a
likelihood function. P(x) is the prior probability of x, and P(y) is the prior probability of
measurementsyy.

The prior probability of measurementsP(y) is auniform distribution function dependent
on the measurerange of insruments. It isthe normaized congtant and independent of x. It does
not affect the optimization. Therefore, it can be excluded from the optimization (Johnston and
Kramer, 1995).

The prior probability of true vaues of variables x, P(x), can be constructed by the
principle of maximum entropy based on the prior qualitative knowledge about the process

variables. Detall methodology about maximum entropy was given by Shannon (1948). Also,
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Johnston and Kramer (1995) have proposed a probability bootstrapping technique to estimate
the parametersinthe prior probability function P(x) using the higtorica plant data. However, the
accuracy of the P(x) obtained by this method depends on the accuracy of the information and
data used. A blunder in the information or data would midead the congtruction of P(x); and
therefore, it results in inaccurate estimation of deta reconciliation.

On-line optimization will move the set points from time to time based onthe production
schedule and market demand. The operating behavior from previous knowledge or higtorical
plant data may not agree with the current plant operations. If the historical data about the plant
operation is used to congtruct the prior probability P(x), it will possibly midead the congruction
of P(x) and will affect the accuracy of the estimation of datareconciliation. Itisbelieved that an
equal prior probability for P(x) will give an more accurate estimation for data reconciliation, if the
character of the process operation is not accurately known.

If an uniform distribution (equal prior probability) is used for P(x), then the posterior
function is proportiona to likdihood function, and the Bayesian method reduces to maximum
likelihood method. Maximizing pogterior dengty function is equivdent to maximizing the
likelihood function. If information about the true values of process variablesisknown and if itis
incorporated inthe posterior density function, then Bayesianmethod can not only predict the true
vaues of the variables, but dso it can predict the range of their variaions.

The likdlihood function can be constructed by the normd digtribution, contaminated
Gaussan digtribution or another that describesthe distribution behavior of measurement errors.

To describe the error structure of measurements more precisely, Johnston and Kramer (1995)
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proposed a multiple mode distributionfor measurement errors. For individua measurement i, the
didribution function is the linear combinationof probakility functions of al possible error modes
weighted by the respective prior probabilities, i.e.,

Py | X) = %P(yi | %, mIP(M,) (2-56)

where P(m) represents the prior probability of error mode m,. The error modes m, can be
norma, biased, and/or failed. The most commonused distributionfunctionfor random errorsis
anormd digtribution with zero mean. However, the digtribution function for grosserrorswill be
different dependent on the nature of the errors. For the instrument biased error, the distribution
function will be a norma digtribution with a unknown mean representing the bias. The failed
modes can be characterized as the failure to a fixed vaue (modeled as a ddta function) and as
afalureto arandom vaue (modeed as an uniform digtribution). Also, the lesking mode canbe
modeled as a uniform function determined by the possible range of the lesk.

Induding dl possible error modesinthe distributionfunctionwould provide the complete
information about the measurement errors. However, adding dl possible measurement error
modestothedistribution functionwill Sgnificantly increase the difficulty of solving the optimization
problems. Also, the prior probabilities for different types of errors are usudly not available. It
isbetter to construct a generd digtribution function which combines dl the information about the
possible gross error modes, such as, the two mode contaminated Gaussian digtribution function
proposed by Tjoa and Biegler (1991) to describe the digtribution for both random and gross

errors.
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Johnston and Kramer (1995) applied the Bayesian method to two examples. Oneisa
flow system from Mah (1987) that had three nodes and five streams and the other onewas a
smple hypothetica heat exchanger network fromTjoaand Biegler (1991). Thesmulation results
fromthese two examples showed that the performance of the contaminated Gaussiandigtribution
was better thantraditiona least squaresmethod. The contaminated Gaussian distribution method
can automaticaly reject the contribution of measurements containing gross errors to the data
reconciliation and give unbiased edimation. Also, the authors briefly described the influence
functionand showed the influencefunctions for least square, contaminated Gaussiandigtribution,
and Lorentziandigtributionthat isarobust functionfromHuber (1981). However, no application
with Lorentzian function was conducted in their work.

The advantage of this Bayesanmethod over the likdihood functionmethod isthet it aso
includesthe digtributionfunctionof the true values of variablesin the objective function (posterior
density function). Therefore, Bayesian method not only can predict the true values of process
variables, and it a'so canpredictther variations. However, the accuracy of the estimation of data
reconciliation is srongly depends on the accuracy of the prior distribution P(x) if it is
incorporated. It is very difficult to congtruct prior probability P(x) because the distribution
function depends on many aspects of information about the process. It is suggested to use an
equa prior probability for P(x), if this probability is not known.

Robust Function Methods: These methods were developed origindly to find a robust

estimate of |ocation (mean) and scde (variance) for univariate data (one variable withnrepeated

sample data) (Huber, 1972 and 1981; Seber, 1984; and Hampe 1973). When analyzing
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experimentd data, one usudly faces two difficulties (Seber, 1984). Fird, various studies
suggested that likely 0.1-10% of observations (or even more) would be “dubious’ (containing
grosserrors) fromwrong measurementsor any other sources of blunders. Second, sampled data
israrely normdly distributed and tend to have didtributions that are norma inthe middle, but have
longer tailsthan the norma digtribution on the two sides. Robugt estimation was developed to
overcome thesetwo difficulties i.e., grosserrors (outliers) inthe data and the distributionfunction
for the data deviaing from the norma digtribution.

The basic ideaof robust estimationisto build arobust digtributionfunctionp. Thisrobust
digtribution is asymptotic to a normd digtribution or a pre-defined distribution function that
describes the digtribution pattern of measurement errors under some idedl assumptions. The
robust function is to be insendtive to the presence of gross errors in sampled data when this
function is used to conduct data reconciliation, and it dill maintains a high efficiency (lower
dispersion) that indicates the accuracy of estimation (Huber, 1972; Seber, 1984).

Severa useful classes of robust estimators have been developed, and these are the
adaptive estimator, L-estimator (linear function of order statigtics), M-estimator (anal ogues of
maximum likelihood estimator), R-estimator (rank test estimator), and others. The most
important class applicable to on-line optimization is M-estimator.

Thewell known maximum likdihood estimator (MLE) or M-estimator finds the vaues
of x (estimated vaues) by maximizing [T; P(y;, X)), or minimizing - In [T]; P(y;, X)] = -Y [ p(Y;,

%) ] equivaently, where p = In P(y;, x),
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Minimize  -Y [ p(y, %) ] (2-57)
X i
Subject to: f(x)=0
Xt <x <xY

The didribution function p is called the distribution of observations (measurements) or robust
function which will be given in the following. Usualy, a robust function is expressed as a
logarithm of probability function, then the joint distribution function in the objective function
becomes the summation format that is mathematically smpler than the product format.

The basic concept for M-estimator is the same as the traditiond likelihood estimation
usng the contaminated Gaussian distribution or norma digtribution. The only difference is that
the didribution function used in robust estimation is the asymptotic function of  likelihood
probability function. For the case that the datawill mogt likely follows anormd didtribution with
asmdl percentage of extreme points (or grosserrors), it is suggested that the distributionfunction
p(Yi, %) should be asymptatic to the ideal norma didribution. The shape of the distribution
should be normd in the middle, but have longer and flatter tails on its two Sdes.

Two robust functions have been proposed in literature (Johnston and Kramer, 1995;
Huber, 1981; and Albuquerque and Biegler, 1995) for meanesimation, and they are applicable
for rectifying gross errorsin processsampled data. Johnston and Kramer (1995) proposed the
Lorentziandigtribution, whichwas origindly presented by Huber (1981), for reconciling process

vaiables. The Lorentzian digribution is;

1

pe)

(2-58)



77

where ¢; is the sandardized measurement error including both random and gross errors, i.e., ¢
= (Vi - X )/o;. Thisrobust function was briefly mentioned in Johnston and Kramer’ s paper (1995)
for dataregression, but the authors did not give any gpplications of grosserror detectionand data
reconciligtion.

Albuquerque and Biegler (1995 and 1996) proposed Fair function for estimating the

process variables as following:

plE,C) cziﬁ- lo{ -ﬂ-ﬂ (2-59)
¢ ¢

where ¢; is the standardized measurement error and c is a tuning parameter. The change in
parameter ¢ change the shape of digtribution, and the efficiency (or estimation accuracy) of this
digtribution is determined by this parameter. It was pointed out that Fair functionis convex and
has continuous first and second derivatives (Albuguerque and Biegler, 1995).

Also, the authors described the exploratory statistics method for identifying the gross
errors based on the estimated measurement residuas (errors). They proposed a technique,
boxplot where the center of the box is the median and the Sdes are the quartiles, to identify the
gross errors based on the order datistics. The outliers are spotted by computing the order
datistics (median and quartiles) and their distances from these. The interquartile-range d: is
defined as:

de =F, - F (2-60)
where F, and F, are the third and firg quartiles, respectively. Theouitlier cutoffswere defined as

F - yd: and F, + ydg, where y was usudly set to 1/3. The measurements outside the cutoffs
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were considered outliers. The gross errors canbe identified by boxplot method with packages
like MINITAB (Ryan, et d., 1985) or xlispstat (Tierney, 1990). However, the criterion set by
Albuquerque and Biegler seems to cause more type | errors (i.e., a measurement does not
contain gross error, but the test misidentifies the measurement with gross error). Qualitatively,
gpproximate one sixthof datais found containing gross errors using thetest proposed for boxplot
method, no matter how good or how bad the data set is.

In addition, Albuguerque and Biegler (1996) introduced the concept of an influence
function for the digribution. They compared influence functions for contaminated Gaussan
digtribution and Fair function. Also, they discussed the variable classfication for the dynamic
process moddl.

The Fair functionwas applied to adynamic process of two connected tanksthat hasfive
measured variables and two parameters and compared with the algorithm of contaminated
Gaussan digtribution (Albuguerque and Biegler, 1995 and 1996). They concluded that Fair
functionnot only isless senstiveto the presence of grosserror, but it is mathematicaly smple and
easy to use.

Albuquerque and Biegler (1996) used a smple heat exchanger network (Tjoa and
Biegler, 1991; and Swartz, 1989) to demondrate the effectiveness of the smultaneous gross
error detection approach by comparing the results of both the contaminated Gaussiandistribution
and Fair functionwiththe seria grosserror detectiontest (measurement test). They showed that
there were no dgnificant difference between contaminated Gaussian distribution and iterative

measurement test (IMT) method. They concluded that robust approach had a number of
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advantages, induding better numeric characteristics and less biased estimates. Also, this
approach had the interesting property (because Fair functionis convex) of yidding globa solution
for nonlinear programs with lower congraint curveture.

Inthe steady-state heat exchanger example problem, Albuquerque and Biegler (1996)
compared the results of the | east squaresmethod, the contaminated Gauss an distributionmethod,
and arobust function method (Fair function). The tabulated results showed the reconciled data
of variables from the least squares method with run 1 and run 2, the contaminated Gaussian
distribution method, and Fair function method. In the least squares method, run 1 showed the
data reconciliation result which did not exclude a measurement with a gross error, and run 2
showed the data reconciliation result which excluded a measurement with a gross error. The
result from the contaminated Gaussian distribution was closer to one of run 2, which were the
reconciled results using least squares method after the gross error was removed, than Fair
functiondid. Thisindicated that the estimation from contaminated Gaussian distribution was more
accurate than one from Fair function. The least squares method gives the highest estimation
accuracy if grosserrorsin measurements were correctly removed before the data reconciliation.
The true vaues of process variableswas not available for comparison, and therefore, the results
of run 2 for least squares method should be used as comparison, but not the reconciled resduas
(the difference between reconciled data and measurements) as the authors did.

Whencomparing the performanceof dgorithms, both the influencefunctionand efficiency

of a digribution are important criteria to evduate the dgorithms.  The influence function
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(IF)represents how sengtive andgorithmsisto the presence of grosserrors, and it is proportional
to the derivative of the didtribution, i.e,

IF = dplox (2-61)
The efficiency of adigtributionfunctionindicates the estimationaccuracy from data reconciliation
and it is given by the shape of the digtribution, i.e., asharper distributionhas higher efficiency and
higher estimation accuracy, and a flatter distribution has lower efficiency and lower estimation
accuracy. It isfavorable to have a dgorithm that has the combination of smaller or even zero
influence function for larger errors and high efficiency. 1t will be shown that the contaminated
Gaussan didribution has a better combination of influence function and efficiency than Fair
function and norma distribution (measurement test) next chapter.

Insummary, robust statistical methods were developed to overcome difficultieswiththe
data that contains gross errors and that does not follow the ideal norma didtribution. Robust
gpproach uses an objective function that is insengtive to the deviation of the datafrom the idedl
normal distributiondue to itsmathematica structure (Albuquerque and Biegler, 1996; and Huber,
1980). These methods tend to look at the bulk of the data and ignore atypical vaues. Robust
methods have the advantages of having a very smple mathematica form and of having very
convenient properties for optimization. However, the efficiency (accuracy) of robust functions
will be dightly lost because they have aflatter shape that gives larger variaion in estimation. In
addition, the boxplot and dotplot methods from exploratory satistics (Albuquerque and Biegler,
1996) can be used to identify the gross errors in sampled data. However, the criterion set by

Albuquerque and Biegler seems to cause more type | errors (i.e., @ measurement does not
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contain gross error, but the test misdentifies the measurement with gross error). Qudlitatively,
gpproximate one sixth of dataisidentified containing gross errors no matter how good or how
bad the data set was, according to the test they proposed for boxplot method. Also, caution is
needed in that these methods were origind proposed for the same type of data. However, the
datasampledfromDCSincudes different types of data, suchastemperature, flow rate, pressure,
and compasition, which have very different numerica values. Thismay causeaprobleminusing
order gatistics method which is the bass of boxplot and dotplot method, athough using
standardized measurement errors in these methods gives a better scale of the errors.

Summary of Methods for Gross Error Detection: Only combined gross error detection

and data reconciliation methods are practicd to detect and rectify gross errors in on-line
optimization applications. These methods gpply to mode sthat are highly nonlinear and in which
alarge portion of process variables are unmeasured or unmeasurable. Measurement test (MT,
IMT, MIMT) methods, contaminated Gaussiandistributionmethod, and robust function method
were able to detect and rectify gross errorsin data from distributed control system for ortline
optimization.

Sincethe normal distribution used in the measurement test method is not able to describe
the digtribution behavior of a gross error, the measurement test method is very sendtive to the
presence of gross errorsinmeasurements. The presence of grosserrorsinvalidatesthe satistica
basisfor the data reconciliation and results in biased estimation. To avoid this problem, series
dimination, iterative dimination, modified iterative elimination strategies have been proposed in

literature to improve the performance of measurement test. Thesedrategiessgnificantly improve
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the error rectification and gross error detection. However, they require the reconstruction of
congraints and the reclassification of measured and unmeasured variables which are caused by
nodal aggregationduring searching for gross errors. Thisisvery inefficient. Also, the method of
solution used in MT, MIT, and MIMT can not explicitly handle the unmeasured varigbles and
bounds, and the successive linearization of nonlinear equation resultsin lower solution accuracy
when the plant modd is highly nonlinear and errors are larger. In addition, the test statistic of
measurement test proposed by Mahand Tamhane (1982) istoo conservative. It isveryeasyto
commit type Il error when the magnitude of gross errorsis small.

The contaminated Gaussian digtribution agorithms incorporated the distribution pattern
for both random and gross errors, and it can automaticdly regect the contribution of
measurements containing gross errors by giving a much smaler weight factors to such
measurements. It can directly locatethe grosserror sourcesand gives an unbiased estimation for
dl reconciled data. The characterigtic of this distribution demongtrates the properties of arobust
function, i.e, itisnot sengtive to the presence of gross errors, and it gives unbiased estimation
even the measurements contain both random and grosserrors. Also, the shape of contaminated
Gaussan digribution is sharper than those of robust functions.  This digtribution function has
higher efficiency than robust functions. However, this distribution function gill has the nature of
the norma didribution. When the gross error goes to extremely large (e.g., infinite), the
performance of the contaminated Gaussian distribution decreases and till results in biased

edimation. Thiswill be shown in the theoretica evauation of distribution functions next chapter.



83

Robust statistica methods were developed to overcome difficulties with the data that
contains gross errors and that does not follow the ideal normd digribution. Robust datistica
methods use an objective function that is insengtive to the presence of gross errorsin sampled
data. These methods tend to look at the bulk of the data and ignore atypical values. Robust
methods have the advantages of having a very smple mathematica form and of having very
convenient properties for optimization. However, the efficency (accuracy) of estimation from
these methodswill be dightly lost because robust functions have aflatter shape thet gives larger
vaiationinthe esimation. Also, the test to detect grosserror of robust methodsis not as sraight
forward asthe contaminated Gaussandidributionor other likelihood functiondoes, dthoughthe
boxplot and dotplot methods from exploratory satistics (Albuquerque and Biegler, 1996) may
be used to identify the gross errors of sampled data. Moreover, the criterion set by Albuquerque
and Biegler (1996) seemsto cause more type | errors as discussed previoudly.

In dosing, measurement test method has been widely studied by both university and
indudrid researchers. However, its biased nature on the estimation and the inefficient
implementationfromthe iterative procedures result in alimitationof itsgpplications to large scae
orHine optimization problems. The new gpproaches, contaminated Gaussian distribution and
robust functions, have been proposed for the detection of gross errors. However, they have not
been studied withred, large scae nonlinear plant models. Based on the nature of the ditributions
and the ability of ignoring the contribution of gross errors on the estimation, they are seen asthe
appropriate dgorithms for conducting combined grosserror detectionand data reconciliationand

for amultaneous gross error detection, data reconciliation, and parameter estimation with large
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scale plant models in on-line optimization. They will be tested and evauated as part of this
research.
B-4. Parameter Estimation

There are two types of models for parameter estimation according to Britt and Luecke
(1973). One type is the explicit modd, in which measurements are divided into two sets of
measured variables, independent variables and dependent variables. In this type of modd,
independent variables are measured withamuchgreater accuracy thandependent varigbles. The
dependent variables can be expressed as an explicit function of independent variables and the
parameters. For this type of model, parameters can be estimated by minimizing the sum of
sguared errors of dependent variables (least squares method) or maximizing the likelihood
function, a probability digtribution function of the measurement errors of dependent variables
(maximum likeihood method). This is a uncongrained optimization problem, and linear
regresson method is one of examples for this type of estimation.

The other type of modd isimplicit or error-in-variablesmodd. There are errors in dl
measurements and the variables can not be partitioned into dependent and independent variables
as in the explicit moddl. The condraints of process models are implicit. Therefore, the
optimization problem of parameter estimation must be formulated as constrained optimization
problemwhichwill be discussed inthefollowingsection. Theerror-in-variablesmode srepresent
the generd case of process smulations for on-line optimization. Hence, only the parameter

edimation methods that are applicable to this type of process modd can be used for the
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parameter estimation of on-line optimization. The methods for error-in-variables modd will be
reviewed in the next section.

Stewart, Caracotsios, and Sorensen (1992) gave areview of the literaturefor parameter
edimation, and they proposed the Bayesian method for the parameter estimation with explicit
model using n repeated experimental data. The explicit mode is expressed as:

Vi=fi(x,0)+e,;,,u=12.,nmni=12.,m) (2-62)
where y,; represents the multiple response data array, i.e, y ={y,}. X, represents the vector
for independent variables that have accurate sampled data. 0 isthe vector of the parametersto
be estimated. u from 1 to n denotes the independent events (the repeated experiments) and i
from 1 to m represents the dimension of dependent variablesy. The function f describes the
relationship between the dependent variables y and independent variables x and parameters 0.

e, isthe error of dependent varidble y,; and it is assumed that e; is normaly digtributed with

mean as zero and unknown covariance marix . Therefore, the parameters and unknown
covariance mdrix can be estimated by maximizing the posterior density function (Stewart,
Caracotsios, and Sorensen, 1992), i.e.,

Maximum: p(@, = |y) « |B [0+ ™ + D/ 2 expf -tr[ 2 v(0)]} (2-63)

The dements of matrix v(0) in Eq. 2-63 is determined by:

v,® ;1 Do £ OV S, O] (2- 64)

The authors concluded that Bayesan and likdihood approaches were superior to

welghted least squares and to the use of a pre-specified error covariance matrix. Theadvantage
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of ther approach is giving the estimation of the error structure from a multiresponse data set,
along with the parameter vector of a predictive modd based on Bayesian theorem. The
optimization problem of parameter esimation in Eq. 2-63 is formulated for the traditiona
parameter estimation with repeated experimentd data. It can not be directly applied to the
parameter estimation of on-line optimization. However, its methodology can be used for the
parameter egimation of ornHine optimization by modifying the problem formulaion into
constrained optimization problem using error-in-variables models.

Biegler, et d., (1986) presented the results of anindustria nonlinear parameter estimation
problemfromDow Chemica Company. Themode consstsof six ordinary differentia equations
and four dgebraic equations (DAE) withnine parameters. Thisisgiff differentia/agebraic modd
witherror structure unspecified and the sarting guess leads to a nontrivid optimization problem.
This problem was attempted by eleven researchers yidding five acceptable solutions. They
compared the five solutions dong with a failed solution in terms of accuracy and efficiency.
Fndly, they arrived at the conclusions that good problem formulation, proper scaling and
reasonable initial guess were the guiddine for tackling dynamic parameter estimation problems.

Rhinehart and Riggs (1991) presented a new technique for parameter estimation by two
smple methods, one for dynamic equations and one for steady-state models. The one for
steady-state models used Newton's method with a relaxation coefficient, a one-step ahead
filtered processymodel mismatch, and it used the model ed output/parameter sengtivityto caculate
an incremental adjustment to the modd parameter at each sampling interval. The relaxation

coeffidient is incorporated in the Newton's linearization to improve convergence for highly
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nonlinear process modd. They concluded that these methods are effective and smple both
conceptudly and implementationally and can be easily extended to multivariable case.

Pinto, et. ., (1991) reformulated the general approach to parameter estimationinterms
of the rdative uncertainties in the mode parameters. This new formulation took relative
uncertainties in model parameters into consderation and lead to new sequentiad experimenta
design criteria. Their numerica examples showed that the relative p-trace design criterion was
the best criterion for sequential experimenta design.

The other gpplications for parameter estimation are for the optima design of sequentia
experiments. Dovi, Reverberi, and Maga (1993) described this application for both explicit and
implidt modds and devel oped the theoretical formulato determine the optimal conditionsfor next
experimen.

A new branch of parameter estimation is the quality control parameter design which
originated from the work of the Japanese qudity expert G. Taguchi in 1980. Parameter
estimation methodology is an off-line qudity control method for identifying design settings that
make the product performance less sengtive to the effects of manufacturing and environmenta
variations.

Mariaand Muntean (1987) described an gpplication of kinetic parameter identification
for the methanal conversion to olefin. The complex kinetic model contained 33 reactions and 16
chemical species. The reaction rate constants were estimated by minimizing the weighted sum
of squares of the errors for the product concentrations subject to a set of dynamic congraints.

Theminimizationused the combinative DP-SP-RRA (derivativesdiscreti zationprocedure-acubic
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spline gpproximation procedure-ridge regresson anadyss) and IP-SP-RRA (integral
transformation procedure-a cubic spline
approximation procedure-ridge regression analysis)
srategy and a multimodd NL SQ techniques was used to refine the parameter vaues for the
reduced modd.

Based onthe technique of Dunn and Bertsekas in optima control problems, Albuquerque
and Biegler (1993) developed a decomposition agorithm for onHine estimation with nonlinear
dynamic congraints, aset of ODE. Inthisapproach, the differentia equations were discretized
as dgebraic condraints and a SQP method was used to solve this optimization problem. The
authors proposed a strategy to solve the QP subproblem efficiently by taking advantage of the
problem structure. Compared with the other methods, this agorithm performed well for both
linear and nonlinear cases in both efficiency and robustness.

Krishnan, et d., (1992) proposed a serid of techniquesto locate the key parametersthat
contributes a sgnificant effect to the profit optimization and to filter out the unrelated plant
measurements for reducing the sze of the optimizationproblems. The authors described atwo-
step parameter estimation scheme that was specidly designed for on-line optimization. Thefirst
step involved determining key modd parameters. The second step was finding the best set of
measurementsto estimate these parameters. The key moded parameters are determined through
perturbing individudly by an amount depending on the estimation accuracy of parameters. If
perturbing a parameter Sgnificantly changesthe optimal objective functionand/or atersthe ective

condraint set at the calculated optimum, then this parameter is regarded as a key parameter.
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After the key parameters are determined, the necessary measurements for estimating these
parameters are selected through testing the bility of measurementsto parameters and the
observability of the parameters. The smulated results usng the William-Otto (Smulated) plant
showed that the scheme was robust in the presence of measurement noise and uncertaintiesin
non-key parameters. The methods proposed hereis related to the methodology of plant model
formulation, and they will be incorporated in the strategy to formulate the plant smulationmodel
of our research work.

In subsequent research (Krishnan, et a., 1993), they applied this robust parameter
edtimation technique to part of an operationa znc refinery. They showed that the proposed
technique could be gpplied to an complex process where a highly detailed process model was
not avallable. The methodsinvolved devel oping asmple plant modd with only steady-state mass
baance and smple shrinking core kinetic modd. They determined the key parametersand aset
of measurements, and minimized the nonlinear least square estimator. They concluded that the
smple process model adequately represented the plant performancesand wassuitable for on-line
gpplications.

Diwekar and Rubin (1993) presented a methodologica approach to the parametric
design of chemica processeswhichused the ASPEN smulator and was based onthe stochastic
modding capability. They dso andyzed different sampling techniques and compared the
stochastic optimization techniques of Latin Hypercube sampling and traditional Monte Carlo

Sampling.
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In summary, above is a brief review of the traditional parameter esimation. These
methods require an explicit process modd and the parameter estimation problem is formulated
as uncongtrained optimization problem usng repeated sampled data. The methods proposed
above cannot be directly used in the parameter estimation of on-line optimization. The process
models of on-line optimization are complicated, highly nonlinear and al measurements in the
mode are subject to errors. They cannot be formulated as anexplicit modd. In addition to the
parameters, there can be a large number of unmeasured variables in the process models.
Consequently, an error-in-variables mode must be used. Some of the methodology discussed
above, such as least squares method, maximum likelihood method, and Bayesian method, can
be modified and used to conduct the s multaneous data reconciliation and parameter estimation
of on-line optimizationusingthe error-in-variables model as congraints. Thefollowingwill review
the results for smultaneous data reconciliation and parameter estimation.

B-5. Smultaneous Data Reconciliation and Parameter Etimation

On-line optimization requires that the model of a plant matches the performance of the
plant. Thisis referred to as plant-model matching. Plant-mode mismatch can be caused by
ether inaccuracies in the models, e.g., imprecise amplification, blunders in equations, and
uncertain plant parameters which are unmeasurable and time-varying. The familiar examples of
time-varying plant parameters are catdyst deactivation and heat exchanger fouling which cause
change inthe effectivenessfactor of catalyst and in heet trandfer coefficients from the new plant.
Also, inaccurate parameters used in the process model for economic optimization will result in

non-optimal operating conditions. In order to have the model match the plant operations,
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updating the process parameters is essentid for onHine optimization. In addition, the process
modds of ontline optimization are complicated and highly nonlinear, and only error-in-variables
models can be used to describe the process.

Deming (1943) originaly formulated the generd problem of parameter estimation by
taking into account the errorsin al measured variables. Britt and Luecke (1973) presented
general methodology for the parameter estimation of error-in-variables model. This type of
parameter estimation is aconstrained optimizationproblem. In error-in-variables modd, vector
y represents the measured process variables with measurement vaues, and x representsthe true
vaues of thesevariadbles. All of the variables have errors and the rdlation of y and x isthe same
as the measurement error modd givenin Eq. 2-1, i.e,

y=x+e (2-1
The error vector e has azero mean and positive definite covariance matrix X.

The generd methodology of parameter estimation with error-in-variables model hasa
dructure Smilar to the data reconciligtion and it is a Smultaneous data reconciliation and
parameter estimation optimization problem. The only difference is that the parameters in plant
model are considered as variablesa ong withthe variablesin smultaneous datareconciliationand
parameter estimation rather than being congtants in data reconciliation. Both process variables
and parameters are smultaneoudy estimated through minimization of the sum squares of
measurement errors if the least squares method is used.

The general mathematical formulaion of parameter estimation using maximum likelihood

method for normally distributed measurement errorsis (Britt and Luecke, 1973):
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Maxi E)ni ze  L(x, 0)=(2n)"? || exp{-Y4y - X)"=y - X)} (2-65)
X,

Subjectto:  f(x,0) =0
where 0 represents a set of parameters in plant modd, and they are estimated with the variables
X by solving this optimization problem. The equdity congtraintsf(x, 0) are the plant smulation
equations and denote the implicit relationship among the process variables and parameters.
Solving Eq. 2-65 finds the vaues of x and 6 that maximize the likelihood function L(x, 6) and
satisfy the process congtraints. Taking anegativelogarithm of thelikelihood function convertsthe
maximization of the likdihood function to the minimization of the sum of squared measurement
errors, i.e., maximum likeihood method is converted to least squares method if the likdihood
function is a normal didtribution function. Therefore, Eq. 2-65 can be rewritten as (Britt and
Luecke, 1973; and Ramamurthi et a. 1993):
Minimize: (y-x)"=Yy-x)=e'x?% (2-66)
Subi ectto.  f(x,0)=0
The vaduesfor boththe parameters and reconciled process variables are obtained smultaneoudy
by solving the optimization problem of Eqg. 2-65 or 2-66. This is a Smultaneous data
reconciliation and parameter estimation optimization problem.
Britt and Luecke (1973) described the use of Lagrange multiplier method to solve the
optimization problem of Eq. 2-66. The condraints are implicit nonlinear equation, and thereis
no anaytica solutionfor Eq. 2-66. The authors developed an iterative linearization technique to

solve thisnonlinear problem. They linearized the nonlinear congtraintsusng Taylor expansionat

the point that was the solution of the last linearization, then iteratively searched for the optima
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solution. They reported difficulties in converging to the optimum in some test problems. They
concluded that their agorithm provided afessble approachto the generd parameter estimation
problems.

The methodology of parameter estimation proposed by Deming (1943) and Britt and
Luecke (1973) is the basic structure of parameter estimation in on-line optimization. The
improvement over this structure isto provide a better distribution function that more accurately
describes the error structure of measurements and better optimization agorithms to solve the
problem, such as the generized reduced gradient or successive quadratic programming.

MacDonad and Howat (1988) reported the results of two procedures for parameter
edimation. One is a datigticaly rigorous smultaneous data reconciliation and parameter
edimation, and it Smultaneoudy reconciled the data to satisfy the congraints and estimate the
process parameters. The other isafaster, non-rigorous sequentia procedure. It first reconciled
data to stisfy the materia and energy balances and then estimates the process parameters. The
authors applied these two procedures to estimate the tray efficiency of a flash unit. 1t was
concluded that the smultaneous procedure gave a better estimation. The sequentia procedure
was computationaly faster.

Kim, Liebman and Edgar (1990) used a two-stage and
a nested nonlinear algorithm which decoupled
parameter estimation and data reconciliation to
reduce the problem size. The two-stage method solved

two NLP sub-problemiteratively,and the nested method
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Nnested reconciliation problem Into parameter
estimation problem. Both of these two methods used
NLP to overcome the drawbacks of successive
linearization solution. When these methods were
compared with the simultaneous algorithm and
successive linear algorithm, they found that the two-
stage algorithm succeeded iIin finding optimal
parameter estimates forall testproblemsinanefficient
manner while other methods failed on one or more of
the problems.

Ramamurthi, et. d. (1993) proposed a successvely linearized horizon-based strategy for
the estimation of parameter and dynamic data reconciliation. They aso proposed a two-level
strategy to decouple the estimation of process input from the estimation of the process outputs
and parameters. The new agorithm resulted in a significant reduction in computationa time
compared with NLP based methods. The proposed agorithm demonstrated effective and
efficient performance for both open-loop and closed loop applications on a continuous tirred
tank reactor (CSTR).

The profiling method, which isa technique based
on the signed-squared root of likelihood function,
was proposed by Albuquerque, et al. (1997) for error-in-

variable measurementproblems. This method produces
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improved confidence interval on the estimated
parameters. TheauthorsadoptaBayesian approach and
apply Laplace’s method tointegrate out the incidental
parameters (Oor control input variables). The authors
concluded that estimation of and nonlinear
inference about process parameters can be obtained
fairly inexpensively by applying profiling and Laplace’s
approximation. Also, thisapproach leads to an efficient
and effective analysis tool for process modeling, data
reconciliation, and on-line optimization.

IN summary, the errors-in-variables model
represents the general case of chemical plant models
used fTor simultaneous data reconciliation and
parameter estimation inortine optimization. Theleast squares method hasbeen
used for the smultaneous data reconciliation and parameter estimations. Most of reported
gpplications assumed that measurement errors are normaly distributed and they used the least
sguares method to conduct the Smultaneous datareconciliationand parameter etimation. Other
methods, such as contaminated Gaussian distribution and robust functions, are considered as
potential methodsfor plant parameter esimation. They will be used to conduct s multaneocusdata

reconciliation and parameter estimation in this research.
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For onine optimization usng errors-in-variadbles modd, parameter estimation is
conducted with data reconciliation Smultaneoudy. In order to reduce the optimization sze and
improve the convergency and efficiency of solutions, some decomposed Srategies have been
proposed to solve the Smultaneous parameter estimation and data reconciliation optimization
problems when the scale of modelsislarge and highly nonlinear.

B-6. Economic Model

The economic modd represents the net profit from plant operations which is to be
maximized aong with satisfying the materiad and energy balances for the plant and meeting the
demand for product withthe avallable raw materids. The net profit isthe difference between the
sde of products and by-products and the total production cost which includes manufacturing
costs and genera expenses. The manufacturing costs include direct production costs, fixed
charges and plant overhead costs, adminigtrative expenses and distribution and marketing
expenses. Included in direct production costs are raw materids, labor, power, utilities,
maintenance, laboratory charges, and roydties, among others. Fixed charges include
depreciation, taxes, insurance and financing. Plant overhead cogtsinclude safety, generd plant
and payroll overhead, control laboratories and storage. Adminigtrative expenses include
executives salaries, clerica wages, engineering and legd costs and communications. Didtribution
and marketing expensesindude sa es expenses, shipping advertising and technica salesservices.
Also induded intotal product costs are research and devel opment and gross-earnings expenses

(Peter and Timmerhaus, 1991).
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To develop the mathematica expression for the economic model, the sale prices are
obtained as projections from the marketing department as a function of plant production rate,
avalability of product from competitors and time, among others. Manufacturing costs are
estimated from historical data, and depend on the condition, severity of operation, and time
betweenturn-around, inadditionto other factors. Genera expenses are usudly treated asfixed
on an annua basis, for convenience.

In summary, standard methods can be used to develop the economic model with the
appropriate data avalable. Thus depending on the need, the economic model can be very
elaborate or a smple vaue-added equation. Economic optimization in on-line optimizationisto
determine the optima operation condition for the plant. This optimization generatesthe optimal
st points for controllersin the digtributed control system.

B-7. Plant Model

A precise and robust plant mode is essentid for on-line optimization. It serves asthe
congraints for gross error detection, data reconciliation, parameter estimation and economic
optimization. Therefore, aplant modd must be established and vaidated before usng it for on-
line optimization. The plant model is written based on conservation laws, kinetic and
thermodynamic models, and any other engineering knowledge. It is generally expected that
rigorous models based on fundamentals would represent the plant better thana smple one based
on empiricd results. However, a rigorous model may have the disadvantage of requiring

sgnificantly longer computation time. On the other hand, a smple model may not provide an
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accurate enough representation of the plant behavior and the optimization based on this type of
model may result in non-optimal or physicaly infeasible set points (Krishnan et d, 1992).

Open Form Equation Based Versus Close Form Modular ProcessM oddl: Chemicd and

refinery processes can be smulated as different formats of Smulationmodels. Oneiscalled open
form equation based process modd ; the other is the traditiona closed form sequentia modular
modd. Theopenform modesarewritten asaset of dgebraic and/or differentia equations, such

a5,

f{% x,t) 0, i 1.2,..0m (2-67)

for dynamic processes or f(x) = O for steady State processes. In Eq. 2-67, dl of the varigbles
are determined by a smultaneous solution of the equations. For example, the energy balance

equations for a heat exchanger can be written as:

heat balance on cold side: Q-F.Cx(T-T)=0 (2-68)
heat balance on hot sde: Q-FnCpo(Thy-Typ) =0
heat transferred: Q-UA[((Th-Te) - (Tra - TOMIN((Ty - T (T - Te))] =0

These three equations can Smultaneoudy determine any three unknown variables(e.g., T, Tho
and Q)in the equations using a Imultaneous solution method. The optimization problems with
open form modds can be solved smultaneoudy and efficiently by optimization modeling
packages, such as GAMS or AMPL, which have a number of solvers built-in.

The closed formplant model followstraditiona desgn methods, using the information at
input streams of a unit to determine the vaues of the output variables. The changes at an up-

stream|ocation can affect variables at down-stream locations, but the changesat adown-stream
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location can not affect the determination of processvariablesat up-streamlocations. Thesolution
for thistype of modd is sequential. Therefore, optimization problems with closed form models
canonly be solved with iterative methodsto search for the optimal solution. Thisrequires nested
convergence schemes for unit operations within flowsheets. This can be seen by the smulation
for the determination of the output temperatures T, and T,,, and heat transferred Q for a heat

exchanger. The energy balance equations for a heat exchanger are:

heat balance on cold side: Q=F.Cy (T - Ted) (2-69)
heat balance on hot sde: Q=F,Cp(Tha- Tro)
het transferred: Q=UA [((Ths - Tea) - (Trz - Te))/ IN((Tha - Tex) / (T - Tea))]

To determine Ty, T,, and Q, the sequentia flowsheet smulation package (closed form
sequential modular) requires coding a convergence scheme to solve these equations iterdtively
for T, Ti, and Q (Fatora and Ayaa, 1992). Thereason isthat logarithm mean temperature
difference is highly nonlinear and these three variables can not be explicitly determined by other
known variables. These complex convergence schemes lack robustness in the presence of
changing red time process data, and they consume excessve amounts of computer time.

There has been a debate about the use of open form equation based process modds
versustraditiona closed form sequential modular models for on-line optimization since the mid
1980's (Hardin, et a., 1995). The debate centered around the relative speed of the open form
solution versus the rdive robustness of closed form modd development. The open form plant
model hasagreat advantage interms of computation efficiency and robust solvers, and thisisnot
available for the closed form plant modds. The difficulty in developing open form plant models

will be solved by the development of process modding software that crestes a model
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development environment smilar to sequential modding.  The process modeling software will
automatically trandate the graphic input informationfromusersto an equati on-based model with
graphical, object-oriented environments for configurating, executing and maintaining the on-line
optimization applications. Also, the open form plant models are easily modified to account for
process changes since the convergence scheme isseparated fromthe process modd. Eventudly,
the use of openformmode s becomes the accepted state of art (Hardin, et d., 1995). However,
the discontinuity in the congtraints of process models, e.g., the thermodynamic properties are
expressed by different regression functions for different ranges, gill challenges researchers in
solving optimization problems with open form process modds.

Plant optimization with closed form process modds can be solved by process
flowsheeting programs.  Process flowsheeting programs were designed to relieve the burden
deriving process modds and writing computer programs. They use a smulation language which
connects unit modules. Flowsheeting programs available now are large, elaborate and can be
used for complicated design problems. They use well-established numerica methods to solve
process mode equations which include rigorous unit operation model and sophisticated
thermodynamic model equations. Also, they can contain detailed cogting programs and a built-in
optimization adgorithm for optimal design.  These programs run on PC's, workstations, and
mainframes. Thereare several the commercid codes suchas ASPEN, DESIGN |1, PRO Il and
HY SIM that are widely used in chemical process industries.

The optimization problems with open formequationbased process mode can be solved

by optimization-modeing languages such as GAMS (Generd Algebraic Modding System) and
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AMPL (A Modding Language for Mathematical Programming). GAMS and AMPL were
developed to make the formulation and solution of large scale mathematical programming
problems more sraightforward and comprehengble to the users. GAMS has been used
successfully with large economic modes of indudtrid sectors by the World Bank (Brook,
Kendrick, and Meeraus, 1988), and AMPL was developed AT&T Bdl Laboratories for
telecommunication gpplications (Fourrer, Gay, and Kernigan, 1993). However, applicationsto
chemica plants have been limited and confined to relaively smal problems. They are equation
based programming languages, and the programs are smilar to the mathematica formulation of
process modds. Also, a number of solvers for solving linear, nonlinear, and mixed integer
linear/nonlinear optimization problems are provided as options for users to choose. A
disadvantage is that detail unit modules of processes (process condraint equations) are not
available and must be provided by users.

In summary, both openformequationbased and close form sequential modular process
modds have been used for amulaing and optimizing processes. Flowsheeting smulation
programs can devel op close formsequential modes for usersto smulateand optimize aprocess.
However, there is no process modding software available for devel oping the openformprocess
modd. An openform mode must be developed by userswriting inamathematica programming
language, and this model can be solved by optimization modeling packages. Flowsheeting
programs offer a quick and efficdent way to develop plant smulations, but require significant
amounts of computer time. The optimization modding languages require the same effort as

required to develop the individua process models in Fortran without having to incorporate
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optimization dgorithms., Optimization modeling languages are able to smultaneoudy and
efficently solve the optimizationproblem. They require much less computation time and provide
more religble solution.

Steady State Model Versus Dynamic Mode: A chemica process can be smulated by

ether a steady state or dynamic model. Chemical plants operate at steady State with trangent
periods that are reatively short compared to steady state operations. A steady-state
representation of a process is generdly used for continuous operations in chemica plants and
petroleum refineries. Steady state models are used to Smulatethe plants in on-line optimization
gpplications. However, during the starting up of a continuing process or for a batch process, it
IS necessary to use the dynamic models to smulate the process.

The steady state process modds are represented by a set of algebraic equations. The
equations do not vary with time. The agebraic equations in steady state models are established
based on conservation laws and other engineering knowledge. Dynamic process models are
represented by a set of ordinary differential equations that describe dependency of process
vaiablesontime. The differentid equations in dynamic modds are based on conservationlaws,
i.e, the accumulation of mass, momentum, and energy, which isthe time varying term, is equd
to the input plus generationminus the output of the mass, momentum, and energy (Albuquerque
and Biegler, 1995; and Robertson and Lee, 1996). Usudly, each differentid equation in the
dynamic modd is discretized to obtain a set of agebraic equations withan appropriate time step.
Albuquerque and Biegler (1995) proposed to discretize the differentid equations usng standard

Implicit Runge-Kutta method (IRK).
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Observability and Redundancy: A process modd used as congraints for data

reconciliation of on-line optimization must satisfy the observability in unmeasured varigbles and
redundancy in measured variables (measurements). The observability in unmeasured variables
ensures the unique solution for unmeasured variables from data reconciliation.  The redundancy
in measured variables (measurements) is necessary for reconciling process data and rectifying
measurement errors. Observahility is defined by Crowe (1989) as.

“An unmessured quantity at steady state is observable if and only if it can be uniquey

determined from afixed set of vaues, corresponding to the measured variables, which

are conggtent with dl of the given condraints. Any unmeasured quantity whichisnot so
determinable is unobservable.”
And redundancy is defined by Crowe (1989) as.

“A measured quantity is redundant if and only if it would be observable if that quantity

was not measured. Otherwise, the measured quantity is non-redundant.”

Kretsovalis and Mah (1988) and Crowe (1989) has given detal review on the
methodol ogy for dassifying the observability of unmeasured variables and the redundancy of the
measured variables for steady state process models. For a single component process network
(mass baance only), a ssimple graph-theorety procedure has been derived for observability and
redundancy examination by Mah, et a., (1976). A more generd treatment using projection
matrices was developed by Crowe, et d., (1983) for a network with linear congtraints. For
sngle component mass and energy networks (mass and energy balances) without chemica

reactions, a examination method has been developed by Stanley and Mah (1981). For
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multicomponent networks, Kretsovais and Mah (1987) presented two new examination
dgarithms which made use of graph-theorety properties and the solvability of subsets of
condraint equations. These agorithms do not require that the stream compositions be ether
measured with respect to dl components or not measured at dl. However, the reactions and
energy baances are not consdered in these dgorithms. To have amore genera framework for
identifying the observability of unmeasured variables and redundancy of measured variables,
Kretsovais and Mah (1988) presented a treatment for agenerd process network, alowing for
overdl and component mass baance, energy baances, reactions, heat exchanges and stream
solitting. Thismethod uses the graph-theoretic properties and solvability smilar to their previous
work.

For aprocess modd that includes a numbers of linear algebraic equations, f(x, z) = 0,
it is rearranged as following for examining the observability and redundancy:

Ax +Bz=0 (2-70)
where A and B are the coefficient matrices corresponding to measured variables x and
unmeasured variableszinlinear condraints. InEq. 2-70, the measured variablesare considered
as known variables (congtants) using the measurements as their vaues. Then, Eq. 2-70 is
rearranged as.

Bz=-Ax=S (2-72)
where Ax inthe right hand Sdeisacongtant vector S. If equations Bz= S have aunigue solution

for variables z, then the plant model satisfies the observability on unmeasured variables.
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Otherwise, the vaues of the unmeasured process variables determined fromthe congtraintsinthe

plant modd have no meaning.

Crowe (1989) presented adirect method for identifying the observability of unmeasured
variables and the redundancy of measured variables for linear mass balances with chemica
reactions. To examine the observability and redundancy of a linear plant model, the linear
congtraints are rearranged as EQ. 2-71. According to the definitionof the observability given by
Crowe, the fallowing lemma provides the test for dassfying the observability of unmeasured
variables.

Lemma (Crowe, 1989):If there existsanonzero vector t suchthat Bt = 0, theneach unmeasured
variables corresponding to a nonzero element of t is unobservable.

Proof of lemma: Supposethereisasolutionz = z1 that satisfies equationsin Eq. 2-71, i.e, Bzl
=S. If t » Oandif Bt =0, thenthe vector (z1 + vt) dso satisfies those equationsin Eq,
2-71for any scdar v, i.e,

B(z1 + vt) =Bzl +vBt = S, whereBz1 = Sand Bt =0 (2-72)

This means that these equations have multiple solutions z= z1 + vt wherev isanarbitrate

scaar with any vdue. Therefore, the equations do not have a unique solution for

unmeasured variables z and each varigble corresponding to a nonzero dement of t is
unobservable.

Krishnan, et a., (1992 and 1993) proposed astructura andysis method to examine the
observability of unmeasured variables by checking the rank of the structurd parameter

observability matrix. They proposed a structural analysis method to examine the required
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measurements for esimation. For a Steady-date linearized system, the condraint equations is
rearranged as.

Ax+Bu+E0=0 (2-73)
where A, B and E are matrices corresponding to the state variables x, input varigbles u, and
parameters 0 respectively. Input variablesu arethe variablesinthe input streams of a unit. State
variables are the varidbles in Eqg. 2-73 excluding input variables u and parameters 6. Also,
measured variables y are expressed as linear functions of date variables of system, i.e,

y =Cx (2-74)

Two steps are required to determine the observability of parametersin aprocess modd.
Firgt, the measurements in the modd must be examined to determine if they are accessible to the
parameters. A measurement is said to be accessble to a parameter if it contains some
information about the parameter, that is, if changesin the parameter are the cause of changesin
the measurement (Krishnan, et d., 1992). If ameasurement is not ble to the parameter,
it can be excluded from the set of necessary measurements. Inthe examination of accesshility,
input variables u are consdered as unknown parameters for al of the units except the firg unit
in the plant flowsheet and the output variablesare considered as measured variablesfor dl of the
unitsexcept the last unit. The necessary measurements for entire plant are examined unit by unit
through an extended structural matrix S,,q for eachunit. The extended structurd matrix S;,oq IS

defined as;

r
E B} ( 2-75)

T
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where A, B, E and C are the same matrices as defined in Eq. 2-73 and 2-74.

The second step is to test the observability of parameter using the structural parameter
observability matrix S,,, The structural parameter observability matrix is defined as.
where the matrices A, E, and C havethe eaning asin Eq. 2-73 and 2-74. A systemis
sad to be structuraly parameter observable, if and only if, itsmeasurements are accessible to all
the parameters and the structural parameter observability matrix S, has full generic rank
(Krishnan et d., 1992). A structurd matrix is said to have generic rank if a unique column
variable can be associated with each row. The detall methodology of this structurd andysisis
discussed inKrishnanet d.’s paper (1992). The determination of generic rank of the structura
metrix is referenced on Johnston et a.’s (1984) agorithm. The method proposed to determine
the observability of parameters in a process model will be incorporated in this research for
developing the process modd of the sulfuric acid plant.

In summary, observability of unmeasured variables and parameters is necessary for
having aunique solution of these unmeasured variables and parametersfromdata reconciliation.
Having some degree of redundancy in process measurements is necessary for rectifying the
measurement errors.  Several methods have been proposed to examine the observability and
redundancy for steady state process models. However, these methods are limited to certaintype
of ample linear process mode and are not generd enough for implementation. Also, there are

no reports in literature on how many degrees of redundancy in measured variables are required

to have an accurate data reconciliation result. Based on the methods proposed by Crowe
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(1989) and Krishnan, et a., (1992 and 1993), a genera method to examined the observability
and redundancy of a plant model will be proposed and used to formulate the Smulation model
of the sulfuric acid process.

Summary. A precise and robust plant smulation is necessary to describe the processes
for on-line optimization. It gives the relationship among the process variables and serve as
congraints for the optimization problems. The plant models can be written as either open form
equation based or close form sequential modular. The close form plant modd hasbeenusedin
process design and optimization for many years, and it is easily developed with flowsheeting
programs. However, the computation for solving aoptimization problem with thistype of models
istime consuming. The optimization problem with an open form equation based plant mode can
be solved smultaneoudy and efficiently by current optimization programs. However, the
development and modification of the openformmodesis not as sraight forward as one of closed
form. It requires the user to provide the detail information about the constraint equations.
Smulaion software is being developed, and this will provide a process mode development
environment smilar to the ones available now for sequentia modeling to automaticaly trandate
the graphic input information to an equation based mode, e.g., Aspen Tech’'s RT-OPT and
Smulation Science's ROMEO. Open form equation based models are required for on-line
optimization.

A chemicd process can be smulated by either steady state or dynamic models.

Chemicd plantsusudly operate for extended period at steady state withtrangent periodsthat are
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relatively short compared to steady state operations. Therefore, the Steady state processmodels
can be used for on-line optimization.

The plant modd for on-line optimization must stisfies the requirement of observability
to ensure that the model has unique solution and redundancy to provide resolution for error
rectification. Methods for examining the observability and redundancy has been proposed by
severa authors for steady state models. However, they are limited to the Smple linear plant
model and not genera enough for implementation.

B-8. Steady State Detection and Data Exchange

Steady State Detection: AsshowninFigure 1.4, it isnecessary to make surethe process

is operating at steady state before the plant data is taken from distributed control system for
conducting on-line optimization. Steady state plant data is required for steady state process
models.

The time series horizonta screening method has been used in industry to detect the
steady state. In this method, the measured values for key process variables are observed for a
time period. If the measured vaues remain in a stable range with tolerant random noises, then

the process is said operating at steady state.

Data Exchange: An important step between DCS and on-line optimization is data
exchange. Before conducting on-line optimization, the plant data is retrieved from distributed
control systemand input into on-line optimizationsystem by a coordinator program. The generd
practice in managing datain adigtributed control system iswith a data historian program. Data

from this database can be extracted and used in a spreadsheet program for example. A
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coordinator program is used to extract the sampled datathat is required by on-line optimization
system and to generate adatafilein aformat required by on-line optimization sysem. Then this
data file will beused by the optimization programs for gross error detection, data reconciliation,
and parameter estimation.

As shown in Figure 1.4, after on-line optimization executes economic optimization and
generate a set of optima set point, the coordinator program will generate a report file which
includesthe optima set points. These optimal set points can be sent directly to distributed control
system or they can be viewed by operators for the use of DCS.

B-9. Optimization Algorithms

Thereis generd agreement inthe literature (Pike, 1986 and Biegler, 1992) that the three
best optimization agorithms for solving nonlinear programming problems are successive linear
programming, successive quadratic programming and the generaized reduced gradient methods.
Successive linear programming linearlizesthe objective functionand congtraintsaround afeesble
garting point and solves a sequence of linear programming problems to arrive at alocal optimum.
Successive quadratic programming usesaquadratic approximeationto the objective function and
a linear approximation to the congraints and solves a sequence of quadratic programming
problems to arrive at aloca optimum. Quadratic programming usesthe Kuhn-Tucker conditions
to convert the quadratic programming problem to a set of linear equations which can be solved
by linear programming. Thus, successive quadratic programming solves a sequence of linear
programming problems. To avoid evauating the Hess an matrix of second partia derivatives of

the objective function, aquasi-Newton update formula such as BFGSisused whichonly requires
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gradient values. The generalized reduced gradient aso linearlizes the objective function and
congtraint equations about a Sarting point, and it manipul ates these equations to form a reduced
gradient line to provide a direction to perform a series of line searches to arrive at a locd
optimum. All of the methods use the same information, vaues of thefirst partia derivativesof the

objective functionand congraints; but each use this information in a different way (Pike, 1986).

Biegler (1992) discussed embdlishments for these dgorithms and ther further
goplications in data vaidation and parameter esimation which are nonlinear programming
problems. He exploited the structure of process optimization problems to propose generd
decomposition method to deal with large, nonlinear models with few degrees of freedom, and
tallored quasi-Newton strategy for |east-square structure of the optimizationproblem, and more.
These extensions of the successive quadratic programming (SQP) dgorithms yidd more reliable
and efficient performance than the genera purpose SQP agorithm.

GAMS (Generd Algebraic Modding System) was developed at the World Bark to
solve large and complex mathematical programming models and uses a programming language
that makes concise dgebraic statements of the model s that is easily read by both the modeler and
the computer (Brook et d., 1988). Thiswas done to expand the gpplication of mathematica
programming in policy andyss and decison meking. GAMS includes a number of mathematic
programming solvers for linear programming (LP), mixed integer linear programming (MILP),
nonlinear programming (N L P), discontinuous nonlinear programming (DNL P), and mixedinteger

non-linear programming (MINLP). Its NLP solvers have been tested in a wide variety of
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problems and have been proven to be robust and reliable. They arewd| suited for the nonlinear
programming problem for deata reconciliation.

GAMS includes a number of important and widely used nonlinear programming codes
such as MINOS, NPSOL and CONOPT. MINOS, developed at Stanford University,
implements generdized reduced gradient method which is more effective for problems with
condraint equations that have sparse matrices. NPSOL, aso devel oped at Stanford University,
uses successive quadratic programming and is more effective for problems with congtraint
equations that give dense matrices. CONOPT, developed by Drud (1985,1992), uses the
generd reduced gradient dgorithm and is well suited for models with very nonlinear condraints
and modds with very few degree of freedom. These codes were developed to facilitate the
formulation and solution of the optimization problem.

The modeling language AMPL (A Modeling Language for Mathematica Programming)
appeared in 1993 and was developed at AT & T Laboratory for communication applications
(Fourer, et d., 1993). AMPL has language structure similar to GAMS. In addition, it has
separate moded and data filesand canfunctioninteractively. AMPL includesthe solver MINOS,
XA, and OSL with other to be available.

In summary, GAMS and AMPL offer atractive new tools for solving nonlinear
programming problems. They map the mathematica optimization problems to the rigorous
programs required by optimization solvers and provide flexibility in writing source codes for

process models. Therefore, the user does not have to write the process and economic models
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in ahigher level language like Fortran and link to a solver like MINOS. They release the users
from the work of programming.
B-10. Variance and Covariance Matrix Estimation

As described inthe sections on gross error detection, datareconciliation, and parameter
edimation previoudy, dl dgorithms require information for the variance and covariance of
measurement errors to scae the errors. The most commonly used Satigtica technique for

covariance matrix estimationisthe direct method, i.e., the variance/covariance is determined by:

1 n
&G covar(y, y) T TE Oa 00k (2-77)
with the mean determined by:
1 n
Yy ” 13:1 Y (2-78)

whereniis the number of samples. The covariance matrix of measurement errorsis & = [o;°

]. The covariance matrix of condraint resduds H is determined by Eq. 2-14 for linear
congraints as discussed previoudy, i.e.,

H=AZAT (2-14)

Eq. 2-77 and 2-78 represent the unbiased maximum likelihood estimatorsfor variances

and meansif the sample data is independent of eachother and no grosserrorsare present in the

samples. Thismethod requiresthe nsamples must be taken from the same steady state point of

the process, otherwise the direct method may give incorrect estimates. Also, the presence of

gross error in sampled data violates the statistical basis that only random errors are present.
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Almasy and Mah (1984) and Kdller, et d., (1992) made use of the covariance matrix of
the condraint resduds to diminate the dependency between sample data (or the influence of
unsteady state behavior of the process during sampling period) through an indirect method. The
indirect method estimates the variance of measurement errors by minimizing the sum of the
sguared differences between the variances H of condraint resduds caculated directly from
sampled data and the estimated constraint residua variances AZ* A, i.e,

Minimize (H- AZ*AT)(H - AZ*AT) (2-79)
wherethe variances of condraint resdua H are determined by Eq 2-14 usng the direct method
in EQ. 2-77 to determine . Minmizing Eq. 2-79 estimates the variances and covariances of
measurement errors, * .

The authors compared smulaionresults, and they suggested that this indirect method for
variance-covariance estimation should be used inpractical gpplications. Thisindirect method can
reduce the influence of unsteady state behavior of the process on the estimation. However, this
method is dill sengtive to the presence of gross errors in the sample data. Consequently, afew
outlying sample data will cause an incorrect estimation of the covariance matrix, and it is not
robust. Also, this method is only applicable to process models with linear condtraints.

Chen, et d., (1997) proposed a robust indirect method to estimate the variance-
covariance matrix based on an M-estimator proposed by Huber (1964). The basic idea of M-
edimator isto assgn weightsto each sample data vector based onitsown Mahaanobis distance
S0 that the influence of agiven point decreases as it becomes less and less characteritic. This

gpproach uses an iterative method to calculate the variance and covariance matrix of congtraint
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resduals. After the variance and covariance matrix of constraint resdualsis determined, it uses
the indirect method to estimate the variance and covariance metrix of measurement errors. This
agorithm is described asfollows.

Congder an dimensiond process sample data vector at atimek y,:

Y =Xt € (2-80)
where y, = {Viw, Yiar - Ykn), fOr k =1, 2, ..., s danding for repested sample data. X, is the
process variables at time k and e, is the vector of measurement errors at time k. Process
variables x, satisfies condraints in the process modd, i.e.,

AX, =0 (2-81)
where A isthe coefficient matrix of congraintsin the process modd. The condraint resdud r,
is determined by:

re = Ay, = Ax, +tAe = Ag (2-82)
Assuming that e, is normally distributed with zero mean and postive definite covariance matrix
¥ as discussed in gross error detection section, the mean vector and covariance matrix of
congtraint resduds are:

E(r,) = E(Ae) = AE(e,) =0 (2-83)
and H =ocov(r) = E(r, ") = E(A e.e,"AT) =AE(e,e,)AT =AZAT (2-84)
whereH = (0)mxm, 1 =1, 2, .., mand j =1, 2, ..., m. Using the Kronecker product of matrices
and vec(0) operator (Almasy and Mah, 1984), the covariance matrix H can be rewritten as.

vec(H) = (A=A)vec(Z) (2-85)
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The indirect method uses Eq. 2-85 to estimate covariance matrix of measurement errors . This

procedure requires the vaue of the covariance matrix H which can be cdculaed from the

resduds using the balance equations.

Step 1

Step 2

The procedure of the robust covariance estimation is described in following:
Cdculate theresdudsr by:
re=Ayfork=12 ..s (2-86)

where, 1, =[lg, lias -l ' - Sisthe number of sample datasstsand misthedimension

(number) of congraint residuals.
Cdculate the weight functions ul and u2 for each data set by:
1 d<k
ul(d {k/d d>k (2-87)
and u2(d) = [uL(d)]* /6 (2-88)
where 8 = G(k%2, 1.5) + 2k? [1-¢p(K)] (2-89)

InEg. 2-89, ¢(k) isamultivariate norma cumulative didribution; and G(x,f) isaGamma
digtribution with f degree of freedom. In Eq. 2-87, k is a constant specified by the user
to take into account of the loss in efficiency to Gaussian ditribution for the exchange of
resstanceto grosserrors. d, isthe Mahaanobis distance for a sample dataset fromthe
current estimate of mean (location) m* and it is determined by:

d2=(r, -m*)T H* 1 (r, - m*) (2-90)
whereH* isthe current estimate of the covariance matrix, and m* isthe current estimete

of mean. Both H* and m* areinitidized by:
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m* = metlj(ian (hg k=12 ..,sj=12.,m (2-91)
and  H* =diag(t,% t? ..., 1,9 (2-92)
where ;= medli<an (|rg - m|[)/0.6745 (2-93)

After waght factors for each set of data are determined, mean m and variance/

covariance matrix H are updated by the following functions:

sul @, m)
m m < (2-94)
;i;u.l(d,.)

o H %%uZ(df)(ri my(r, m)T (2- 95)
After the means m and covariancesH are updated, the new weight factors ul and u2 are
calculated based on the current vaues of mand H. Then the means and variances are
cdculated by Eq. 2-94 and 2-95 udng the new weight factors. Thisiterative process
continues until the maximum difference of dements of H between two successive
iterations are smdler than a pre-specified threshold value (authors use 10° as the
threshold vaue).
Step 3 Cdculate the maximum likelihood estimator of vec(Z) by

vec(2) = (G'G) G vec(H) (2-96)
where vec(H) = (hyg, iz, <oy Nims Moty Mooy ooy Pomy <oy Nty Pz vy R )T iS determined
from Step 2. Thematrix G is determined by the coefficient matrix of linear condraints,

ie,
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andy oAy A A, . ay A,
G A, 1A, .. A, “24'*4¢ . kA, (2-97)

widL Gy - 2 A, ‘mgA; e Ay

where g; isthe dements of coefficient matrix A and A, isthejthcolumnof metrix A, i.e.,
A =(A4 A, ..., Ay. Thenthe robust covariance X can be obtained by reshaping
vec(Z) asfollowing:
% = vec(vec(Z)) (2-98)
where VEC(E) = (6112, 6122 «ov) O1m2s 0212 0% weey Oams oer OmiZs O +oer Om-)-
Above is the procedureto estimate the variance and covariance matrix of measurement
errors using robust indirect method. This method assigns different weight factors to the sampled
data according to itsdistance of the sample data to the current estimate values of meansm*. It
diminatesthe effect of sample data containing gross errors by aiterative procedure described in
Step 2 and determines the covariance matrix of condraint resduas based onthe normal (good)
sampledata. Then, the variance and covariance matrix of measurement errorsis determined by
the indirect method proposed by Kdler, et d., (1992). Thisrobust method is able to diminate
the influence of unsteady state behavior of the process and is insengtive to the sample data
containing gross errors. However, this method is ill limited to linear process condraints. This
method hasnot been ble to apply to on-line optimization applications that have a highly nonlinear

and complicated process and alarge number of unmeasured variables.
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In summary, there are three methods to estimate the variance and covariance matrix of
measurement errors for the dgorithms required known variance/covariance information. The
direct method can give unbiased estimation if the repeated sample data is taken from a steady
state process and no gross errors are present in the sample data.  This method directly
determinedthe variance/covariancematrix of measurement errors usng sample data for measured
variables, and it is gpplicable for any process and easy to compute. However, intherea process
operation, the process conditions are continuoudy undergoing changes. Also, some of sample
data may contains gross errors. The indirect method proposed by Kdler, et d. (1992), is to
overcome the influence of unsteedy state behavior of the process. However, this method is till
sengtive to the presence of gross errors in the sample data, and its gpplications are limited to
linear condraintswithal variablesmeasured. The robust indirect method proposed by Chen, et
d. (1997) improvesthe robustness of indirect method by assigning different weight factorsto the
sample data set according to the distance of the sample data to the current estimated means to
calculate the mean and covariance matrix of condtraint resduas. Thisrobust indirect method is
not sengitive to the presence of gross errors in sample data and isable to diminate the influence
of ungteady state behavior of the process. However, it ill limited to linear condraints with all
variables measured as the indirect method.

In addition to the above theoretica gpproach to determine the variance/covariance
matrix, the time series screening methods are used to detect steady state and to filter out outlier
insample data. Although these methods can not detect the persistent grosserrors, itisapractica

and effective way to detect steady date and to eliminate the ingtantaneous outlier. For
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complicated and highly nonlinear process data, it is proposed to gpply the time series screening
methods to pre-process sample data, and then the variance/covariance matrix of measurement
errors can be determined by direct method using the pre-processed sample data.

C. Dynamic On-Line Optimization

For the dynamic on-line optimization, the methodology is smilar to the Steady sate on-
lineoptimization. The difference between these two approachesisthe processmodel. The steady
state process modds are represented by a set of agebraic equations. The equations do not vary
withtime. The agebraic equations in steady state models are established based on conservation
laws and other engineering knowledge. Dynamic process modds are represented by a set of
ordinary differentia equations that describe dependency of process variables on time. The
differentid equationsin dynamic modeds are based on conservation laws, i.e., the accumulation
of mass, momentum, and energy, which is the time varying term, is equa to the input plus
generation minus the output of the mass, momentum, and energy (Albuquerque and Biegler,
1995; and Robertson and Lee, 1996).

The optimization problem withadynamic process mode is expressed as (Albuquerque

and Biegler, 1995) :

Maximize: P(x,y) (2-99)
dx
Subject to: dat’ xr t) 0
X(t) =X,

wheref represent a set of differentia and dgebraic equations for a dynamic process and x(t;) =

X ; isthe initid conditions. To solve this optimization problem, the differentid equationsin the
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dynamic mode are discretized and converted into aset of dgebraic equationswithan appropriate
time step. Then this optimizationproblemwithdiscretized dgebraic equations can be solved by
the optimization language, such as GAMS and AMPL. Albuquerque and Biegler (1995)
proposed to discretize the differentid equations usng standard Implicit Runge-Kutta method
(IRK).

Ligbmen, et d., (1992) described a new method for general nonlinear dynamic data
reconciliation that used nonlinear programming techniques to minimize aweighted least-squares
objective function in amoving time window. The dynamic process models are usudly ordinary
differentia equations as shown in the congraints of Eq. 2-99 and they are discretized into
agebraic equations by collocationtechniques. A largesparsity success vequadratic programming
(LSSQP) which was wdl-suited for solving large sparse NLPs was developed to perform
optimization over awindow width each time. The optimization is repested until current time is
reached. They showed that the method was insengitive to the level of measurement noise when
applied to processes operating in strongly nonlinear regions where the Kaman filter approach is
not applicable. Also, aprocedure was developed to treat the systematic errorsinthedata. They
also indicated that the main disadvantage of the gpproach was the computationa burden for
solving the required accurate dynamic process model.

The Dynamic Matrix Control Corporation used rigorous equation-based models and
dynamic control technology inther closed-loop real time optimizationsystems (Culter and Ayaa,
1993). Theoptimization system utilized globa spline collocation to solve process differentia and

agebraic equations (DAE) smultaneoudy using a tailored successve quadratic programming
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methods. Both on-line and plant laboratory measurements are used to update the model
parameters. This system was gpplied in GE Plasticss two Bisphenol-A plants (Lowery, et d.,
1993). This system resulted in a two percent increase in production and improved product
quality with higher product yield.
D. Summary of the Status of On-Line Optimization

On-line optimizationinvolvessevera steps. They arecombined grosserror detectionand
data reconciliation to eliminate or rectify gross errors in plant data, sSmultaneous data
reconciliationand parameter estimationto updated plant mode to ensure that model matchesthe
plant operations, and economic optimization to generate a set of optima setpoints for the
distributed control system.

Gross errors can be detected by time series screening methods or statistical methods.
Time series screening methods are smple and have been practiced in industria applications.
However, they can not detect persastent gross errors such as instrument bias or mafunctioning
and processleaks. Statistica methods are more complicated and require adetailed plant model
to relate the individual measurements. Persistent gross errors can be rectified using other good
measurements through satistica methods and the process modd. It has been proved that the
datistical approach is an effective way to detect the gross errors in plant data.

Statigtica methods have been widdly studied. However, most studies are based on the
assumption that measurement errors are normally distributed, and they were gpplied to asmple
amdl hypothetical process. Only the least squares or measurement test method has been

reported to have been gpplied to red chemica and refinery processes. The norma distribution
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used by this method results in biased estimation when gross errors are present. Therefore,
developing new effective statistical methods for gross error detection is very important. The
contaminated Gaussiandistributionand robust functions have been proposed to detect the gross
errors. The estimation from these methods are insengtive to the presence of gross errors.
Therefore, these methods result in unbiased estimation even thought gross errors are present in
measurements.

Chemicd processes are complicated, and large portion of process vaiadles are
unmeasured, only errors-in-variables modds are suitable for describing the chemica processes.
Therefore, the methodsfor conducting gross error detectionand parameter estimation, whichare
gpplicable to on-line optimization, requires s multaneous data reconciliation.

The least squares, likelihood function, and Bayesian methods have been proposed for
traditional parameter estimation, and they can be modified and used for parameter estimation in
orHine optimization. The methodology of parameter estimation for large scae on-line
optimizationgpplicationsis<till under developed. It is possible to combine grosserror detection
with parameter estimation if the dgorithm used to reconcile process variables and estimate
parametersis not sengtive to the presence of gross errors.

The objective of economic optimization in on-line optimization is to generate a set of
optima set points that maximize the plant profit, whichcan indude minimizing pollutant emisson
and energy consumption, and maximizing product qudity. This can be achieved by solving the

economic optimization problem which is to optimize the economic mode subject to process
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modd. Depending on the need, the economic mode can be very daborate or a smple vaue-
added equation.

A precise plant modd is necessary to Smulate the process for on-line optimization. It
serves ascondraintsfor datavaidationand parameter estimationto relate individua measurement
together for error rectification and for economic optimization to determine the best operation
conditions of the plant. Chemical processes can be smulated by an open form equation based
model or aclosed form sequentiad modular model. The open form model has the advantage of
computation speed and solutionrobustness. The closeformmode can be easily developed using
flowsheting programs. However, solving a optimization problem with a close form mode as
congraintsrequiresiterative methodsto searchfor optima solution. 1t istime consuming and may
be difficult to converge. The development of smulation software will provide a convenient
graphicd user interface environment smilar to sequential modular smulaionfor developing open
formequationbased models. Open form modelsare required for smulating processesin on-line
optimization. Also, to ensure the results of the research are meaningful to indudtria plants, an
actual processis required rather than a mathematica smulation of a hypothetica process, eg.
the William-Otto plant (Krishnan, 1992).

Severa optimization dgorithms, such as SLP, SQP, GRG, have been developed for
solving the nonlinear optimizationproblems withopenformmodels. Each is effective for solving
certain type of problems. The SQP and GRG agorithms have been widdy used in indudtrid

practice and are accepted as standard agorithms for solving nonlinear optimization problems.
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To ease enginears's effort in solving optimization problems, optimization modeling
languages, such as GAMS and AMPL, were developed to aleviate many of the difficulties
associated with the development and solution of large, complex mathematica programming
modds and to dlow direct formulation and solution on a computer. They have problem
formulation in a language smilar to the mathematical statement of the optimization problems.
Also, there are a number of solversincluded in the languages for users to choose, and changing
the solver (optimization agorithm) will not require modifications to the program.

Based on the review above, the work will be conducted on this research project will be
described asfallows. Theobjectiveof this project isto investigate the best way to implement on-
lineoptimization. Thiswork involvesthe devel opment and eva uation of processs mulation model
for typica chemicd plants and the investigation and evauation of the methodology for on-line
optimization. Also, an interactive on-line optimization program will be developed to dleviate the
effort of engineers to gpply on-line optimization which is based on the results from this research
project.

Pant_ modd: An actual plant, the sulfuric acid contact process from IMC Agrico
Chemica Company’ splant in Convent, Louisiana, is used inthis ornHine optimizationresearch for
comparing the efficiency and accuracy of the dgorithms and investigating the best way to
implement on-line optimization.

A open form steady state process model will be established based on the previous
research by Lowery (1966), Crowe (1971), Doering (1976), Richard (1987), and Zhang

(1993), for the sulfuric acid plant. This process incorporates nearly dl types of process units
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found in chemica plants suchas packed bed cataytic chemical reactors, absorption towers and
heet exchanger networks, among other.

Through contactswiththe Agrico Chemica Company'sengineers, actud plant designed
data and plant operating data were obtained on the IMC Agrico Chemica Company's Undle
SamE-train plant in Convent, Louisana. The datawill be used to study the best way to conduct
orHine optimization. This plant, designed by Enviro-Chem System Divison of Monsanto, began
operation inMarch, 1992. It is automated with the Bailey INFI 90 Digtributed Control System
(DCYS). It converts at least 99.7% raw sulfur feed into acid product and extracts the energy
produced in the exothermic reactions in an efficient manner to produce steam as a by-product.
It represents the state-of-art contact sulfuric acid technology.

The flow rate and temperature measurements play
animportantroleincontrollingand monitoring the
process. Also,arigorous kinetic model isimportant to
describe the reaction rates and conversion of sulfur
dioxide to sulfur trioxide. It is necessary to include
material and energy balances as well as kinetic model
of SO, reaction in the sulfuric acid plant model. This
results in a nonlinear steady-state plant model.

Thework in plant modd formulation chapter will include establishing process smulation
model for the Monsanto’s designed sulfuric acid contact process, evauating how precise the

process modd represents the processes, examining the observability and redundancy of the plant
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model, and comparing the performance of different types of measurements and congraints on
data vaidation and parameter estimation. Based on the evauation results, the generd rulesto
formulate the process smulation model will be proposed for better formulating process models.

Combined Gross Error Detection and Data Reconciliation: Based on the complex

characteritics of chemica process, i.e.,, the congtraintsare highly nonlinear and large portion of
process variables are unmeasured, only the satistical methods based onthe digtributionfunction
of measurement errors are gpplicable for gross error detection of orHline optimization. These
methods indude meassurement test method, contaminated Gaussian digtribution method, and
robust function method. The performance of these algorithms will be evauated theoreticaly
based on the influence function and relative efficiency and numericaly based on gross error
detection rate, number of type | errors, and error reductions after data reconciligtion. Also, a
modified compensation strategy will be proposed to avoid the migrectification by data
reconciliation agorithms (distributions) due to the presence of larger gross errors.

As discussed previoudy, the data reconciliation results from the combined gross error
detection and data reconciligtion and the smultaneous data reconciliation and parameter
edimation are interactive. Data reconciliation associated with gross error detection and with
parameter estimationusesthesame plant modd. Datareconciliationin grosserror detection step
uses previous values of process parametersin the process mode when reconciling the process
data. Thisresultsinthereconciled dataisconsstent with theold (previous) vaues of parameters.
If the whole set of reconciled vauesfor measured variablesis used for estimating the parameters,

the parameters will have the same vaues as the previous and they are not able to be updated.
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Therefore, a dtrategy to generate a set of pre-processed data from the combined gross error
detection and data reconciliation (data vaideation) for the amultaneous data reconciliation and
parameter estimation will be proposed to avoid the interaction between data vdidation and
parameter estimation.

Simultaneous Data Reconciliation and Parameter Edtimation: Normal distribution (least

sguares method), contaminated Gauss andidtributionand robust functioncan be used to conduct
combined gross error detection, data reconciliation, and parameter estimation. Two Strategies
will be used to conduct parameter estimation, and their performance will be compared. Oneis
cdledtwo step estimation. Step oneis to detect and rectify gross errorsin measurementsusing
the contaminated Gaussian didribution, and this step generates a set of pre-processed
measurements based onthe proposed Strategy. Step two estimatesthe parameters using the least
squares method with the measurements generated from step one. The other one is cdled one
step estimationthat conducts grosserror detection, datareconciliation, and parameter estimetion
smultaneoudy using contaminated Gaussian digtribution agorithm or robust functions.

Economic Optimizatior: After the dgorithms for conducting gross error detection and

parameter estimationare evaluated. The fina plant economic optimization is performed subject
to the current plant model and externd economic conditions. The mathematica modeling
software, GAMS, will be used to solve the optimization problemsin on-line optimization. This
will determine the best operating conditions for the current plant operation.

| nteractive On-Line OptimizationSystem: Aninteractive on-line optimization programwill

be devel oped to dleviate engineer’ seffort ingoplying the on-line optimization. [t will incorporate
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the best structure of on-line optimizationdevel oped in this research and provide agraphica users
interface (GUI) environment for engineer toenter the process informationand to solve the on-line
optimization problems for values of the optima sat points for DCS. The capability of this
program will be demonstrated with the sulfuric acid process from IMC Agrico Company.

I nthe subsequent chapters, the methodol ogy for onHline optimizationused inthe research
will be discussed and a detail process mode for the sulfuric acid contact plant from IMC Agrico
Company will be established and vdidated. Then, thislarge scale process modd will be used to
conduct the numerica evauations for the proposed methodology of on-line optimizationsystem,

and the results will be provided.



CHAPTER Il THE METHODOLOGY OF ON-LINE OPTIMIZATION

A. Introduction

The orHine optimizationfor chemica processesincludesthreeimportant steps: combined
gross error detection and data reconciliation, Smultaneous data reconciliation and parameter
esdimation, and plant economic optimization. In combined gross error detection and data
reconciliation, a set of accurate plant measurements are generated from plant’s distributed
control system(DCYS). Thisset of dataisused for estimating the parametersin plant modds, and
parameter estimationis necessary to have the plant model match the current performance of the
plant. Then, the plant economic optimization is conducted to optimize the economic mode using
this current plant modd as condraints.

Each optimization problem in on-line optimization has a Imilar mathematicd statement
asfollowing:

Optimize: Objective function
Subjectto:  Congraintsfrom plant model

where the objective functionis an joint digribution function for data validation or parameter
estimationand a profit function(economic modd) for plant economic optimization. The condraint
equations describe the relationship among variablesand parametersinthe process, and they are
materia and energy baances, chemicd reaction rates, thermodynamic equilibriumrelations, and
others.

Chemicd plantsoperate at steady state withare atively short transent periodsand steady

state plant models can be used to describe the relationship among process variables and

128
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parameters of the plants. These plant models are complicated and highly nonlinear, and dl
measurements are subject to either random or gross errors.  Therefore, the error-in-variables
formulation is required for the plant modd of on-line optimization.
B. The Implementation Procedures for On-Line Optimization

As discussed in previous chapter, gross error detection and parameter etimation are
coupledwithdata reconciliationfor complicated and highly nonlinear processes. Therefore, there
are two ways to conduct on-line optimization as shown in Figure 3.1. In one procedure, three
nonlinear optimization problems are solved sequentidly as shown in Figure 3.1.a.  These three
optimization problems are combined gross error detection and data reconciliation, Smultaneous
data reconciliation and parameter esimation, and plant economic optimization represented by

threeboxes. 1n combined gross error detection and data reconciliation, gross errorsin the plant

Ceombinad gross Svaultemesus dute -
erree detection & 3 paconcilietion & > 'r . m'

. ] ‘e Eation
data reconctiation pargmster st stron w»

& Three Jptmmedtton Froblems

Sonulteneous a-oss errer z
detection, data reconcliation mnd————————> COHOMIC
POram 2ty estmgliTon DN T0

b Twe Jptvmeatton Problons

Figure 3.1 The Procedure of On-Line Optimization Implementation
|
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data are diminated or rectified, and a set of reconstructed measurements is generated based on
the result of datareconciliationand grosserror detection. 1n smultaneousdatareconciliation and
parameter esimation, parameters in a plant model are estimated using the reconstructed
measurements from combined gross error and data reconciliation. These updated values of
parameters are used in the plant mode for economic optimization. Plant economic optimization
generates a set of optima set points for plant DCS based on the updated plant model and
economic conditions.

As mentioned previoudy, there are aninteraction between data reconciliationassociated
with gross error detection and with parameter estimation. Data reconciliation associated with
grosserror detectionrequiresupdated parametersinthe plant mode. However, beforethe gross
errors detection, only the parameter vaues from the previous optimization cycle are available.
Consequentidly, the previous parametersinlast cycle of ontline optimizationare used inthe plant
model for conducting gross error detectionand datareconciliation. Datareconciligioninthisstep
will force the al reconciled process variables to satisfy the plant mode withold plant parameter
data. If reconciled data for al measurements is used in Smultaneous data reconciliation and
parameter estimation, then the parameterswill not be updated because the reconciled data was
obtained usng the old plant parameters. Therefore, usng al of thereconciled measurementsfrom
gross error detection and data reconciliation in parameter estimation step will give the same
esimation as the old vauesfor parameters.

Therefore, astrategy is proposed to avoid this dilemma. It is to detect and rectify the

measurements containing gross errors using the plant model with the parameter values from
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previous on-line optimization cycle in gross error detectionand datareconciligtion. Then anew
set of measurements is constructed using the reconciled data to replace the measurements
containing gross errors dong with the origina measurements that contain only random errors.
This new set of measurements is supposed only containing random errors, and it can be used to
conduct smultaneous data reconciliation and parameter estimation usng least squares method
with error-in-varigbles formulation.

The other procedure is that orntline optimization involves solving two nonlinear
optimization problems as shown in Figure 3.1.b. In this procedure, gross error detection, data
reconciliation, and parameter estimation are conducted simultaneoudly to rectify gross errors,
reconcile processvariables, and estimate plant parameters usng one dgorithm. Then, economic
optimization is conducted using the updated plant and economic models.

Smultaneous gross error detection, data reconciliation, and parameter estimation
procedure may be a better way to conduct on-line optimization, if the dgorithm is not sengtive
to the presence of gross errors, and if that both parameters and measurementswithgrosserrors
are converted to unmeasured variables in the one data reconciliation optimization problem does
not affect the observability and redundancy of the plant modd. This procedure diminates the
interaction of data reconciliation associated with gross error detection and with parameter
estimation. No one has reported an application using this smultaneous procedure yet. As
discussed in literature review, least squares method is not able to accurately reconcile process
data that contains gross errors, and it can not be used for this smultaneous procedure. The

contaminated Gaussian digtribution and robust functions are insengtive to the presence of gross
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errors when reconciling process data. The methods based on these digtribution functions can
be used to conduct the Smultaneous gross error detection, data reconciliaion, and parameter
estimation, and thiswill be investigated and evauated as part of this research work.

In summary, two possible procedures for on-line optimization have been proposed, and
they will beinvestigated using alarge scale red chemicd plants. One procedure uses combined
grosserror detectionand data reconciliationagorithms to pre-processtheplant data, i.e., identify
measurements withgross errors and replace them with reconciled data for these measurements.
Then this set of pre-processed plant data with only random errors is used to conduct
smultaneous data reconciliation and parameter estimation. This strategy will avoid the effect of
udng old plant parameters in the plant model for combined gross error detection and data
reconciliaion on updating parameters in smultaneous data reconciligtion and parameter
edimation. The other isasmultaneous gross error detection, data reconciliation, and parameter
esimation procedure usng the agorithms that have an ability to rectify data containing both
random and gross errors.

Thefallowing sectionwill discuss and eva uate the methodol ogy for grosserror detection,
data reconciliation, parameter estimation, and plant economic optimization. Also, the satistical
background information which is cited in main text is given in Appendix B.

C. Methodology of On-Line Optimization

In generd, an optimization problem isto optimize an objective function subject to a set

of linear/nonlinear condraints. In on-line optimization applications, the objective functionisan

joint probability function for data reconciliation and parameter estimation or a profit function
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(economic modd) for plant economic optimization. The condraints are a set of linear and
nonlinear equations that describe the relationship among the process variables and parameters,
which is cdled process model or smulaion. The generd mathematicd datement for the

optimization problems of on-line optimization is

Optimize: P(y, X) (3-)
Subjectto:  f(x,z 0)=0
0,z 0) <0

XtexexV, 2 <z

Eq. 3-1isto optimize the objective function P subject to a process model that includes
the equdity condraintsf, inequdity congraints g, and bounds on the variables. In Eq. 3-1, the
vector y represents a set of measurements sampled fromdistributed control systemfor measured
variables and vector x denotesthe true vaues of the same measured variablesasy. The vector
Z represents a set of unmeasured process variables that include al process variables except the
measured ones in plant modd, and 0 is the vector of process parameters. The equality
congraintsf describe the rdationship among the process variables and parameters, suchas mass
and energy balances, chemica reaction rate equations, heat transfer equation, and others. The
inequdity condraints g represents the demand of products, the availability of raw materids, the
limitation on the capacity of equipment, the alowakble operating conditions, and the restrictions
on waste and pollutant emission. In addition, x" < x < xYand - < z < 2 give upper and lower
bounds on process variables.

The relation between measurements y and the true data x for measured variables is

defined by a measurement modd givenin Eq. 2-1, i.e,
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y=x+e (2-1)
where the vectors e represents the measurement errors that could be random or gross errors.
The fdlowing will discuss and theoreticdly evaluate the applicable agorithms for
combined gross error detection and data reconciliation, smultaneous data reconciliation and
parameter estimation , and plant economic optimization.
C-1. Algorithms for Combined Gross Error Detection and Data Reconciliation
The process data from distributed control system is subject to two types of errors,
random error and gross error, and the gross error mugt be detected and rectified before the data
is used to edimate plant parameters. As discussed in Chapter I1, only combined gross error
detection and data reconciliationagorithms can be used to detect and rectify the gross errorsin
measurements for on-line optimization. These dgorithms are measurement test method using a
normal digtribution, Tjoa Biegler’ smethod usngacontaminated Gauss andigribution, and robust
dtatistical method usng robust functions. The methodology of these dgorithmswill be given, and
ther theoretica performance will be evaluated in the following section.

Measurement Test Method: This method assumes al measurements are subject to only

randomerrorswithknown normal distributions under null hypothesis and the measurement errors

are independent of each other. Then the didtribution function for measurement error i under null

! ;{2}2 (3-2)
t Va, |2l G

hypothesisis
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whereg isthe measurement error as described in Eq. 2-1 and o; isthe standard deviation of the
measurement error.  The joint distribution for al measurement errors is the product of the

digtributions for individual measurement error given in Eq. 3-2, i.e,

L 1 (3-3)
P R IS 19/
HP' '21;"'2|2 |”2 s

where X isthe diagond matrix of the known variances o;? of measurement errorse.
Themeasurement errorsare estimated by maximizing the joint probability density function
P or minimizing the sum squares of standardized measurement errors, e” % e, subject to a set of
congtraints which represent the reaionship among the varidbles. This is the well known least
sguares method and it is expressed as.
Mir)1(irr;ize: e'zle=(y-x)"zy - x) (3-4)

Subjectto:  f(x,z 0)=0
xt sXsXU,ZL <z<2.

where x, y, z, and 6 have the same meaning as described in Eq. 3-1 previoudy. In EQ. 3-4, X
and z are variables to be determined by the optimization. 0 is a congtant vector of parameters
ans 'y is a congant vector of measurements. Solving Eq. 3-4 will estimate the vaues for the
measured variables x and unmeasured variables z. Then, the measurement errors can be
determinedby e =y - x.

After datareconciliaion, each measurement error isexamined to seeif it contains agross

eror by atest gatistic. The test satistic of measurement test method is:
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e | =|&]/o; ~N(O, 1) (3-5)

Eg. 3-5meansthat the standardized measurement error, ¢; = e, /o ;, follows a standard norma
digtribution N(O, 1) if the measurement does not contain gross error.

If the vadue of test Satidtic, |g|/o; , exceeds the critical value C, then this measurement
containsagrosserror. Otherwise, thereisno grosserror inthismeasurement.  Thecritica value
C is sdected from the table of stlandard normd ditribution function a the Sgnificant level p for
individud measurement. If theoveral significant level isspecified as0.05 (e.g., 95% confidentia
interva), « = 0.05, and 43 measurements are used, then the sgnificant level for individua
measurement is:

B=1- (1-¢)¥™ = 1-(1-0.05)"43 = 0.0012.
At the p/2=0.006 point, the critica vaue C is determined from the standard normd distribution
with accumulated probability at 0.994, and the valueis3.2,i.e, C=3.2

The optimization problem of measurement test method in Eq. 3-4 is programmed in
GAMS language, and the program is given in Table F-13 of Appendix F and in GAMS source
code disk with file name as. meastest.gms.

The Contaminated Gaussian Didribution Biegler, et d., (Tjoa and Biegler, 1991;

Albuquerque and Biegler, 1995) proposed a contaminated Gaussian digtribution function to
describe the measurement errors. A measurement is subject to either random or gross error.
The two possble outcomes are: G = { Gross error occurred} with prior probability n and R =
{Random error occurred} with prior probability 1-n. Therefore, the digribution of a

measurement error is.
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Py | ) = (@-n)P(y; | %, R) +n P(y; | %, G) (3-6)

where P(y; | X, R) is the probability digribution of a random error and P(y; | %, G) isthe
probability distribution of agross error.

It is assumed that the random errors are normdly distributed with a zero mean and a

known variance o;2. The distribution function for arandom error is:

;)
20, (3-7)

1
AL

Also, it is assumed that the gross errors are subject to acontaminated norma distributionwhich

has a zero mean and larger variance (bo)?, (b >> 1). Therefore, the distribution function for a

gross error is.
(UL
2
Py, &y —L o 29 (3-9)

%

If the measurement errors areindependent of each other, thenthe likelihood function for

al measurements is the product of the distributions for individua measurement, i.e,

;) v, 5
Pyky TIPG) II——Ja e % Do ™9 (39)
i i Jﬁ'gl b
The measurement errogs ar| eﬂimatédﬁ’ meximiz ’fH}:j it prol iIitydmsityfur?gdil%n
Tin [l nye % N 2% iy 3o (3-10)

. .. P S : o
(likelihood function) in Eq. 3-9 inimizing the negaibve logarith Eq.§ 9. Theoptimization
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problem for combined gross error detection and data reconciliation using the contaminated

Gaussan digtribution can be stated as.

Minimize
X, Z

Subject to: f(x,z,0)=0
xt ngXU,ZL <z<?V

This optimization problem is comparable to Eq. 3-4 for the least squares (measurement test)
method. Solving Eg. 3-10 determinesthe vauesof measured and unmeasured variables (x and
2). These vaues maximize the joint likelihood function P(y | X) (or minimize the negetive
logarithm of the joint likelihood function) and satisfy the process condraints. Then, the
measurement errors are determined by e =y - x.

After data reconciliation, each measurement is examined with atest datistic to see if it
containsagross error. The test Satitic for gross error detection is.

If

e B x'1 > \B:fjh["(;m] (3-12)
¥ |

then measurement | contains gross error.  Otherwise, N0 gross error is present in this
measurement. Inthe GAMS program, DataVadi.gms, two parametersin Eq. 3-11 are specified
as. n =0.5and b = 10. Therefore, the test Satistic for contaminated Gaussian distribution of
TjoaBiegler' smethod is: if |¢;| > 2.157, then measurement i contains a gross error.
Asdiscussed in the review of contaminated Gaussian distribution method of Chapter |1,

contaminated Gaussian didtributionmethod is composed of the digtribution functions for random
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and gross errors. The reconciled data from contaminated Gaussian distribution method is not
sengtive to the presence of gross errors, and this method gives an unbiased estimation for the
reconciled data. This can be seenby weight coefficients of measurementsin the linearized joint
digtribution as discussed in contaminated Gaussian distribution method of Chapter 1.

The objective functionin Eq. 3-10 (or Eq. 2-49) canbe approximated asalinear function
using afirst order Taylor expansion, i.e, p = YW, [(Y; - X)-(Y; - X)° = YW, (¢ - €°), where w;
isthe weight coefficient of measurement y; on the joint distributionfunction (objective functionin
Eq. 3-10) evaluated at the last feasible point x° or ¢, and it isthe partia derivativesof the joint
contaminated Gaussian digtribution function with respect to the variable x, as given in Eq. 2-52,
ie,

GoX( L)

(yi xi)t (1 n)e 2 . %

¢

w
1 (T 1L Li"l'

(1 .n)e 2¢? 52 L

1)
Sane 2\ ¥/ 0
]

53

(1 n>e=(' ‘1’) >

(2-52)

v

For samdler error, e.g., €; < 2, the exponentid terminthe Eq. 2-52 is muchlarger thanthe second
term n/b? (or n/b), Theweight function can be smplified asw; = (y-x)/0;2 = ¢ lo;. For larger

error, eg., > 4, the exponentid terminthe equationis much smaler than the second term n/b?
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(or n/b). Theweight function can be Smplified asw; = (yi-x)/(bo;)? = €/(0; b?). Therefore, Eq.

2-52 can be approximated as given in Eq. 2-54:

w, {qoﬁ P (2-54)

¢/(eb> for &> 4

From the weight coefficient function in Eq. 2-54 and the linearized objective function, it
is seen that the measurement with asmaller error has alarge weight coefficient (i.e., W = €;/o; )
in the linearized objective function thanthe measurement with alarger error (i.e., W, = ¢/(0; b?),
where b>>1). This means the measurement with a larger error has a less effect on the
minimization, and the objective function vaue is determined mainly by the measurements with
smdl errors.

The procedure to conduct contaminated Gaussian distribution method is:

1. Solve Eqg. 3-10 to determined the reconciled vaues for measured variables and
unmeasured variables, and thenthe measurement adjustments, a=x - y, aredetermined
by the measurements'y and reconciled data X.

2. Examine the standardized measurement adjusment ¢;, €; = a / g;, usng the criterion
givenEq. 3-11 to determine if ameasurement contains agross error. 1f ameasurement
contains agross error, then its value is replaced withthe reconciled data. A new set of
measurements is constructed usng the reconciled data to replace the measurements
containing gross errors adong with the origind measurements that contain only random

errors. This new set of measurements contains only random errors, and it is used in
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smultaneous data reconciliation and parameter estimation to update plant parameters

for on-line optimization.

The optimization problem of contaminated Gaussian digtribution method in Eq. 3-10is
programmed in GAMS language, and the program is given in Table F-1 of Appendix F andin
GAMS source code disk with file name as. datavali.gms.

Robust Statistical Methods:; The basic idea of robust esimation is to build a robust

digtributionfunctionp whichisasymptatic to the norma digtributionor any pre-assumed rigorous
distribution function that describes the distribution pattern of measurement errors under some
idedl assumptions. The estimator (mean or variance) determined by the robust didtribution is
ingengitive to extreme observations and yet maintains a high efficiency (lower dispersion).

Two robust functions have been proposed inliterature for mean estimation, and they are
gpplicable for datareconciliationand grosserror detection of orHline optimization.  These robust
functions are Lorentzian digtribution proposed by Johnston and Kramer (1995), which was
originaly presented by Huber (1981), and Fair function proposed by Albuquerque and Biegler
(1995).

Lorentzian digtribution function of a measurement error is given as.

2 (3-12)

where ¢; is the standardized measurement error, i.e, ¢, = ¢ /o, = (Y, - X )o;. The robust
function of measurement errors using Lorentzian digribution is the sum of the individua

digtribution, i.e,
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{9 %ef (3-13)

The optimization problem for the combined gross error detectionand datareconciliation

using the Lorentzian didtribution function is expressed as

Maimize  PE) p———
X, Z i1 %ef (3-14)

Subject to: f(x,z,0)=0
Xtex<xV, A <z<?

Fair function for a messurement error isgiven as.

R

where ¢; is the standardized measurement error, i.e, ¢ =€ /o; = (Y, - % )lo;. The robust

function of measurement errorsusng Fair functionfor individua measurement error isthe sum of

theindividud distribution functions, i.e,
PO el 1{= g{ 'E*'ﬂ (3-16)

The optimization problem for the combined gross error detectionand data reconciliation

using Fair function is expressed as (Albuguerque and Biegler, 1995):

Mirimize  pge) 24‘2‘: { Ieil}} (3-17)
X, Z

Subject to: f(x,z,0)=0
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Xtex<x¥,2F <z«
where cisatuning parameter. This parameter reflects the reative efficiency of the estimator at
this disgtribution. It was pointed out that Fair function is convex and has continuous first and
second derivatives (Albuquerque and Biegler, 1995).

After solving the optimization problem in Eq. 3-14 or Eq. 3-17, the reconciled datafor
measured variables is determined, and the measurement adjustments can be determined by a =
y - X. Then, each measurement adjustment is examined to seeif it containsagross error by the
test satistic.

The test datigtic for robust method is established using a statistical hypothesis test
procedure as measurement test method. If the standardized measurement adjustment,
|e;|=|a|/o;, does not exceed the critical value C, then measurement i does not contain a gross
error. Otherwise, the measurement contains agrosserror. The critica vaue C is determined by
the robust functionat the pecified confidentid interval or sgnificant level p. For example, if 95%
of confidentia level is used, thenthe overdl sgnificant leve o is 0.05 and the significant level for
individua measurements  is caculated by Eq. 2-23 fromthe givenoveral sgnificant level o and
the number of measurements m.  Then, the critical vaue C is the error size that has an
accumulated probability vaue as (1-p/2).

The procedure to conduct gross error detection and data reconciliation with robust

method is the same as one for contaminated Gaussan distribution method, and it is:
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1. Solve Eq. 3-14 or EQ. 3-17 to determined the reconciled vaues for measured variables
and unmeasured variables, and thenthe measurement adjustmentsare determined by the
measurements'y and reconciled data X.

2. Examine the standardized measurement adjustment ¢;, ¢, = g / o;, to determine if a
measurement contains agross error. If the standardized measurement adjustment ¢; is
larger than the criticd vdue C, i.e,, |¢;| > C, thenmeasurement i contains a gross error.
Otherwise, thereis no grosserror in measurement i. If a measurement contains a gross
error, then its value is replaced withthe reconciled data. A new set of measurementsis
constructed using the reconciled data to replace the measurements containing gross
errors dong with the origind measurements that contain only random errors. This new
set of measurements contains only random errors, and it is used in Smultaneous data
reconciliaion and parameter edimation to update plant parameters for on-line
optimization.

The optimization problem of robust method usng Lorentzian digtribution in Eq. 3-14 is
programmed in GAMS language, and the program is given in Table F-14 of Appendix F and in
GAMS source code disk with file name as. robust.gms.

Inthe following section, the theoretica performance of four distributionfunctions norma
distribution of measurement test method, contaminated Gaussian didtribution of Tjoa-Biegler's
method, Lorentziandistributionand Fair function of robust method, are evauated based onthe

influence function and rdaive efficiency of the digtributions. Then, the digtributions that have
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better theoretical performance will be tested with the sulfuric acid plant to numericdly evauate
their performance.

Evauationof Didtribution Functions for Data Reconciliation and Gross Error Detection:

Three important concepts in the theoretica evduation of the robustness and precision of an
edimator from a distribution function arethe break-down point, relative efficency, and influence
function(Seber, 1984). Indatigtica estimation, estimator T isthemean or variance of thesample
data, and T isestimated with samples of data. In data reconciliation of on-line optimization, T
is the estimated vaues of reconciled variables from data reconciliationeva uated with plant data
sampled from the distributed control system. Robustness of an estimator is unbiasedness
(insengitivity) to the presence of gross errorsinmeasurements. How sensitive an estimator to the
presence of gross errors can be measured by the influence functionof the distributionfunctionthat
is used to verify the samples of data. Also, the precison (accuracy) of an estimator from a
digtribution is measured by the relative efficiency of the ditribution. It issaid that the estimator
ispreciseif the variation (disperson) of itsdigtributionfunctionissmdl (Larsenand Marx, 1986).
The break-down point can be thought of as giving the limiting fraction of gross errorsthat
can bein asample of data and avaid estimation of the estimator is dill obtained using this data
(Huber, 1981). For repeated samples, the break-down point isthefraction of grosserrorsinthe
datathat can be tolerated and the estimator givesameaningful vaue. Itisthemaximumalowable
number of extreme observation for a given sample size n, and it represents the globd rdiability.
For congtrained estimationusing sngle set of process dataindatareconciliationof on-line

optimization, a vdidated estimation for the reconciled data also depends on the degree of
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redundancy inthe measurements. Exceeding either the degree of redundancy or the bregk-down
point will cause the estimator to give an incorrect vadue. The degree of redundancy is the
excessve number of measurementsinadditionto those that are required to determine the status
of aprocess.

Therdative efficiency of esimator T, with respect to estimator T, isdefined astheratio
of the variances of digtribution function P, for estimator T, and distribution P, for estimator T,.
Also, edimator T, ismore dfident than T, if the variance of distributionP; for estimator T, isless
thanthe variance of digtribution P, for estimator T , (Larsenand Marx, 1986). Thisisintuitivey
viewed by the shape of the digtribution functions. A digtributionthat iswider in shgpe will hasa
larger variance or standard deviation than one that is narrower in shape. This means thet the
former has alower efficiency than the latter.

For the two digtribution functions shown in Figure 3.2, the u representsthe true vaue of

avariable. T, isthe estimator of the variable from didribution P;, and T, is the estimator of the
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Figure 3.2 Comparison of Two Digtributions with Different Dispersons
after Larsen and Marx, 1986

— ———————
varidble from digtribution P,. For agivendigtribution function, the estimator can have avauein
the range fromthe true value minus two timesstandard deviation of the distributionfunctionto the
true vaue plus two times the standard deviation with a 95% confidentid interva. If distribution
functionP; isused to describe the samples of data, the possible estimated range of the estimator
isfrom p - 20, to p + 20, asshowninFgure3.2.a. If diribution function P, isused to describe
the samples of data, the possible estimated range of the estimator isfrom p - 20, top + 20, as
shown in Figure 3.2.b. Fromthe comparisonof Figure 3.2.afor digtributionP; and Figure3.2.b
for digtributionP,, it is seen that the digtribution function P, has a smdler standard deviationthan
the onefor P,. Therefore, the estimated vaue from digtribution function P, is closer to the true
than one from didtribution function B. It is concluded that the estimated accuracy of the
reconciled datais determined by the raive efficiency of the digtribution functionthat isused by

the dgorithm to describe the samplesof data. A digtribution having asmaller variaion has higher
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relative efficiency than one having alarger variation, and therefore, the corresponding estimator
has a higher estimation accuracy.

The influence function quantifies the influence of a measurement on the estimated vaue
fromdatareconciliaion. The influence function (IF) of estimator T a F is givenby (Hampd, et.

al., 1986);

TRy LT A0 T

= (3-18)

where T isan estimator that is evaluated with sampled datay. In Satistical estimation, T isthe
mean or variance of the sample data, and T is edtimated with samples of data. In data
reconciliationof on-line optimization, T is the estimated vaues of reconciled variablesfromdata
reconciliation evaluated with data sampled from the digtributed control system. F is the
digtribution function for the mgority of measurement data and G represents the distribution
functionof an arbitrary observationy, whichcanbe anormal or an extreme measurement. InEq.

3-18, At isthe portion of data having the character of distribution G counted in al observations.

Based on the définition of IF givenin Eg. 3-18, the influence function for the mean
estimator withnrepeated observations is derived asfallowing. For theestimation of meanx usng
repeated n observationsy; (i = 1, 2, .. , n), the estimated mean using anormd digtribution (least

squares method) is equd to the sample mean, i.e.,

1 "
x > Y, (3-19)

r
1

",
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where X, represents the sample mean x that is estimated by n observations. If one additiona

observation (observation n+1) is included, thenthe meanestimated by n+1 observations, X, IS

rl
n 1
x — —_—— — 3-20
rl nlﬁy‘nl"nly"l ( )

Substituting Eq. 3-19 and 3-20 into Eq. 3-18, with T[(1-At)F + AtG] = x,,, ad T[F] =X, and
At = 1, givestheinfluence function of the mean estimator as:

F x ., x —x ;y x, xl’»
nl nn1un1nln n 1

(3-21)

which represents the contribution from a good measurement or the bias effect from a bad
observation on the estimation. The influence function is proportiond to the difference between
the observation y,,.; and the mean estimated by n observations, x ,, which is the measurement
error.

Above is a Imple example to show how to determine the influence function of an
edimator from the definition of influence function. The influencefunctionin Eq. 3-18 represents
the effect of an arbitrary observation onthe estimator T. For M-estimate, the influence function
is defined as afunction that is proportional to the derivative of adistributionfunctionwithrespect
to the measured variable, (0p/ox) (Huber, 1981 and Hampel, et a., 1986), i.e.,

IF = aplox (3-22)

The measurement test method usesanormad digtributionfor measurement error as given

in Eq. 3-2. Taking alogarithm of the norma didribution gives:
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2
o bp, %{” : "} in(y/ 70} (3-23

9
Therefore, the influence function of the norma didtribution (measurement test method) for
measurement i is proportiond to op;/oX, i.e.,

on Yy x
Lygr = =, T 3 (3-24)

[

where y, denotes an arbitrary observation (measurement) and x ; is the true vaue of the
measurement.

IFyr in EQ. 3-24 issmilar to one of sample mean estimation in Eqg. 3-21. Asshownin
Eq. 3-24, the influence function of measurement test method for measurement i is proportiona
to the measurement error and is not bounded when the measurement error goes toinfinity. This
means that measurement test method is unable to bound the effect of grosserrors onestimators.
The presence of gross errors will result in biased estimation of reconciled variables from
measurement test method, and the degree of biasis proportiona to the magnitude of the gross
error.

The contaminated Gaussian distribution is a superpodtion of a norma distribution with
avaiance (02) representing a random error and a norma distribution with a larger variance

(bo)?, (b >>1) represanting agross error. Thisis given by the following equation:
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where bistheratio of standard deviation of gross errorsto one of random errors. n isthe prior
probability of a gross error and 1-1 is the prior probability of a random error. EQ. 3-25 is
illugrated in Figure 3.3. From Figure 3.3, it can been seen that the shape of contaminated
Gaussandidributioniscloseto standard normd distribution N(0O,1) inthe middle and haslonger
and flatter tail than the standard normd digtribution N(O, 1) at the two sSides. Intuitively, this

distributionshould be more

robust than a SiNg| e NOr Tl

distributionin bounding the
effect of gross errors on Gt scnst ed G sii N D

. e trboisng
the estimator.  This & N 1
didribution function isable

=

to reduce the degree of error, e
bias caused by large gross Figure 3.3 The Comparison of Contaminated Gaussian

Digribution and Norma Digtribution

errors on the estimation of
reconciled variables, which will be seen from its influence function.

Taking alogarithm of the contaminated Gaussan digribution in Eqg. 3-25 gives

o; "P’ “’r’?i

2 %}
Py 1°&P(Vi|x;)] logi(1 M)e d %e 2b’%¢; lgq\/ﬁﬁq

(3-26)
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The influencefunctionof the contami nated Gauss an distributionfor measurement i is proportional

to the derivative of p; with respect to x;, i.e.,

“’r’?i 1 3 ‘
Yumt e (1“’) IR GRS Tﬁ(‘#) n ¢
w @ | B3] S =5
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Eq. 3-27 shows the influence function of the contaminated Gaussian distribution is a function of
the standardized measurement error, €; = (Y, - X)/o;. For smdler error eg., ¢ < 2, the
exponentia term in the Eq. 3-27 is much larger than the second term n/b® (or n/b) for n = 0.5
and b =10. Inthiscase, theinfluence function can be smplified to the onefor norma ditribution

in Eq 3-25:

Vi%; &
IF T 3 (3-25)

The influence functionof the contaminated Gaussiandidtribution for smdl errors (g; < 2)
is the same as one of the norma distribution for messurement test method. This contaminated
digtribution acts like a normd digtribution for smal measurement errors, i.e., the probability
function of the random error dominates the contaminated Gaussian distribution. For a larger
error, eg., > 4, the exponentia term in the equationis muchsmaller thanthe second termn/b?

(or n/b) for n =0.5and b =10. Theinfluence function can be amplified as.

Vi X, 16§
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For alarger measurement error, the distributionfunction of the gross error dominatesthe
contaminated Gaussan didribution. As shown in Eq. 3-28, the influence function of the
contaminated digtribution function is smilar to one of the normal distribution with reduced
magnitude of influence function value. The magnitude of influence function is reduced b? times
compared with the influence function of the normal distribution for measurement test method in
Eqg. 3-24 when a measurement contains a gross error.  For example, if a measurement has a
gross error size at 10o, the norma digtribution function of measurement test method has an
influence function velue as 10; and the contaminated Gaussian distribution function has an
influence function value as 0.025 for b=20.

The influence function of contaminated Gaussian ditribution can be smplified as:

IR {E‘/o‘ Jor & <2 (3-29)
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Eqg. 3-29 shows that the influence function of the contaminated Gaussian digtribution is il
proportiona to the error magnitude, dthough it hasamuchsmadler vaue for ameasurement with
a larger (gross) error than a measurement with a samdler (random) error. Therefore, the
contaminated Gaussian distribution function can not bound the effect of very large gross errors
(e.g., agross error larger than 500).

In contaminated Gaussian digtribution, b is a tuning parameter to shape the distribution.
Increasing b will reduce the effect of agross error on the estimation and increase the robustness

of this gpproach. However, it will decrease the rdative efficiency to the norma ditribution. In
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the practica applications, b is usudly chosen as 10-20; and therefore the effect of agrosserror
on the estimation reduces 100-400 times compared withmeasurement test method. Also, gross
errors will rarely go to infinity but most are of moderate magnitude. For a moderate magnitude
gross error (about 50 to 200), the effect of the gross error is negligible using the contaminated
Gaussan digribution. Therefore, it is concluded that the contaminated Gaussian distribution is
robust for the estimation with the moderate magnitude of gross errors.

The Lorentzian digtribution function is given in Eq. 3-11 previoudy, and the influence

function is
op; &
'ZFI. i =— . —
o, {1 %&f)’ (3-30)

As shown in Eg. 3-30, the influencefunctionof Lorentzian distribution for measurement
i isafunction of the measurement error. The influence function increases with the increase of a
error for amdl (normd) errors; and then it decreases and eventually approach zero with the
increase of aerror for large (gross) errors. Asdefined earlier, the vaue of the influence function
represents the contribution of a measurement to the estimator.  Lorentzian digtribution has the
advantage that it has alarge vaue of influence function for measurements with smdl (random)
errors and has a amdl or zero vaue of influence function for measurements with large (gross)
erors. Thismeansthat Lorentzian distributioncan ignore the contribution of the measurements
withgross error eventhough these measurementsareincluded in the data for datareconciliation.

The Fair function isgiven in Eg. 3-15 previoudy, and the influence function of the Fair

function for messuremant i is
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1
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As shown in Eq. 3-31, the influencefunctionis afunction of the measurement error, i.e., with the
increase of eror, the influence functionincreases and findly approachesto acongant c. For the
error smaller than ¢, the influence function has a smilar dependency on error as one for norma
digtribution. For the error larger than c, the influence function increases dowly and gpproaches
congtant ¢ when the error larger than 10 times of c. The effect of the gross error on the
edimation is bounded on a value ¢ when the error goes to infinite. The parameter ¢ in Fair
functiondeterminesthe robustness and efficiency of the estimation. Smaller ¢ vaue will be more
robust but less efficiency. Fair function is able to bound the effect of very large gross errors.
The reconciled data (estimator) from a good digtribution function is both robust (or
insengtive) to the presence of gross error and has a high rdative efficiency. The robustness of
anestimator to larger (gross) errorsiscompared in Figure 3.4 by giving the influencefunctionfor
normal digtribution, contaminated Gaussiandidtribution, Lorentziandidtribution, and Fair function
asafunction of error e. Thisfigureshows that the influence functions for four distributions have
gmilar shapes for eror less than 1o-20. They increase with the increase of error size for
measurements with amdl (random) errors. However, the shapes of the influence functions for

these four digtributions are different for large errors.
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Figure 3.4 The Influent Functions of Digtributions

can be approximated as a
linear function of measurement errors by the first order Taylor expansion, i.e., P=Yw, (e -°).
The weight coefficient w; in the joint digtribution function is the partid derivative of joint
distribution function with respect to measurement error e evauated a the last feasible point €°,
and it is the same as the influence function. Therefore, a joint didtribution function (objective
functionof datareconciliationdgorithm) canbe rewrittenas alinear function approximatdly, i.e.,
P=Ywe=YYIF¢g (3-32)

As shown in Eq. 3-32, the objective functionis equal to the sum of products of influence
function and error of measurements.  The influence function of a measurement in the joint
digtributionfunctionis aweght of ameasurement inthe optimization objective (minimization), and
it represents the contribution (or effect) of a measurement on the estimator. Therefore, it is
optima that a distribution function has a larger influence function vaue for measurements with
amdl (random) errors and has a amdler (or zero) influence vaue for measurements with large
(gross) errors. Thismeansthat measurementswith smal (random) errors contribute more on the

edimation of reconciled data than those with large (gross) errors, and the estimation from this
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type of digribution function is less sengitive to the presence of gross errors when measurements
with both random and gross errors are used to reconcile process data.

Theinfluence function for the norma digtribution linearly increaseswithincreasing error.
Thisindicates that a measurement with a large error has a large contribution on the estimators
based onthe definition of influence function. Thisisinappropriate, and it givesbiased estimation
if measurements with gross errors are used in the data for data reconciliation. The shape of the
influence functionfor Fair functionis smilar to the normd distribution, except that the increase of
its influence function dows and finaly stops with the increase of error size for larger (gross)
errors. Compared with the norma didtribution, it isless sengtive to the presence of larger gross
errorsand is able to bound the effect of extremely large gross errors. However, the shape of its
influence function, i.e,, alarger error has a larger vaue of influence function, indicates that a
measurement with a large error contributes more on the estimation of reconciled variables
(estimators) than one with asmall error. Thisisnot gppropriate, and it gives biased estimation
when measurements with gross errors are included in the data for data reconciliation.

For errors sze from 20 to 4o, vaue of influence function for contaminated Gaussian
distribution reduces with the increase of errors and reaches a lowest vaue at around 40. For
error 9zelarger than4o, itsinfluence function increases linearly with the increase of anerror with
amuch lower increase rate. As shown in Figure 3.4, the influence function of the contaminated
Gaussian digtribution has a much smdler vaue for measurements with gross errors (e > 4) than
measurements with random errors (e < 2). The influence function for contaminated Gaussian

digtribution has a better pattern than the normad distribution and Fair function. However, for
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extremdy large grosserrors, suchaserror larger than50s, theinfluencefunctionfor contaminated
Gaussan digribution il demonstrates the unbounded nature as the normd didtribution. The
influencefunctionof Lorentziandistributionfunctionhasthe best pattern. 1t has alarger vdue for
measurements with random (smdl) errors and it decreases with the increase of error size for
errors larger than random errors and eventually goes to zero.

Therdative efficienciesof four digtributions (normd, contaminated Gaussiandigtribution,
Fair function, and Lorentziandigribution) are compared in Figure 3.5. As shown in Figure 3.5,
the norma distribution

function has the smdlest

vaiation (variance) in dl

Ry frorctaan Naovmmal Sactralrte w2

digributions. The norma
Covhainatlad s o Clan,
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P(e)

digribution is a ided

digtribution, and it usudly

error, e

is used to compare the

efficiency of other Figure 3.5 The Digtributions of Measurement Error

—
digributions. Figure 3.5
shows that the variation (or variance) of the contaminated Gaussan digtribution isthe smdlest in
three digtribution (contaminated Gaussanditribution, Lorentziandigribution, and Fair function).
The contaminated Gauss andistri butionhasthe highest rel etive efficiency to the norma distribution

in three didributions based on the definition of reative efficiency. Therefore, it has higher

accuracy of the estimation when measurement error isnormd. The Fair function has the largest
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vaiation (variance), hence it has the lowest efficiency compared with Lorentzian and
contaminated Gaussiandigtributions. There ativeefficiency for four distributionsreducesin order:
normal digtribution, contaminated Gauss andistribution, Lorentziandistribution, and Fair function.

In summary, the evauation of influence functions of digtributions shows that norma
distribution causes sgnificant biased estimation if measurements with gross errors are used to
reconcile data and the degree of bias increases unboundedly with the increase of errors.
Therefore, aiterative eimination strategy is required to avoid the biaswhenever agrosserror is
detected. Both contaminated Gaussan distribution and Lorentzian digtribution have higher
relative efficiency to the normdity thanFair function and have a better influence function pattern
than norma digtribution and Fair function. The comparisons of influence function and relaive
efficiency concluded that both contaminated Gaussan and Lorentzian distributions have a better
combination of influence function (gross error sengtivity) and reative efficiency (estimation
accuracy), and therefore, they will have a better performance when reconciling data with both
randomand grosserrors. The contaminated Gaussian distribution will have the best performance
for measurements with moderate Sze of grosserrors among four digtribution; and Lorentzianwill
be more effective for extremely large gross errors or infinity gross errors.

The discussion above is based on the assumption that the measurement errors in plant
data follow an gpproximate norma distribution with a few of extreme observations (i.e,
containing gross errors).  This assumption is close to the actud situation in chemica plants.
However, if this is not the case, the distribution function of the measurement error must be

redeveloped based on the true Structure of the errors.  In generd, the performance of a
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digtribution for estimator strongly relies on the knowledge of the red error Sructure. With this
knowledge, the distributionfunctionof measurement errors can describe their behavior patterns,
and the robustness and efficiency of the distribution for the estimator can be evaluated.

Modified Compensation Strategy: The theoreti cal evaluationabove and numericd results

in Chapter V showed that measurement test method resultsin serioudy biased estimation when
some of measurements contain grosserrors. Thishasbeenreportedinliterature(Mah, 1990;
and Crowe, 1994). Therefore, a drategy to diminate the biased estimation from the
presence of gross errors is necessary for measurement test. However, the strategies proposed
in literature require the sgnificant modificationof the plant modd, whichisinefficdent and difficult
to implement. Also, thenoda aggregation to eiminate the measurementswith grosserrorsin the
iterative eimination strategies may not applicable for complex condraints.

From the numerical study of combined gross error detection and data reconciliation
dgarithmswhichisdiscussed in Chapter V, it was found that alarger gross error tends to cause
the reconciliation adgorithms to digtribute the error to its neighboring measurements, and it is
particularly serious for measurement test method that uses the norma digtribution function. The
presence of larger gross errors causes sgnificant misrectification, and it can be observed by the
increase number of type | errors. Therefore, a modified compensation strategy is proposed to
avoid this misrectificationbased onthe factors observed in the computations for the sulfuric acid
plant:

1. After data reconciliation, a measurement containing a gross error is more likely to have

larger rectification (measurement adjustment), which is the difference between the
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measurement and the reconciled value, 3 =X, - Vi, than measurements with random

errors.

2. After data reconciliation, the error remaining in avarigbleis smdl and isin the range of
random errors.

3. A measurement with a gross error only causes migrectification in its neighboring
measurements (measurements in the same unit as this measurements and in the two
adjacent unitsat itsup and down streams); and two measurementswith gross errors that
arenot located inthe same unit or intwo adjacent unitsin a process will not interact with
each other.

The above three factors were found from the numerical study for combined gross error
detection and data reconciliation as described in Chapter V. The numerica studiesin Chapter
V showed that the average rdative gross error reductions were 84.3% for measurement te<t,
96.7% for Tjoa-Biegler's method, and 93.3% for Lorentzian. Therefore, it is appropriate to
assume that the reconciled vaue of an abnorma measurement contains only random error after
datareconciliation. For example, if ameasurement has an error size at 200, the remaining error
after datareconciliaion is 3o for measurement test, 0.60 for Tjoa-Biegler's method, and 1.30
for Lorentzian distribution function method. Also, it was observed that a measurement with a
very large gross error may be detected with a gross error twice in the numerica study for
modified compensation measurement test method.  For ingtance, if a measurement with gross
error size at 300, the error reductionfor this measurement in the first data reconciliation is 80%,

and the remaining error in this measurement is 6. At the second data reconciliation, this
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measurement may have 70% error reduction, and the remaining error of the reconciled vaue for
this measurement is 1.80 which is in random error range. In addition, the numerica studies
observed thet if two measurements with two gross errors exist in two non-adjacent units, these

two gross errors will not interact with each other. They are present as two Sngle gross errors.

The modified compensation strategy can be incorporated with a combined gross error
detectionand datareconciliationagorithm to improve the misrectification of the dgorithm. Inthis
research, the modified compensation strategy isincorporated withmeasurement test method and
wastested withmultiple grosserrorsthat isdiscussed in Chapter V. The procedurefor modified
compensation measurement test (MCMT) method is illugtrated in the following:

Step 1 This step is to classify the neighboring measurements for each measured variable. For
each measured varigble, the measurements that are located in the same unit as this
measured variable or arelocated inthe two adjacent unitsat itsup and down streams are
classfied as the neighboring measurements of this measured variable. A group of
measurements consist of ameasured variable and its neighboring measurements, and the
measured variable is the core measurement of thisgroup. If aprocess has 40 measured
variables, there are 40 groups of measurements.

Step 2 Solve Eq. 3-4 to reconcile the process data and compute the measurements errors, e.



Step 3

Step 4

Step 5
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Compare the standardized measurement error ¢;, €; = € /o;,, With the critica vaues C
based on the test datidtic in Eq. 3-5. If |¢;| > C, then denote measurement i as one
suspected of containing agross error. All suspected measurement areincludedinset S.
If set Sisempty, thenno grosserror inmeasurements and proceed to step 5. Otherwise
replace the measurement corresponding to the largest || in set S with its reconciled
datafor each group. If only one measurement in a group is suspected of containing a
gross error, then replace this measurement with the vaue from reconciled data and
includeitin st G. Set Gincdudesthe measurementsthat are identified withgross errors.
If two or more measurements containing gross errors belong to the same group, then
replace the measurement that hasthe largest vaue of | ¢;| inthe group with its reconciled
vadue and includeit in st G. Then go back to step 2.

Repesat step 2 to 4 until no suspected measurement is identified. Then the measured
variablesin set G are declared containing gross errors.

The above is the procedure for the modified compensation measurement test method.

Step 1 for group classfication should conduct before the computation. The classification result

canbeincorporated withthe datareconciliationoptimization problemand programmed inGAMS

code to automaticaly construct a set of compensated measurements for next iterative data

reconciliaion. In this research, this modified compensation strategy is conducted manualy with

measurement test method. This modified compensation strategy can be incorporated with other

grosserror detectionand data reconciliationagorithms to furtherimprove the performance of the
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dgorithms. Their procedures are the same as MCMT, except that the distribution and test
datigtic for reconciling data and identifying gross errors are different for different dgorithms.

C-2. Methodology of Smultaneous Data Reconciliation and Parameter Estimation

To conduct online parameter esimation, the important information that must be
determined indudes the determination of key parameters, the sdection of necessary plant
measurements, the congtruction of precise condraints among the process variables and
parameters, and the investigation of the adgorithms for parameter estimation. The generd rules
for the determination of key parameters and necessary measurements and the congtruction of
congraints in process modd will be discussed in plant model formulation section later. The
distributionfunctionsthat aregpplicable to combined gross error detectionand datareconciliation
can be used for smultaneous data reconciliationand parameter esimation. Thesearethenorma
digtributionfor least squares method, the contaminated Gauss andistribution, and robust function
as described and they were evauated in previous section.

The genera methodology of smultaneous data reconciliation and parameter estimation
for the error-in-variables modedl has a structure Smilar to data reconciliation. The difference is
that the parametersin plant model are considered as variables dong with process variables in
smultaneous data reconciliation and parameter estimation rather than being congtants in data
reconciliation. Bothprocessvariablesand parameters are Smultaneoudy estimated through the
optimization of parameter estimation. The generd mathematica statement for Smultaneous data
reconciliation and parameter estimation is written as.

Maximize: P(y, X) (3-33)
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X, 20

Subjectto: f(x,z,0)=0
Xtex<xV,2<z<2,0-<0<0Y

whereP(y, X) representsthe joint probability densty function to be optimized. The
equality constraints fdenote the plant model which
givesthe relationshipamong the process variables and
parameters. x- <x<xY,2 <z<2,and0" <0 < 8" represent the bounds on process
vaiables (x and 2) and parameters 0. The condraints in Eq. 3-33 are the same for different
dgorithms of parameter estimation. However, the objective function can be based on different
digtribution functions. Thesedigtributions describe the error structure of measurements thet are
used to estimate the parameters and process variables. The norma distribution (leest squares
method), contaminated Gaussiandigtribution, and Lorentziandidtribution, given by Eqg. 3-3, 3-9,
and 3-13 respectively, can be used as the objective functionfor smultaneous data reconciliation
and parameter estimation.

I the digtributionfunctiononly describesthe random nature of measurement errors, e.g.,
normd digtribution, then the measurements used to estimate the process parameters can only
contains random errors.  The plant data from DCS needs to be pre-processed through the
combined gross error detectionand data reconciliationstep to diminateor rectify thegrosserrors
beforeit can be used for parameter estimation. This requires two steps to estimate the process
parameters, and it will be described inthefollowing. If thedistribution function takesinto account

the digtribution pattern for both random and gross errorsin the measurements and it is able to

rectify both random and gross errors, then the measurements used to estimate process
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parameters can contain random and/or gross error, and the plant data sampled from DCS can
be used directly for smultaneous data reconciliationand parameter estimation. Thisrequiresonly
one step to edtimate process parameters. The contaminated Gaussan distribution and robust
function have this type of the properties, and they will be used to conduct the combined data
vaidation and parameter estimation. Then gross error detection, data reconciliation, and
parameter estimation will be combined into one optimization problem.

Two-Step Edimation As discussed previoudy, the normd didribution of the least

sguares method requires that the measurements used for parameter estimation contain only
randomerrors. Therefore, adatapre-processing step isrequired to eliminate or rectify the gross
errors before the parameter estimation. Thisrequirestwo stepsto estimate the plant parameters.
Step one usesthe contaminated Gauss andidtributionto detect and rectify the measurementswith
gross errors and then constructs a new set of measurements that only contains random errors.
Step two uses the least squares method to conduct smultaneous data reconciliation and
parameter estimation with the new set of measurements.

Step one reconciles process data usng a combined gross error detection and data
reconciliationagorithm, contaminated Gauss andigtribution, and identifiesthe gross errors based

on reconciled data. The optimization problem for step one has the mathematical statement as.
2 2.2
Maxonze: Pyky T—=—ja we 5 Lo *4 (334
%z i ‘/ﬁ'oi b
Subjectto:  f(x,z,0)=0
XLsXsXU,ZLsZsZU
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where y is the plant measurements sampled from distributed control system for measured
variables and x represents the true vaues of the measured variables. z denotesthe unmeasured
process variables. 0 isthe vector of process parameters, and they are constants in this step.
Solving Eq. 3-34 reconciles dl plant dataand estimatesthe vauesof al process varigbles. This
set of reconciled datawill maximize the joint probability and satisfies the congraints. Based on
the reconciled data, the gross errors in the measurements are identified by the test Satistic and
anew set of measurements is congtructed. This new set of data is composed of reconciled data
for measurements with gross errors and the origind plant data for measurements without gross
errors. Thenthisnew set of measurements containsonly random errors, and itisused in sep two
to estimate plant parameters.

Step two usesthe least squaresmethodto Smultaneoudy reconcile process variablesand
edimate parameters with the new set of measurements generated in step one. The optimization
problem for step two is stated as:

Minimize: e'zle=(y-x)"zy - x) (3-35)
X,Z 0
Subjectto:  f(x,z 0)=0
Xtex<xV,42<z<2,0"<0<0Y

where y represents the measurements generated fromstep one for the measured variables. The
process varidbles (x and 2) and parameters (0) are variables, and they will be determined
smultaneoudy by solving this minimization problem.

The drategy to congruct the measurements from step one (combined gross error

detection and data reconcilition) of the two-step estimation avoids the modification of the
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optimization program and the interaction between the two data reconciliation results associated
with gross error detection in step one and with parameter estimation in step two. Although the
elimination of measurements with gross error will completely avoid the effect of gross error on
the estimation, it requires sgnificant modification on the optimization program, such as the
recongtruction of congraints and reclassification of measured and unmessured variables. Also,
it may causes the problem of unobservability. Thisis inefficient and not appropriate for the
automatic implementationof orHine optimization. 1n addition, the gross errors of measurements
are dgnificantly reduced after data reconciliation using contaminated Gaussian distribution
function. It isappropriate to assume that the reconciled data of measurements with gross errors
contain only random errors and it can be used with other norma plant data to estimate process
parameters.  Therefore, the least squares method is suitable for the smultaneous data
reconciliation and parameter estimation because it has the highest estimationaccuracy when the
measurements do not contain gross errors.

One-Step Edtimation: 1n one-step esimation, the objective function uses a digtribution

functionthat takes into account the error pattern for both random and grosserrors. Thistype of
digribution functionhas an ahility to ignore the contributionof gross errors on the estimation and
to rectify the gross errors using good measurementsthrough process condraints. Therefore, this
type of digribution function can be used to estimate the process parameters and variables
smultaneoudy usng the plant datafrom D CS whichmay contains bothrandomand grosserrors.
The objective function based on contaminated Gaussiandigtributionor Lorentzian digtribution is

this type, and it can be used for amultaneous gross error detection, data reconciliation, and
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parameter esimation. Therefore, gross error detection, data reconciliation, and parameter
edimation are combined into one nonlinear optimization problem, and this is called one-step
parameter estimation method.

Thegeneral mathematica statement for one-step estimation usngcontaminated Gaussian

digribution iswritten as

(9 (3
. 1 25} T _ 28%} }
: 1 ) ¢ N, B (3-36)
Mc:::n:ze Pylx) |i| - (1 ne be

Subjectto: f(x,z,0)=0
Xtex<xV,A2<z<2,0"<0<0Y

where y is the plant measurements from distributed control system for measured variables.
Process variables (x and 2) and parameters (0) are variables, and they will be determined by
solving the maximization problem.  Solving Eq. 3-36 will smultaneoudy estimate the process
varigbles and parameters. Then, each measurement will be examined by the test Satitic based
on the estimated measurement error to determine if it contains a gross error.

Summary: Two drategies are proposed to conduct parameter estimation: one-step
estimation method and two-step estimationmethod. The two-step estimation includes step one
that conducts combined gross error detection and data reconciliation to construct a new set of
measurements for next step edimation and step two that conducts smultaneous data
reconciliation and parameter estimationto estimate process parameters and variables. The one
step estimationcombines gross error detection, datareconciligtion, and parameter estimationinto

one nonlinear optimization problem.  In one-step estimation, the plant data from distributed
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control system is directly used to conduct smultaneous data reconciliation and parameter
edimation, then each measurement is examined to see if containing gross error based on the
reconciled results.

C-3. Plant Economic Optimization

The objective of plant economic optimization is to generate a set of optimal operating
setpoints for the distributed control system. This set of optima setpoints will maximize the plant
profit, satisfy the current congraints in plant modd, and meet the requirement of market
demandingand restrictionon pollutant emisson. Thisoptimization can beachieved by maximizing
the economic model subject to the process congtraints. The genera mathematica formulationfor

plant economic optimization is.

Maximize: P(x) (3-37)
X, Z
Subjectto:  f(x,z,0)=0
0(x,z,0) <0

XtexexV, A<z
where P(x) represents the economic model (e.g., profit function). The equdity condraintsf are
the same as those in data reconciliaion. The inequdity condraints g represent the additiona
redrictions for the economic optimization, such as the demand for the main products and by
products, availability of raw materias, maximum and minimum cgpacities of the equipment, and
restriction on the waste/pollutant emission. Thebounds x- < x < xY and 2 < z < 2 represent
the dlowable minimumand maximum operating conditions for the process variablesand product

qudlity requirements.
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The economic model in Eq. 3-37 can be different depending on the objectives of the
optimization. The objectives can be to maximize plant profit, optimize plant configuration for
energy conservation, minimize undesired by-products, minimize the waste/pol lutant emission, or
acombination of these objectives. If the objective isto maximize the plant profit, then avaue-
added profit function can be used as the objective function (Zhang, 1993), i.e.,

P(x) = Income from Sdle of Products - Cost of Raw Materias (3-38)
- Operating and Maintenance Costs

or it can be mathematically expressed as.

P(x) = sx -cx (3-39
where s and ¢ are constant vectors representing the sale prices of productsand cost of the raw
materials respectively. For vector s, the dements with respect to the variables of products are
the sale prices of the corresponding products, and other dememts ins are zero. For vector c,
the e ementswithrespect to the variables of raw materias are the costs of the corresponding raw
materias, and other dememtsin c are zero. In thisformulation, the operating and maintenance
costs can be incorporated in the sale prices of the products or taken as constant.

Figure 3.6 gives one of the profit function used for sulfuric acid contact processof IMC
Agrico plant. The IMC Agrico plant does not sall sulfuric acid on the open market becauseiit is
used in the production of phosphoric acid in an adjacent plant. Also, the cogts for the labor,
maintenance, and overhead are combined into operating cost, and these costsareincluded asan
adjustment to the price charged to the phosphoric acid plant for the sulfuric acid product. Asa

results, the operating costs were consdered as a fixed adjustment to the acid product price on
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Profit Function:
f = Se4Fes + SessFss + Ses1aFsia = CrsoFso - CrsiFst - CresFes

Vaiade Description Sde and Codt Coefficients
Fes Acid Product flow rate $21.6/long ton
Fss Low pressure steam flow rate $1.55/10° Ib
Fsia High pressure seam flow rate $2.34/10° Ib
Fso Raw sulfur flow rate $54/long ton
Fs Boiler feed water flow rate $0.17/10% Ib
Fs; Dilution water flow rate $0.05/10° Ib

Figure 3.6 Vaue Added Profit Function for the Contact Process

aper pound basis. Thisadjusmentisincludedintheacid sdepriceliginFigure3.6. Theprices
used for this study are provided by the IMC Agrico engineers. Asshownin Figure 3.6, the profit
function is equd to the total vaue of

products (sulfuric acid Fg,, low pressure steam Fg, and high pressure steam F, ) subtracting the

cost of raw materids (sulfur feed rate F, , boiler feed water Fg; , and dilution water Fs,).

The profit function incorporated with plant model as shown in Eq 3-43 is solved to
determine the optimal valuesfor dl process variables. These optimal set point will maximize the
plant profit, satisfy the congtraintsinprocessmodel and the restrictions on the product demand,
raw materia availability, equipment capacities, and pollutant emisson.

Asdiscussed by Richard (1987) and Zhang (1993), therearethree important factorsthat
can sgnificantly affect the economic picturefor sulfuric acid contact process. Firgt isthe cost for

major raw materid, sulfur feed. Thus, the conversion of sulfur into product is economically
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important in this process. Higher converson of sulfur to sulfuric acid will have higher profit.
Secondly, the efficent extraction of the heats of combustion and chemica reaction by steam
streams will increase the vaue of by product (seam) and the conversion rate of SO, to SOs.
Therefore, it benefitsto the conversion of sulfur to sulfuric acid. Findly, environmenta redtrictions
must be met. All these three factors interactively affect the fina economic picture of the plant.

C-4. Formulation of Plant Modedls for On-Line Optimization

As discussed inthe previous sections, dl optimization problems require the plant mode
as condraints. The performance of these optimization problems strongly relies on both the
objective function (the data reconciliationagorithm or profit function of the optimizationproblem)
and the congtraint equations of the optimization problem (the plant model to describe aprocess).
A accurate plant modd is necessary for on-line optimization.

C-4-1. Formulation of Condraints for Typica Chemica Process Units

The mathematica modd s to describe the relationship among variables may be classified
in accordance with a number of aspects (Madron, 1992). For the modds based exdusvely on
ddtistica evauation of measured data, they are referred to as empirica or regresson mode.
When building these types of models, no prior information about the physica and chemica
attributes of the modeled object isused. The distribution mode of measured dataisaempirica
or regresson modd. For the modelsthat are built based on the laws of nature, they are called
as mechanistic modd sincea certain mechanismisassumed. The process moddsusedin on-line

optimization are belong to the type of mechanisic modd, and they are set up based on the
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conservation laws as wdl as the knowledge on the physical and chemicd atributes of the
modeled object.

Theinformation to build the mechanistic models can be divided into two groups. The
laws of conservation ( mass and energy) belong to the first group. In most cases, these law are
vaid drictly, and they canbe used to verify the vdidity of other assumptions serving asthe basis
for modding. The second group includes the other laws of nature, dependencies assessed
empiricaly, and the like. The vdidity of this type of information is not the same as that of
conservation laws, and it has some character of hypotheses. Typica examples are the models
of chemical phase equilibrium, modds of kinetics and stoichiometry of chemica reactions,
chemical engineering correlations, €etc.

A chemicd plant includes tens to hundreds of process units, such as heat exchangers,
reactors, didillation columns, absorption towers and others. For each unit, a number of
constraints between input and output streams are imposed based on the conservation laws and
the knowledge on the process. These congraints describe the relationship among the process
variables and parameters and provide a link of dl variables and parameters. They relate the
individua measurements and provide the resolutionfor error rectification. The following givesa

brief discussion of the congraint derivation for some typical chemica process units.
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Heat Exchanger: e —

For aheat exchanger unit ¢ Fi. 13
withmuitiplecomponerts }
Fl(ip 1 —3»
in one side and single Y riem 1
FL . IF
component in the other Constraints:
_ _ Fl) -F2iy =0, far =12, . e (1)
side, its flowsheet F3.-Fi4=0h 2)
HI+H3) - H2+Hi+ 0= (3)
diagram and the H3-H4- Oy, - T A AT, =D )
H1=h1F11). F12), Flie) T1 (5)
. : H2 =h1F2(D, F20), EF2(e), T2) ()
congraints are shown in T3 = h20F3, T3) R
o HA=hw2F4, T4 (&
FHgure 3.7. This unit AT =Tm(T1 T2 T3 T4 (5

includes two input *e - the swwber of aosmpotionts £ ctteamn Fl aad F2

Fifuza 3.7 Tha Flaz sheat Dagaam and € ansizainis
streams (F1 and F3) and efa HuniFxchongan
two output Streams (I~ | EE——
and F4). Theheat istransferred fromhot stream F3 to cold stream F1. The hot streams F3 and
F4 have single component; and cold streams F1 and F2 have ¢ components.  The congraints
for this unit are set up based on the conservation laws and the knowledge on the process.
AsshowninFigure3.7, Eq. 1 isthe species mass balances for cold streams, F1(i) and
F2(i), where i =1, 2, .., ¢; and EQ. 2 is the mass balance for hot streams, F3 and F4, where F
represents the mass flowrate. The total energy balance is shown in Eq. 3, where H represents
the enthalpy of a stream and Q¢ denotes the heat loss from this unit. EQ. 4 representsthe heat

transfer equation that gives aredtriction on the capacity of the heat exchanger, where U and A

represent the heat transfer coefficient and area of the heat transfer, and AT, is the mean
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temperature difference between hot and cold streams. Egs. 1 to 4 are established based onthe
mass and energy conservation laws. In addition to these four equations, Eq. 5 to 8 are the
enthapy equations to determine the energy of the streams, and they are empirical equations that
are set up based onthe physical and chemica properties of the speciesin the streams. Eq. 9is
anempirica functionto determine the logarithm mean of temperature difference between hot and
cold sdes. These nine equations shown in Figure 3.7 Smulate the operating behavior of the heat
exchanger and provide link among the variables.

Reactors: Thereactors are the key unitsof chemica plants. The performance of thistype
of units ggnificantly affects plant operating in economic and environmental aspects. The
formulation of condraintsin this type of units are great important and complicated in regarding
of the various types of reactors and the complex reaction kinetics. Unlike a heat exchanger
whose condraints are amilar regardless of types of equipment, there is a great variaion in
deriving the congraints for reactors.

There are threetypesof Smplereactorsfor steady state processes: continued girring tank
reactor (CSTR), plug flow reactor (PFR), and fluidized bed reactor. For CSTR, the mass and
energy balancesarewrittenas dgebraic equations. While the mass and energy balancesfor PFR
and fluidized bed reactor are differentid equationsthat can be discretized into dgebraic equations
with the numericad methods.

The reactions can be dassfied into single reaction (the Smplest case), pardld multiple
reactions, series reactions, and combined parald and series reactions. In addition, thereaction

can have rate equations that have smple kinetics, such as the fird, second, .., or nth order
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reaction, or the complex reaction rate equations that have a very complicated kinetics and are
complex and nonlinear.

In generd, the reaction rate equation should be included in plant mode. Including the
reaction rate equation makesthe variablesin the reactor observable by the measurements a the
up and down streamunits. Also, it can reduce the number of necessary flow rate measurements.
If the reactionrate is available, and it is determined by the measurable variables, e.g., component
flowrate, temperature, and/or pressure, then the generation of speciesinmass bal ance equation
canbe determined by the reaction rate equationthat are observable by the measurable variables.
However, if the reaction rate equation is not available, then the generation of species in mass
bal ance equation must be determined by the conversionof certainreactant. This conversion can
not be considered as a parameter because the conversion of reactant is not a time varying
congtant ascatadyst activity coefficient, and it changeswith changesin operating conditions. Also,
the conversioncannot be determined by other measured variables as the reactionrate equation.
Therefore, usng conversion of a reactant in the mass balances for a reactor unit increases the
unobservability of unmeasured variablesin this unit.

Figure 3.8 shows the flowsheet diagram and the condrains for a PFR (sulfur dioxide
convertor). Thisunit includes one input stream F1 and one output stream F2, and each stream
has ¢ components. As shown in Figure 3.8, EQ. 1 is the species mass baances for ¢
components, and the reactionrate for component i, r(i), isdetermined by the basic reaction rate,
r=r(i)/s, and the stoichiometric coefficient of the reaction for component i, 5. Eg. 2isthetota

energy balance. Both mass and energy baances are established based on conservation laws.
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individua chemical species can be determined by the basic reactionrate r, and the stoichiometric

coefficients as given in Eq. 5. In addition, A and L are the cross section area and the length of

reactor. E isthe reactioneffectivenessfactor, and it isaprocess parameter. Also, the boundary

condition given in Figure 3.8 used to obtain the solution of the differential equations for the

reactor.

Didillation and Absorption Columns: The didtillation and absorption columns are the

important units that can be found inmost of chemica plants and refinery processes. They serve

as feed preparation units for raw materid going to reactor and as product purification units for

sreams from the reactor. Their performance plays an important role in energy saving, product

quality, and environmenta control.
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balances for the column, if no parameter need to beestimated. Or they can include more detail
information, suchasthe tray-by-tray equilibrium relation between phases. Figure 3.9 showsthe
flowsheet diagramof an absorption column and the congtraintsthat include speci es massbal ances
and the energy balance over the column. In Figure 3.9, Eq. 1 is the species mass balances for
¢ components, and Eq. 2 isthe overal energy baancewhere AH isthe heat of absorption. Both
Eg. 1 and 2 are based on conservation laws of mass and energy. Eq 3 through 6 are the
enthadpy equation to determine the energy of the respect streams, and they are based on the
physical and chemical properties of the speciesin the streams.

C-4-2. Classfication of Variables and Determination of the Parameters

After the congraintsinplant model are constructed, the variablesinthe mode are divided
into two groups of variables, measured variablesand unmeasured variables. Itisdesred to have

as many measured variables as possble. In generd, more measurements will give a more
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accurate edimation of the reconciled data. However, in an industrid process, some of
measurable variables are not messured.

For aprocess, the measured variables are the variablesthat have measurementsfromthe
digtributed controlled system (DCS) and the plant control laboratory. The remaining variables
inthe process model are unmeasured variables. Some additional measurements may be required
after the examination of observability and redundancy which will be discussed in the following
section. If somemoreredundant messurements are needed, then additiona instruments must be
added to provide additiona measurements.

There are two types of parameters in the process modd. One type is a permanent
constant parameter, suchas reaction activity energy, stoichiometry of chemicd reactions, and the
like. Thistype of parametersis congtant dl thetime. They are congtants in the process modedl
and do not need to be esimated on-line. The other type of parameters is time-varying
parameters, suchas heat transfer coefficients, reaction effectiveness factors, tray efficiency, and
thelike. This type of parameters varies dowly with time, e.g., 25% change for amonth. The
vaues of this type of parameters are determined by the characteritics of the equipment and
physical properties of maerids but are not srongly relate to the operating condition. The
presence of parametersin aplant model usualy serves as the restrictions on the capacity of the
equipment, and their values provide the information about equipment performance.

For aset of equations to describe a unit or a process, the quantities in the equations can
be dassified as variables (measured and unmeasured), parameters, and fixed constants as shown

inFgure3.10. The measured variables can be redundant or nonredundant, and the unmeasured
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variables and parameters can be observable or unobservable dependent on the numbers of
measured variables, unmeasured variables, parameters, and equations. For the heat exchanger
shown in Figure 3.7, the stream flow rates and temperatures are measured variables. The
enthapies are unmeasured variables. The overdl heat transfer coefficient is process parameter,
and it mugt be updated orHine to have the mode match the plant performace. The heat
exchanger areais a condant.

C-4-3. Examination of Observahility and Redundancy

The plant modd is used as condraints in data reconciliation to adjust the measurements
for measured variablesto satisfy the materid and energy baances and to compute the values of
unmeasured variables and parameters. Ineconomic optimization, plant mode isthe condraints
of the optimization problemto describe the process, and it is used to determine the set pointsfor
DCS. To conduct datareconciliation, redundant measurements are required to rectify the errors

in measurements. Also, unmeasured variables and parameters must be observable to obtain a
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unique solution. The following discusses the examination of observability and redundancy for a
plant modd.

The definition of observahility is given by Crowe (1989) as.

“An unmessured quantity at steady state is observable if and only if it can be uniquey

determined from afixed set of vaues, corresponding to the measured variables, which

are conggtent with dl of the given condraints. Any unmeasured quantity whichisnot so
determinable is unobservable.”
The definition of redundancy is given by Crowe (1989) as.

“A measured quantity is redundant if and only if it would be observable if that quantity

was not measured. Otherwise, the measured quantity is non-redundant.”

The method to examine the observability and redundancy based on these definitions was given
by Crowe (1989) using the coefficient matrices of constraint equations as discussed in Chapter
II, and it is gpplicable to linear condraints.

I nthe following, the method to examine observability and redundancy is proposed based
onthe concept of degree of freedom. For aset of m equationsthat includesn variables, inwhich
n, variables are measured, and p parameters, the unmeasured variables and parameters are
observable if the number of measured variablesn, islarger thanor equd to the number of degree
of freedom for this set of equations. The number of degree of freedom for a set of equationsis
the number of variablesand parameters subtracted by the number of equation, i.e., n+p-m. For
a set of m equations tha includes n variables, in which n variables are measured, and p

parameters, the measurements have redundancy if the number of measured variablesn, islarger
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than the number of degree freedom of this set of eguations, n+p-m. Also, the number of
redundancy of measurementsis equa to n;-(n+p-m).

The examination of observability and redundancy can be conducted for each unit or each
balance node or for entire process (multiple units). If it is conducted for each unit, then the
examinaion result is called locd observability and redundancy. If it is conducted for entire
process, then the examination result is called globa observability and redundancy.

For a set of condraint equations of a unit, it is sad that the unmeasured variables and
parameters are loca observable, if the number of measured variablesislarger than or equal to
the degree of freedom of this set of equations, which is the number of variables (measured and
unmeasured) and parameters subtracted by the number of equations. 1n local observability and
redundancy examination, the classfication of measured variables and unmeasured variables is
dightly different from the definition given above. A dass of dummy measured variables is
intrduced inloca examinationto represent the unmeasured flow rate variablesthat canbe directly
determined by available measured variables at the up or down stream. The number of measured
variables equa the sum of the numbers of measured variables and dummy measured varigblesin
the equations, and the number of unmeasured vari ablesequal the number of unmeasured varigbles
subtracted by number of dummy measured variables.

For aset of condraint equations of aunit, it is sad that the measured variables have loca
redundancy if the number of measured variables islarger than the degree of freedom of this sat
of equations, and the number of loca redundancy of measurements equas the number of

measured variables subtracted by the number of degree of freedom. For individua measured
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Figure 3.11 showsaprocess flow diagramwiththree units, and thesethree unitsare heat
exchanger (HEX1), flasher, and heat exchanger (HEX?2). In streams S1, S2, S3, $4, and S5,
there are two components A and B. If variables fla, flb, T1, P1, f5a, f5b, T5, and P5 are
measured variablesand other are unmeasured variables, then the unmessured variablesf2a, f2b,
f4a, and f4b are dummy measured variables in flasher unit examination. Because 2a, f2b, f4a,
and f4b can be directly determined by measured variables f1a, f1b, f5a, and f5b respectively
through the component massbalances. Howerver, T2 and T4 arenot dummy measured variables
because they can not be directly determined by available measured variables.

For ahesat exchanger showninFigure 3.7, this unit has nine equations whichinvolved 13
variables (F1, F2, F3, F4, T1, T2, T3, T4, H1, H2, H3, H4, and AT,,,) and two parameters (U
and Q) if bothcold and hot streams have single components. The degree of freedom for this

set of equations and variables are SX. Therefore, Six variables must be measured variables or
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dummy measured variables to satisfy the observability, and more than six variables must be
measured or dummy measured variables to provided redundancy for error rectification.

After the unit by unit examinatiion of observability and redundancy, the global
observability and redundancy are examined for entire process based on the number of measured
variablesand degree of freedom for the entire process. 1n globa observability and redundancy
examination, al dummy measured variables belong to unmeasured variables.

If the measured variables are not correctly selected, some of unmeasured variables or
parameters may be unobservable even though the number of measurements is larger than the
degree of freedom. In order to avoid the incorrect selection of measured variables, a coefficient
matrix of linearized congraints is used to further examine the observability for entire process
based on Crowe's method. In this step, the nonlinear condraints are linearized using a set of
feasble solution of the congtraint equations that is closeto the normal operating condition. Then
thislinearized condraints are rearranged as.

AX + Bz+E0=0 (3-40)

or .
A B A}Ez} o (3-41)
9

where A, B, and E are the linearized condraint coefficient matrices with respect to measured
variables x, unmeasured variables z and parameters 0. EQ. 3-40 or EQ. 3-41 can be rearranged
as.

Bz + E@ = - AX (3-42)

B E)(g) Ax (3-43)

or
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A lemmagiven by Crowe in Chapter |l is used to determine the observability. If there

exigs a nonzero vector t such that (BE) t = 0, then each unmeasured variable or parameter

corresponding to a nonzero element of t is unobservable. Therefore, the solution of t from

equation (BE) t = 0 identifies the unobservable unmeasured varidbles or parameters. More

discusson on this lemma was given in Chapter I1.

Based on the discussion above, a general method to examine the observability and

redundancy of process modelsis given as.

1.

Examine the local observability and redundancy unit by unit based on the criteria given
above, i.e., the number of measured variables must be larger thanor equal to the degree
of freedom. All unmeasured variables and parameters must be observable for each unit.
Itisnot required that every unit has redundancy inmeasurements. However, at least one
degree of freedom is recommended for the unit with parameters to be estimated.

Examine the globa observability and redundancy for entire process based on the criteria
given above. The number of measured variables must be larger than the degree of
freedom of the plant modd. The number of redundancy in measurements equd the
number of measured variables subtracted by the degree of freedom of the plant moded!.
Linearize the nonlinear condraints in plant mode usng a set of feasble solution of the
condrant equations that is close to the norma operating condition and rearrange the
linearized condtraints as Eq. 3-43. Solve the equation (B E) t = 0 for the solution t. If
the solution of t isa zero vector, then al unmeasured variables z and parameters 6 are

observable; If some eements of t is nonzero, then the variables corresponding to the
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nonzero elements are unobservable. This step isto avoid the incorrect selection of

measured variables.

Thisisthe genera procedure to examine the observability and redundancy of the plant

model. Incase of unobservability or non-redundancy exigts, then plant model must be modified

to stidfy the requirement of observability and redundancy. The Strategies to improve the

observability and to provide more redundancy of plant modd is given in the following:

1.

5.

Change the unobservable unmeasured variables into measured variadles, if it is
measurable.

Combine the unobservable variable with other observable unmeasured variable,
i.e,, combining two unmeasured varigblesinto one, if possible; and recheck the
observahility of the new unmeasured variable.

Add additional congtraints on the unobservable variables and recheck the
observahility of the unmeasured variables.

Adjust some of parameters as condants, if their values do not vary significantly
or their variaions do not sgnificantly affect the accuracy of the plant model. Or
divide the parametersinto two or more subsets and estimate them dternately in
the sequence of on-line optimization.

Add repeated measurements for the non-redundant measured variables.

To have abetter result fromthe optimizationand to ensurethe vaidity of the optimization

result whenmuitiple gross errors exist, excessve measured variablesinadditiona to the necessary
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measurements are needed. It is recommend to incorporate as many measurements as possible

in data reconciliation and parameter estimation of on-line optimization.

C-4-4. Summary on Plant Moddl Formulation

After the plant mode is completely formulated and the process variables are correctly
classfied into measured variables ), unmeasured variables (z), and parameters (0), the
accuracy of the plant modd must be examined. To assess precision of the plant model, the
smulaionresults predicted by the plant model must be compared with the true data of the plant,
such asthe congstent and complete plant design data to ensure that the congtraint equations are
correctly describing the processes. This can be done by designating some of plant design values
asmeasured data. Then this datais used to estimate the val ues of the unmessured variablesand
the plant parameters, and the estimated parameters and process variablesare compared withthe
plant desgn data. If the predicted results are very close to the design data with aless than 1%
relative difference, then it is said that the plant mode precisdy smulates the plant.

Aboveisthe brief discusson onthe development and examination of plant model. The
following gives the generd procedure to formulate a plant modd:

1. Derive the process constraints according to the conservation laws and other

knowledge about the process.

2. Sedlect plant parameters (0) to be updated by on-line optimization. Classfy the

variables in plant model into measured variables (x) and unmeasured variables
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(2) according to the measurability and/or available measurements for variables.
Incorporate as much measurement information as possible.
3. Examine the observability of unmeasured variables z and parameters 6 and the
redundancy of measured variables x by the proposed method. All unmeasured
vaiables and parameters must be observable and excessive degree of
redundancy is required to have more accurate estimation.
4, Evauate the precision of the process modd by comparing the plant model with
the true information, such as the plant design data.
Above are the necessary steps for formulating an effective and precise plant mode for
ortline optimization.
D. Summary

On-line optimization involves three steps. diminating or rectifying gross errors in deta
sampled from the DCS, estimating parameter vaues to update the process smulation, and
conducting economic optimization to generate aset of optimal set point for the DCS of the plant.
Based on the nature of chemica process modes, only the combined gross error detection and
data reconciliation dgorithms are gpplicable for identifying and rectifying gross errors, and the
smultaneous data reconciliation and parameter estimation methods are suitable for estimating
process parameters. Therefore, two procedures to conduct on-line optimization are proposed
as discussed previoudy in this chapter.

There are several methods that can be used to reconcile process data for gross error

detection and parameter estimation. These methods are measurement test method (or least
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sguares method) usngthe normal distributionfunction, Tjoa-Biegler’ smethod using contaminated
Gaussian distribution, and robust method using Lorentzian digtribution or Fair function. Based
on the comparison of influence function and relaive efficiency for these didributions, the
theoretical evaluation concluded that both contaminated Gaussian distribution and Lorentzian
digtributionwill have a better performance thanthe norma distributionin effectively bounding the
effect of gross errors and than Fair function in ahigher rdaive efficiency and less sendtive to the
presence of gross errors. The normd digtribution has the highest estimate accuracy when the
measurements contain only random error.

Asmentioned above, precise and accurate process Smulation mode is essentia for on-
line optimization. The processmodd servesas congraintsin the nonlinear optimization problems
for grosserror detection, data reconciliation, parameter estimation, and economic optimization.
Thegenera procedure to formulate a process model and the method to examine the observability
and redundancy of aplant model have beenproposed. Also, some consideration has been given
to improve the performance of process smulation model based on the computation results and
datigtics.

In subsequentia chapters, the process modd for sulfuric acid process will be formulated
and its accuracy will be evauated. The performance of the norma digtribution, contaminated
Gaussandidtribution, and Lorentzian distribution will be evauated by the numerica study based
on the grosserror detected rates, number of type | error, and error reduction. Also, both two-
step and one-step estimation will be conducted and compared based on the computation

efficency and accuracy. Findly, plant economic optimization will be conducted using a vaues
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added objective functionwithdifferent economic scenariosand environmenta restrictionsto study

the economic improvements from on-line optimization.



CHAPTER IV PLANT MODEL FORMULATION

The methodology and procedure to perform on-line optimization has been outlined in
previous chapter. This chapter deds with the development of process smulation modd for the
Monsanto’'s designed aulfuric acid process of IMC Agrico Company. The process will firg be
described. Then, the detail materid and energy baances and reaction rate equationinthis mode
will be established, and the process modd will be vaidated.
A. Description of the Contact Sulfuric Acid Process

The aulfuric acid process used inthis study isthe IMC Agrico Company's Uncle Sam plant
inConvent, Louisana. Both design and actua plant data was collected for the purpose of model
vaidation and implementation of on-line optimization. The Uncle Sam plant's"E" train isa 3200
TPD 93 mole% sulfuric acid plant designed by the Monsanto Envio-Chem System, Inc. which
began to operate in March, 1992. The overal conversion of dementd sulfur to sulfuric acid is
about 99.7%. It represents the state-of-art technology of the contact process. The contact
process is a three step process that produces sulfuric acid and steam from air, molten sulfur and
water. The processflow diagramisshownin Figure4.1, and the process consists of three sections
which are the feed preparation section, the reactor section, and the absorber section.

In the feed preparation section, molten sulfur feed is combusted with dry ar in the sulfur
burner. The reactionis:

S+ 0, ==> S0, + Heat
The reaction is exathermic and goes to completion. The gasleaving the burner is composed of

sulfur dioxide, nitrogen, and unreacted oxygen at approximately 1400°K .
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The equipment used in this sectionindudeanar filter, drying tower, amain compressor
and asulfur burner. The compressor is steam driven turbine with an efficiency of about 65%.
Itisafive stage, polytropic turbine on steam side and a centrifugal blower on the gassde. The
pump takes in gpproximately 150,000 cfm of ambient air at -3 inches water and discharges it a
about 160 inches of water and 230°F under normal operation. The compressor turbine speed
is adjusted to change the production rate for each train. The drying tower removes ambient
moisture from the intake air with 98 wt% sulfuric acid flowing at arate of about 3600 gpm.

In the sulfur burner, the dry compressed air discharged from the turbine is reacted with
molten sulfur to produce sulfur dioxide. The sulfur dioxide, dong with nitrogen and unreected
oxygenenterswaste heet boiler. The waste heat boiler is equipped with ahot gas bypass so that
the temperature of the gases entering the firgt catalyst bed canbe controlled to 788°F. Thisboiler
isashdl and tubetype supplied withwater fromthe economizers. Theboiler produces saturated
steam at about S00°F and 670 psig and utilizes about 9% blowdown. The rest of the eamis
passed to superheater to produce superheated steam at about 750°F.

The second section of the contact process plant isthe reactor or converter section. The
reactor consists of four beds packed with two different types of vanadium pentoxide catalyd.
Inthis part the gas mixturefromthe feed preparation sectionis further reacted inthe fixed catayst

beds to produce sulfur trioxide and heat according to the reaction:

2S0, + O, = 250, + Heat
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The reactionisexothermic and the equilibrium conversion decreases with the increasein
reaction temperature. For thisreason, the process usesfour packed beds, and heat exchangers
between each bed remove the produced energy to reduce the temperature. As shown in Figure
4.2, the equilibrium conversion of sulfur dioxide decreases with the increase in operating
temperature. Removing reaction hest from each reactor increasesthe conversion of sulfur dioxide
to sufur trioxide and this removed hest is used to produce steam. Also, the equilibrium

conversion increases by decreasing the concentration of sulfur
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Figure 4.2 Temperature-Conversion of SO2 for Sulfuric Acid Plant
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trioxide, and aninter-passtower is used to absorb and remove sulfur trioxide fromthe gas stream
between the third and the fourth catalyst beds. This design ensures the high conversion.

Asshown in Figure 4.1, the superheater (SH) is used to cool the exit gas from the first
bed by the saturated steam from waste hegt boiler (BLR). It produces superhesated steam at
about 750°F and 630 psig. The hot inter-pass heat exchanger (H) is used to cool the gasesfrom
the second catalyst bed. The cold inter-pass heat exchanger (C) and economizer (E) are used
to cool the gasesfromthe third catalyst bed before these gases passto the inter-pass tower. The
hot and cold inter-pass heat exchangers are used also to heat the unabsorbed gases from the
inter-pass tower while cooling the gases from the second and the third bed respectively. The
gases from the fourthbed consist of sulfur trioxide, nitrogen, oxygenand asmdl amount of sulfur
dioxide, and they are cooled by the superheater (SH') and economizers (E’) before passing to
the find tower for absorption of sulfur trioxide. The superheated steam is used to drive the
compressor turbine, and the excess steam is one of the plant products.

The find section of the contact process plant is the absorber section. In this section the
SO; is absorbed from the reaction gas mixture into 98 wt% sulfuric acid to produce a more
concentrated acid. Also, hest is produced according to the equation:

SO; + H,O => H,SO, + Heat

As shown in Figure 4.1, the equipments in this section include the find acid absorption
tower, inter-pass absorptiontower, acid pump tank, dilutionacid tank and three heat exchangers.
These two absorption towers use 98 wt% acid to produce more concentrated acid. Water is

added to the two tanks to keep the aulfuric acid strength at 93 wit% in acid dilution tank and



195

98 wt% in acid tower pump tank. The exit gasesfromthe find absorptiontower are discharged
to the air with lessthan 4 1b of SO, per ton of sulfuric acid produced.

The boiler feed water is pre-heated to 500°F at 670 psig by the economizers(Eand E').
It then passesto the waste heeat boiler (BLR) to produce steam. Then, superhested steam is
generated in the superheater (SH). The superheated steam is used to drive the turbine and the
excess steam is one of the products, which is used in an adjacent plant.

This concludesthe brief descriptionof the contact sulfuric acid process. Further process
details are given in the discussion of process modd thet follows.
B. Process Model

As discussed previoudy, the process model hasto be written as the open form equation
based model for orHine optimization. Therefore, the processsmulation mode will beformul ated
in an open form format; and it is formed based on the conservation laws, rate equations, and
equilibrium relations. These equations in the plant model are the congraints of the nonlinear
optimization problems in on-line optimization. The optimization problems will be solved usng a
optimization modding language, GAMS (generd agebraic modding system). This section
discusses the detail plant smulation, i.e., the materia and energy balances, the physical and
thermodynamic properties, and reaction rate equations, required for on-line optimization.

The open form equation based process mode is different from close form sequential
modular modd developed by the flowsheeting smulation systems. In the openformformat, the
equations can be written impliatly as f(x, 20 = 0 or expliatly as x = g(z). The solution for dl

varigbles (x and z) are obtained smultaneoudy. However, in the close form sequentid modd,
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the equations can only be written explicitly asx = g(z). The solution of the close form mode is
Sequentid, i.e., the solution of varidble x is determined by the vaue (solution) of z. If the
congraints are highly nonlinear and an explicit expression is not available for some of the
variables, then an iterative procedure is required to search for the solution for the close form
process modd.

The plant mode expressions for openformmodel are a set of condraint equations which
describethe processbehavior and represent the relationship of process variablesand parameters.
For achemica process, this set of condraint equations include the material and energy balances,
chemical reactionrate equations, heat transfer equations, and vapor-liquid equilibrium equations.
The plant model for the sulfuric acid contact processes includes the constraint equations for the
aulfur burner, four catalytic convertors, two gas-to-gas heat exchangers, three economizers, a
superhester, a waste heat boiler, and finad and inter-pass absorption towers. A flowsheet
diagram with stream and unit names used in model equationsis shown in Figure 4.3, and Table
4-1 gives adescription of these streams. The condraint equations are established in following
section and they are programmed in GAM S language and used to reconcile plant measurements,
edimate plant parameters, optimize the plant profit, and minimize emissons from the plant.

Heat Exchanger Network: Asshown in Figure 4.3, the heat exchanger network in

aulfuric acid plant includestwo gas-to-gashot and cold inter-pass heat exchangers (HEX 066 and

HEX065), three gas-to-compressed-water economizers (economizer 3B, 4CD, and 4A),



Figure 4.3 FHowsheet Diagram for the Sulfuric Acid Plant
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Table 4-1 Description of Process Streams (Refer to Figure 4.3,
the Process Flow Diagram for the Sulfuric Acid Process)

Name of

Stream Description
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S03 Dry air to compressor (Fan)

S04 Dry air from compressor to sulfur burner

S05 Gas stream exiting from sulfur burner to waster boiler

S06 Gas dream exiting from waste boiler to the first convertor

S07 Gas stream exiting from convertor | to superhester 1B (HEX067)

S08 Gas stream exiting from superheater 1B to the second convertor

S09 Gas stream exiting from the second convertor to hot inter-pass heat exchanger
(HEX066)

S10 Gas stream exiting from hot inter-pass heet exchanger to the third convertor

S11 Gas stream exiting from the third convertor to cold inter-pass heat exchanger
(HEX065)

S12 Gas stream exiting from cold inter-pass heat exchanger to economizer 3B
(HEX068)

S13 Gas stream exiting from economizer 3B to inter-pass absorption tower (TWR040)

Gas dtream exiting from inter-pass absorption tower to cold inter-pass heat
S14 exchanger

Gas stream exiting from cold inter-pass hegat exchanger to hot inter-pass heat
S15 exchanger

Gas gtream exiting from hot inter-pass heet exchanger to the fourth convertor

S16 Gas gtream exiting from the fourth convertor to economizer 4CD (HEX069)

S17 Gas stream exiting from economizer 4CD to economizer 4A (HEX069)

S19 Gas dream exiting from economizer 4A to find absorption tower

S20 Gas dream exiting from final absorption tower and discharging to atmosphere

21 Sulfur feed stream to Sulfur Burner

S50 dilution water that is added to acid tower pump tank and acid dilute tank

S51 Compressed water stream to economizer 4A (HEX069)

SS1 Compressed water stream from economizer 4A to economizer 3B (HEX068)

SS2 Compressed water stream from economizer 3B to economizer 4CD (HEX(069)

SS3 Saturated water stream from economizer 4CD to waste boiler (BLR011)
Steam stream from waste boiler to superheater (HEX067)

SA Blowdown stream from waste boiler

SS5 Superheated steam streams from superheater

SS6 High pressure steam to turbine which is split from stream SS7

SS7 Low pressure steam exiting from the turbine of compressor (Fan)

SS70 High pressure steam split from stream SS7

SS8 Sulfuric acid stream to inter-pass absorption tower

SS14 Sulfuric acid stream exiting from inter-pass absorption tower

S58 Sulfuric acid stream to find absorption tower

S59 Sulfuric acid stream exiting from fina absorption tower

S60 Sulfuric acid product

S61

S64

agas-to-superheated-steam superhesater (superheater 1B), and agas-to-vapor wastehegt boiler

(BLRO11). In these units, thereis no mass trandfer or chemical reaction. The inlet component
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flow rates are equal to their outlet component flow rates for both sides. The energy balance
statesthat the decrease of the enthadpy in the hot side is equa to the increase of enthapy incold
ddeplustheheatloss, i.e., (HM® - Howet), = (Howet - Hinet)  + Q. FOr the hot inter-pass
heat exchanger (HEX066), r: H.dn)hn Z‘ZFg’ hsm }::F 1[3"1(2 and (Et Hﬁh)uu }i:F 1(13711|
. The heat transferred in an exchanger is proportiona to heeat transfer area
A, overdl heat transfer coefficient U, and the meanlogarithmtemperaturedifferencebetweentwo
Sdes AT, i.e,, Q = UAAT,,,, where Q is the entha py change on cold side, i.e., o (= mﬂd }z:}
The materid and energy balancesaswell as hest transfer equations aresmilar for dl units
in heat exchanger network. Table 4-2 gives the congtraint equations for the hot inter-pass heat
exchanger asan example of process condraint equations for al heat exchanger units. They are
written in an open form format, and the molar flow rate is used in mass baance equations. The
enthdpy equations for gases, compressed water, and superheated steam are developed in
Appendix C.
Figure 4.3 shows that the hot 1P heat exchanger (HEX066) involves the heat exchange
between hot stream S09 from second catalyst bed and cold stream S15 from cold 1P heat
exchanger. The condraint equations (materia and energy balances and heat transfer equiation)
for thisunit are given in Table 4-2. Thetwo rows of the table under materia balance give the
overal mass baance and al species massbalances. The overal mass baanceisthe summation

of al species mass balances, and thisistrue for dl processe units.



Table 4-2 The Congtraint Equations for Hot Inter-Pass Heat Exchanger
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Therefore, if al species mass balances are used to describe the process, then the overal mass
balance does not need to be included. The species mass balances are used to describe the
relationship of the input and output flow ratevariables. Thetwo rowsin Table4-2 under energy
baances give the overdl energy balance and heat transfer equation. In addition, each species
enthapy, h(T), isexpressed as a polynomid functionof the stream temperature giveninthe table.

Inthe congtraints of Tables4-2, F denotesthe component molar flowrate, kmol/sec, and
its superscript i and subscript k denote the component namesand stream numbers respectively.
h’sinthe equations represent the species enthapies of streams, MM Jkmol, and Q,, isthe heat
loss from the exchanger. T is the stream temperature, and AT, is the logarithm mean
temperature difference between hot and cold sides of the exchanger. In the heat transfer
equation, U and A arethe overall heet transfer coefficient and heset transfer arearespectively. In
these equations, the total flow rates, species flow rates (or composition), and temperatures of
streams are the measurable variables. Species entha pies and the mean temperature difference
are the unmeasurable variables. The heat transfer coefficient and heat 1oss are the process
parameters to be estimated or constants depending on the character of exchangers and
processes. Otherssuch ashest transfer areaand coefficientsin entha py equations are constants.

Reactor Systemr  The reactor system in this plant includes a sulfur burner and four

catdytic convertors. The following describes the condtraint equations for sulfur burner and the
first convertor. The congtraint equationsfor the other convertors are developed in the same way

asthefirst convertor.
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When a chemicd reaction is involved in the process, it is convenient to use the mole
materia balance to describe relationship of input and output flow rates of a unit for acomponent.
Also, the overdl materid baance is obtained from the component materid balances, i.e,
summation of component materia balances givesthe overal materid baance. The sulfuric acid
processinvolvesthreereactions, i.e, reaction of sulfur to sulfur dioxide, reaction of sulfur dioxide
to sulfur trioxide, and absorption reaction of sulfur trioxide to sulfuric acid. It isdecided to use
the mde baance to describe the materia balances of the units in the process, i.e, dl materia
bal ance equations for the slfuric acid process are writtenwithmole balancerelations. Molesare
conserved when there are no reaction, and the change of the number of molar for a component
is determined by the reaction rate and stoichiometric coefficient when there are reactions.

As shown in Figure 4.3, the inputs of suifur burner are dry air sream, S04 from man
compressor, and liquid suifur stream, S50. Thedry ar reactswith molten sulfur to produce sulfur
dioxide and heat in the burner. The sulfur dioxide, dong with nitrogen and unreacted oxygen
enters the waste heat boiler. At the design operating temperature of the sulfur burner, al of the
aulfur isconverted to sulfur dioxide and some sulfur trioxideisformed from sulfur dioxide. Under
the design operating conditions, the equilibrium conversionof SO, to SO, is3.8% ( mal) of the
total produced SO,. However, the plant measurements have shown that 2 % (mal) of the SO,
is converted into SO, in this unit, and this vaue is incorporated in the massand energy baances
of this unit.

The materid and energy baance equations for thisunit are given in Table 4-3. Thetwo

rows of this table under material baance give the overdl mole baance and component mole
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balances. The mole balance for each component is established based on the conservation law.
The steady state mole balance for a component is written as:

Fin(i) - Fout(i) + Fgen(i) =0 (4-1)
where i represents the names of components. Fin(i), Fout(i), and Fgen(i) are input flow rate
FOA(i), output flow rate FOS(i), and generation rates of components from reaction, r(i). The
overdl mole baance is the summeation of al component mole baance.

Two reactions take place in this unit, i.e., reaction one of sulfur to sulfur dioxide and
reaction two of sulfur dioxideto sulfur trioxide. All of the sulfur iscompletely converted to sulfur
dioxide, and 2% (mal) of the produced suifur dioxide is further converted to sulfur trioxideinthis
unit. Therefore, thereaction (generation) rate for each component isrelated to theinput flow rate
of aufur F50 and the stoichiometrical coefficient of a component in the reaction. Also, the
reaction rate of a product component has a pogtive vaue and the reaction rate of a reactant
component has a negative vaue. For example, the component mole balance for sulfur dioxide
s 50, 80,

50, Ry’ Fy® O09F, ©o (4-2)
where FO4%°2? and FO5°? are the input and output flow rates of sulfur dioxide, and 0.98F50 is
the generation rate of sulfur dioxide. For reaction one (complete conversion of sulfur to suifur
dioxide), sulfur dioxide is a product withgtoichiometric coefficient of one. Inreactiontwo, sulfur
dioxideisareactant with stoichiometric coefficient of one. Therefore, the total reactionrate for

sulfur dioxide in two reaction is F50-0.02F50 = 0.98F50.
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Table 4-3 The Process Congraint Equations for Sulfur Burner

Materid Baances
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Fy FZ Rig Rl R
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The steady dtate overdl energy baance is established based on the fird law of
thermodynamics. Neglecting changesinkinetic and potentia energy, this equationis (Felder and
Rousdeu, 1986):

-AH+Q-W=0 (4-3)

where AH is the change in enthapy between input and output Sreams, i.e., AH =H,; - H;,,, and
. Here ny isthe number of moles of reactant A that

is reacted, and v, is the soichiometric coefficient of reactant A in the reaction. Here the
reference conditions are the reactant and product species at 298°K and 1.0 atmosphere as
described in Appendix C. Q isthe heat added to the system and W isthe amount of work done

by the system. The energy equation for sulfur burner unit iswritten as.

wherethe firg and second terms represent the energy for input streams S50 and S04. Thethird
and fourthterms inthis equation denote the generated rates of heat for reactionone and two. The
fifth and sixth terms are the energy for output stream S05 and heet |oss from this unit.

In Table 4-3, F denotes stream species flow rate, kmol/sec, and h presents species
enthdpy, MMJkmol. Ah,,5°? and Ah,;5°3 are the heats of reaction of sulfur oxidationand SO,
oxidation reactions at the temperature of the burner. Q. in energy equation denotes the heat
lossfromaulfur burner. The heet of reaction for sulfur oxidation is caculated from the enthdpies
of components at reaction temperature:

ARy, 3% = h(T)s + h(T) oz - N(T)so2 (4-5)
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where the enthapies are calculated by the regression equations from NASA Technicd Manua
4513C (McBride et d., 1993). Thedetall enthapy regression functions for al components are
givenin Appendix C. The enthdpy function used in Eq. 4-5 is dightly different from enthapy
functionsfor determining the sensible heat. In the process model, al enthal py functionsfor gas
sreams use sengble enthapy function except the enthalpy functionin Eq. 4-5. The reference
statefor sensible enthapy function is 298.15K and 1Bar for speciesor dements, and enthapies
for 02, N2, SO2, SO3 at the reference state (298.15 K and 1 Bar) iszero. In EqQ. 4-5, the
enthapy functions are not substrated by the enthalpies of the species or eements at 298.15 K.
Therefore, the enthal py for species (e.g., SO,) at reference sate is the heat of formation for the
species, and the enthapy for elements (e.g., 02, S) at reference state is zero. The hesat of
reaction for sulfur dioxide oxidation to sulfur trioxide is caculated from an empiricd formula, a
function of reaction temperature, which is given in the kinetic model section of Appendix D.
Thefour cataytic reactors are adiabatic, plug flow reactors. In these convertors, sulfur
dioxideis converted to sulfur trioxide in an exothermic chemica reaction. The kinetic model for
this catdytic reaction was given by Harris and Norman (1972). Harris and Norman developed
an empirica function to determine the intrindc rate for the oxidation reaction of sulfur dioxide
whichis discussed in Appendix D. Theintrindc reactionrate equationisgiveninFgure4.4. The
real reaction rate of SO, (rsog) Is caculated by intringc rate multiplying by the reaction
effectivenessfactor , i.e., rsos = rsopEr. This reaction effectiveness factor is alump parameter
that combinesdl of the mismatchesinthe kinetic modd, and thisincludes current bulk density and

current activity of the catalys, variation
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Figure 4.4 Rate Equation for the Catalytic Oxidation of SO, to SO; Using Type LP-110

and LP-120 Vanadium Pentoxide Catdyst
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of real wet surface of catalyst. Also, the heat of SO, oxidation reaction is determined from an
empirica function discussed in Appendix D (Harris and Norman, 1972), which is given with the
function (Eg. D-6) to determine the temperature difference between bulk gas and catalyst pellet
(in Bulk Gasto Pellet Temperature Gradient sectionof Appendix D). The empirica function for
heat of SO, oxidation reaction is:

Ah,;3°3 = 1.827%(-24,097-0.26T+1.69x10°T?+1.5x10°/T), Btwlb-mole (4-6)

The four reactors are assumed to be perfect plug flow reactor. Therefore, the materia
and energy balance equations are differential equations for these four packed bed reactors, and
they are established based on the conservation laws. The following gives a discussion on the
formulationof congraint equationsfor Convertor |, and the materia and energy balanceequations
for thisreactor are given in Table 4-4. The condraints for other three convertors are smilar to
those for Convertor I.

FromFigure4.3, the input to Convertor | isthe gasfromthe waste heat boiler (S06) and
the output goes to superheater 1B (S07). In Table 4-4, the two rows under materia balances
giveoverdl and species materid baances. Thetwo rows under energy baances give the overal
energy balance and the enthal py functionfor each species. Intheseequations, r'y, and r'.; are
the intringc reaction rate and the actud rection rate for Convertor I. Theintringc resction rate,
I's.2, iS determined by an empirica equation given in Figure 4.4, and the actual reaction rate of
SO, oxidation, 'y, is the product of intrinsic reaction rate and the reaction effectivenessfactor

E! for Convertor I. In Table 4-4, p's isthebulk density of catalyst in Ibft3, and A isthe cross
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section area of convertors. Ah,>° is the heat of the reaction, and it is determined by an

empirica function and temperature
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Table 4-4 The Process Condraint Equations for Convertor |

Material Baances
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givenin Eq. 4-6. F, and H, are the molar flow rate in kmol/sec and enthapy in MM J'sec for
Convertor 1. Also, the boundary conditions for these differentid equations are required to
connect the variables in these equations to the variables in the input and output streams. These
boundary conditions are given with the equations as shown in Table 4-4.

In the condraint equations for this unit, total flow rates, composition (or species flow
rates), and temperatures are measurable variables. Thereaction rates and speciesenthapiesare
unmeasurable variables. E/ isthe process parameter to be estimated. The others, suchascross
section area of convertor, bulk dengty of catalyst, and coefficients in enthalpy equations are
constants.

The ordinary differentia equations for materid and energy balances in this unit are
discretized into the agebraic difference equations using improved Euler’s method (Carnahan, et
a., 1969). These algebraic difference equations are writtenin GAM S program and solved with
the other condraints in the plant modd. The boundary conditions of the agebraic difference
equations are the input and output conditions of the packed beds.

Absorption Tower Section: This section includes an inter-pass absorption tower and a

fina absorption tower. These unitsinvolve masstransfer of SO, fromgas phase to liquid phase,

i.e.,, the absorption reaction of sulfur trioxide. For both towers, it is assumed that SO, in gas
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streamiscompletely absorbed by sulfuric acid solution, and dl other gasesare considered asinert
gases. Also, thetota molar flow ratefor sulfuric acid stream is counted as the sum of molar flow
rates of SO, and water in the acid stream. Based on these assumptions, the mole flow rate of
water inacid stream should remain unchanged betweeninput and output at the absorptiontower.
The difference between output and input for both SO, and total molar flow ratesin acid stream
is equal to the molar flow rate of SO4 in gas sream. The detall materid and energy balance
equations for find absorption tower are given in Table 4-5 where sulfuric acid stream (S60)
absorbs the SO, from the gas stream S20. The congtraint equations for inter-pass absorption
tower are amilar to the equationsin Table 4-5.

In Table 4-5, the three rows under materia baances give the overdl mole balances,
relations for stack concentrations of sulfur dioxide and oxygen to relate the emission
concentrations of sulfur dioxide and oxygento speciesflow ratesinthis unit, and component mole
balances. The first row under energy baances gives the overal energy baance of find
absorption.  In the overdl energy equation, Ah,, is the heat of reaction for sulfur trioxide
absorption. The heat of sulfur trioxide absorption at 298 K is given by (Smith and Van Ness,
1987)

SO4(g) + H,O(l) = H,SO,(l) + 132.4 MMJkmol (4-7)
In these two absorption towers, the operating temperaturerange is 82-118°C. Thevariation of
the heat of reaction in this temperature range is less than 5% of the heet of reaction. Hence, the

heet of this reaction was takenasa congant, 132.4 MMJkmol. The enthapy functions for the
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gasesand sulfuric acid are given in the second row under energy baances, and the derivationof
enthapy equation for sulfuric acid solution is given in Appendix C.

In the condraint equations of Table 4-5, stream flow rates F, temperatures T, and
concentrations of O, and SO, (C, and Cgy,) are measurable variables. Species enthapies, h,

are unmeasurable variables, and the coefficientsin enthapy functions are congtants.
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Table 4-5 The Process Congtraint Equations for Final Absorption Tower

Material Baances
Overdl
(50) L(0) A(0) A, 50 B0
GFQI F21 F21 le)(FGI F61>
B S0 () Ny 50 BO
v A p.1 P 1| 'I p. 1] ; a Iﬂl J Iﬂl 7
Stack O, (0
and SO, F 2100, Fy
(50
lecm, 23
ies R (- VI (-}
e 0, Fy® Py’ 0
N, FOP RSP o
so,: Fa P ES® ¢
so; FOP R ED 6 70?0
HO: Fg™° r ™°
Energy Bdances
Overdl (50)
sFahi %F"f"’[f) Fehe Fale) Fo My 0
Species
h*(T) R@,'T %a;:r’ %a;rﬁ %a::r‘ %a;z"‘ bl HL Kol
i 50,850,0,Ny k 2021
h = - 145.8407C + 9.738664e-3T+ 8.023897e-3TC+ 83.61468C2
+ 60.19207, Kcad/gmol, k=60,61 for sulfuric acid solution
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Ovedl Materia Bdance The overdl materid balance relates the flow rates of raw

materids to the production of products and wastes. For the sulfuric acid process, the production
rate of sulfuric acid (Fs,, Ib/sec) can be determined by ether the use of sulfur feed rate (Fso,
kmol/sec) or the absorption rates in inter-pass and fina towers. These two condraints are:

(Fes Cer)/2.204/98.02 = Fgy X (4-8)

(Fes Cg4)/2.204/98.02) = [( Fe1 - Feo) + (Fso - Fsg )] (4-9)
where x is the conversion of suifur to sulfuric acid and C64 is the mass fraction of sulfuric acid
for the product stream F64. The unit of production rate of sulfuric acid (F64) is Ib/sec and the
other flow rates (F50, F58, F59, F60, and F61) are kmol/sec. The constant, 2.204 is a
converson, 2.204 Ib/kg. The congtant 98.02 isthe molecular weight of sulfuric acid. Thesetwo
constantsare used to converted the unit of F64 from Ib/sec to kmol/sec to be consstent withthe
unit of other flow rates.

The overdl converson rate of sulfur (X) is determined by:
ry, FY% F.x (4-10)
where F5, and F,,>°? are the flow rates of sulfur and the unconverted SO, to be discharged.
The dilution water flow rate F5; (kmol/sec) is used for both acid tower pump tank and
acid dilution tank. It is used to adjust the acid strength. The amount of dilution water is
determined by the production rate of sulfuric acid (F64) and product concentration (C64), i.e,

Fs1 = Foq (1-Ce)/(2.204x18.02) + Fe, Cey/(2.204x98.02) (4-11)



217

INEq. 4-11, Fg, (1-Cq,)/(2.204%18.02) isthe amount of water in sulfuric acid solutionand Fg,
Ce/(2.204x98.02) is the amount of water that is used to react with sulfur trioxide to produce
aulfuric acid. Constants, 18.02 and 98.02, are the molecular weight for water and sulfuric acid.
The converson, 2.204 ll/kg, and molecular weight constants are used to converted the flow rate
of F64 from Ib/sec to kmol/sec for F51.

The congraint for theratio of oxygen to nitrogen inthe air is.

r % aw2nyr [ o (4-12)

The steam from superheater SS7 is splitted into two streams SS70 and SS14. SS70is
used for the turbine of the compressor (Fan in Figure 4.3) and SS8 is the output of steam from
the turbine. Theflow rate of SS8isthe same as SS70, and the enthal py of SS70isreduced after
passing the energy to theturbine. Therefore, SS8is called lower pressure steam stream, and the
stream SS14 isthe high pressure steamstream.  Theflow ratesfor lower and high pressure steam

sreams are Fsg and Fg;, in kmol/sec.  The production rates of lower and high pressure steams

are determined by:

Fs; = Fgg + Fgpa (4-13)
and

Fss(hs70 - hss) = Wiurtine = Foa(Poa - Poa)/poane I (4-14)

where the flowrates for sseam streams SS70 and SS8 arethe same, i.e., Fs;0 = Fgg EQ. 4-13is
a mae baance over the slit of the stream SS7.  Eq. 4-14 is the energy balance on the
compressor to determine the amount of steam required by the turbine. In these two equations,

Fistheflow rates of steam in kmol/sec, and h is the steam enthapy in MMJKkmol. Py; and Py,
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is the inlet and discharged pressure of the compressor (Fan in Figure 4.3) for gas Streams in
kg/n?, and p isthe density of gas stream in kg/ne. np and n, are the compressor efficiency and
mechanica efficiency. They are 0.65 and 0.9 respectively (Zhang, 1993).

Inequality Condraints. In plant profit (economic) optimizetion, a number of inequality

congtraints are imposed on the optimization based on the equipment capacities, rawv materia
avalability, product qudity requirements, operation condition restrictions, and environmentd
concerns. Without these types of restrictions, the optimal operation conditions from economic
optimization may be infeasible.

For sulfuric acid process, the inequality congtraints that will bound the optima solution
inthe feasble operationregionare givenin Table 4-6. Thefirg redtrictionistheair flow ratefrom
compressor which affects the gas concentrations in the reactor train, the converson of sulfur
dioxide, the turbine steam usage and the emissionof suifur dioxide. The upper bound represents
the maximum capacity of the compressor. The second redtriction is the sulfur feed flow rate
(F50) whichis adjusted to meet the sulfur dioxide emisson environmentd requirement and is
limited by the capacities of sulfur burner and the convertors. The third restrictionisthat the SO,
emissonmust be lower thanthe maximumallowable discharge raterequired from EPA reguletion,
which is 4.0 pounds of SO, per ton of sulfuric acid produced. The remained eght restrictions
arethe temperatures of the inlet and outlet streams of four convertors. The selectionof the lower
limit for four packed-bed reactors is the minimum temperature requirement below which there
is insufficdent energy for autoignition (Doering, 1976 and Richard, 1987). The upper limit

imposed on reactor temperatures is to prevent catalyst deactivation.
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Table 4-6 Inequdity Congraints of Sulfuric Acid Process for Profit Optimization

Descriptions Inequdity Condraints Dedgn Data
Inlet air flow rate, kmol/sec 20<Fy, <40 XXXX
Sulfur Feed, Ib/min F50 < 1600 1460
SO, emission, Ib SO,/ ton H,S0, F21S0,/F64< 4 4.0
1<t bed inlet temperature, F 780 < T06 < 1150 788
1<t bed outlet temperature, F 780 < TO7 < 1150 1143
2nd bed inlet temperature, F 780 < TO8 < 1150 824
2nd bed outlet temperature, F 780 < TO9 < 1150 967
3rd bed inlet temperature, F 780 < T10 < 1150 824
3rd bed outlet temperature, F 780 < T10 < 1150 869
4th bed inlet temperature, F 780 < T16 < 1150 797
4th bed outlet temperature, F 780 < T16 < 1150 835

Summary. The development of congraint equations for the plant model was discussed
above. Thephysica properties of sreamsaregivenin Appendix C. Thedetall kinetic modd for
SO, oxidation reaction is described in Appendix D. In the following section, this plant modd
will be vdidated by comparing the results from the GAM S smulation with plant desgn data.

C. Vdidation of Process Modedl

Based onthe method proposed in previous chapter, the process variables are classified

as measured variables and unmeasured variables according to the availability of measurements

from plant distributed control system, aswell as the observability and redundancy of the plant
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model. Also, the heat transfer coefficientsand reaction effectiveness factors for four convertors
are classfied as process parameters because they are time varying and do not change with the
operation conditions.

The process variables that are classified as measured variables are given in Tables 4-7,
and process parametersare givenin Tables4-8. In Table4-7, the names, brief descriptions, and
the design vaues for the measured variables are given. The process parameters include seven
heat transfer coefficients and four reaction effectiveness factor. The names, description, and
design vaues of these parameters are given in Table 4-8. The values of parameters given in
Table 4-8 were determined by the Smultaneous data reconciliation and parameter estimation
usng the design data for measured variables given in Table 4-7. In totd, the processmodel for
aulfuric acid plant has 43 measured variables, 732 unmeasured variables, and 761 linear and
nonlinear equality condraints. The inequdity congraints given in Table 4-6 are incorporated as
bounds for the corresponding variables in the program.

The accuracy and vaidityof the processmode are examined by comparing the Smulation
results from the process modd with the plant design datafor the sulfuric acid plant. Firt, the
process congraint equations for entire plant are examined unit by unit using Fortran programs.
The condraint equations for each unit are writteninaFortran programto cal culatethe parameters
and operating conditions in the unit. The predicted results by these Fortran programs are
compared withthe plant design datato verify the materia and energy balance equations for each
unit. Then, the congtraint equations for the entire plant are written in a GAMS program to

conduct smultaneous data reconciliation and parameter



Table 4-7 The Plant Design Data of Measured Variables for the Sulfuric Acid Plant

M easurement

Description

Mant design
data
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T04
T05
T06
TO7
T08
T09
T10
T11
T13
T14
T15
T16
T17
T19
T20
T21
158
159
T60
T61
TS1
TS2
TS3
THA
TS7
FO4
FO5
F14
F20
F50
F58
F59
F60
F61
FS1
FS5
PS5
PS7

CSOZ
Cop
C58
C60

Temperature of gas stream S04, °K

Temperature of gas stream S05, °K

Temperature of gas stream S06, °K

Temperature of gas stream S07, °K

Temperature of gas stream S08, °K

Temperature of gas stream S09, °K

Temperature of gas stream S10, °K

Temperature of gas stream S11, °K

Temperature of gas stream S13, °K

Temperature of gas stream S14, °K

Temperature of gas stream S15, °K

Temperature of gas stream S16, °K

Temperature of gas stream S17, °K

Temperature of gas stream S19, °K

Temperature of gas stream S20, °K

Temperature of gas stream S21, °K

Temperature of sulfuric acid stream S58, °C
Temperature of sulfuric acid stream S59, °C Temperature
of sulfuric acid stream S60, °C

Temperature of sulfuric acid stream S61, °C
Temperature of compressed water stream SS1, F
Temperature of compressed water stream SS2, F
Temperature of compressed water stream SS3, F
Temperature of compressed water stream S$4, F
Temperature of superheated steam stream SS7, F
Totd molar flow rate of gas stream S04, kmol/sec
Totd molar flow rate of gas stream S05, kmol/sec
Totd molar flow rate of gas stream S14, kmol/sec
Tota molar flow rate of gas stream S20, kmol/sec
Tota molar flow rate of sulfur stream S50, kmol/sec
Totd molar flow rate of H,SO, stream S58, kmol/sec
Totd molar flow rate of H,SO, stream S59, kmol/sec
Totd molar flow rate of H,SO, stream S60, kmol/sec
Totd molar flow rate of H,SO, stream S61, kmol/sec
Molar flow rate of steam stream SS1, kmol/sec
Molar flow rate of steam stream SS5, kmol/sec
Pressure of steam stream SS5, psia

Pressure of steam stream SS7, psia

Tota conversion of SO, to SO,

Molar fraction of SO,, 100 PPM

Molar fraction of O,

Concentration of H,SO, (wt. fraction) at steam S58
Concentration of H,SO, (wt. fraction) at seam S60

Table 4-8 Process Parameters for the Sulfuric Acid Process Modd

383.15
1396.15
693.15
890.15
713.15
792.15
714.15
738.15
438.15
355.15
594.15
698.15
719.15
546.15
405.15
355.15
82.00
118.00
82.00
93.00
220.00
310.00
403.00
500.00
750.00
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Parameters Descriptions Vaues

E (EFFI) Reaction effectiveness factor for convertor | 0.241

E' (EFFII) Reaction effectiveness factor for convertor I 0.161

E" (EFFIII) Reaction effectiveness factor for convertor |11 0.109

EV (EFFIV) Reaction effectiveness factor for convertor 1V 0.035

Uboiter(BLRU) |Heat transfer coefficient of XXXX
waste boiler

Uexss (EX65U) |Heat transfer coefficient of XXXX
cold IP heat exchanger

Uexss (EX66U) |Heat transfer coefficient of XXXX
hot IP heat exchanger

Uexs7 (EX67U) |Heat transfer coefficient of XXXX
superheater

Uexss (EX68U) |Heat transfer coefficient of XXXX
economizer 3B

Uexso Heat transfer coefficient of XXXX

(EX69CDU) economizer 4CD

Uexeoa Heat transfer coefficient of XXXX

(EX69AU) economizer 4A

edimation for evauding the performance of this plant mode using the least squares method as

givenin Eq. 3-34.

The procedure of the smulation with GAMS is shown in Figure 45. Firg, the plant

design data for measured variables listed in Table 4-7 isincluded in the GAMS program and is

treated as measurements for data reconciliation. This plant design data is consdered as

mesasurements which are necessary for reconciling process data and estimating process

parameters. Solving thisdatareconciliation problemwill smultaneoudy reconcilethe plant design

dataligedin Table 4-7 for measured variablesand estimate the process parametersin Table 4-8

and al unmeasured variables in the plant model. The reconciled plant design dataand estimated
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parameter from GAMS gmuldion are

Input data of meacurements, v

Y

Minimize: (y-x)V1(y-x)
Sulbyect to: f(x, z, B) = 0

Y

reconcile priocess variables, x and z
by this procedure should essentidly the same ¢

compared with plant design data. The

reconciled data should agree closdly withthe

plant design data since it is accurate and

as those used for the plant design. Comypare wilh decien data to evaluale
plan! modd and eshmation algprithne

The reconciled vdues for the
Figure 4.5 Procedure of GAMS Simulation

measured variables are compared with the {oEvduaeSulfuricAcd PlantModd
origind plant design data for the same

measured variablesshown in Table 4-9. 1t showed the reconciled measurementsare closeto the
part of design data that was selected to be treated as measured variables, and the largest
difference is only 0.991% of the design data. This means that the congtraint equations in the
plant model are precise and agree with the consstent plant design data. Otherwise, the
reconciled datafor these measured variables would not be close to the plant design data. Also,
this result agrees with the fact that no errors exist in the plant design data. The detall smulation
results for the sulfuric acid plant fromsimultaneous data reconciliation and parameter estimation
are compared with the plant design data for evauating the performance of the plant mode in the
following paragraphs.

Heat Exchanger Network: The important criteria for evauating the performance of

congtraint equations for heat exchangers are the predicted heat duty, heat oss and heet transfer
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coefficient. Table 4-10 gives the comparison of heat duties, heat losses, and heat transfer

coefficients between plant design dataand GAMS smulation for the unitsin heet
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Table 4-9 Comparison of Reconciled Vaues and Design Data for Measured Variables

M easurement Desgn Data Reconciled Data Rdative Difference
TO4 °K 383.15 383.15 0.000%
TO5 °K 1396.15 1396.17 0.001%
TO6 °K 693.15 692.47 0.098%
TO7 °K 890.15 890.86 0.080%
TO8 °K 713.15 712.49 0.093%
TO9 °K 792.15 792.84 0.087%
T10 °K 713.15 712.48 0.094%
T11 °K 738.15 738.82 0.091%
T13 °K 438.15 438.16 0.002%
T14 °K 355.15 355.16 0.003%
T15 °K 594.15 594.15 0.000%
T16 °K 698.15 697.94 0.030%
T17 °K 719.15 719.36 0.029%
T19 °K 546.15 546.15 0.000%
T20 °K 405.15 405.15 0.000%
T21 °K 355.15 355.14 0.003%
T58 °C 82.00 81.36 0.780%
T59 °C 118.00 119.17 0.991%
T60 °C 82.00 82.10 0.129%
T61 °C 93.00 92.90 0.107%
TS1 °F 220.0 219.99 0.005%
TS2 °F 310.0 310.00 0.000%
TS3 °F 403.0 403.00 0.000%
THA °F 500.0 500.01 0.002%
TS7 °F 750.0 750.01 0.001%
FO4 kmol/sec XXXX XXXX 0.007%
FO5 kmol/sec XXXX XXXX 0.017%
F14 kmol/sec XXX XXX 0.008%
F20 kmol/sec XHXXX XHXXX 0.020%
F50 kmol/sec 0.3445 0.3340.145%
F58 kmol/sec 14.591 14.595 0.027%
F59 kmol/sec 14.917 14.920 0.020%
F60 kmol/sec 6.953 6.953 0.000%
F61 kmol/sec 6.970 6.970 0.000%
FS1 kmol/sec XXXX XXXX 0.000%
FS5 kmol/sec XXXX XXXX 0.000%
PS5 psa 684.7 684.71 0.001%
PS7 psa 654.7 654.70 0.000%
X 0.997 0.997 0.000%
Cso 100 ppm 4,153 4,153 0.000%
Co2 mole fraction 0.045 0.045 0.000%
C58 waeght fraction 0.98 0.980 0.000%

M
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Table 4-10 Comparisons of the Model Predictions and Plant Design Data
for Heat Exchanger Networks

*

Pant Design Model Percent
Data Prediction | Difference
Hest Duty, MM Jsec. 18.31 18.13 1.0%
Cold IP Hesat
Exchanger | Hest Loss, MM Jsec. 0.428 0.296 30.8%
EX65
Trans. Coef.,  Jsec-ft>-K XXXX XXXX 2.9%
Hesat Duty, MM Jsec. 8.22 8.20 0.2%
Hot |P Heat
Exchanger | Hest Loss, MM Jsec. 0.216 0.217 0.4%
EX66
Trans. Coef., Jsec.-ft>-K XXXX XXXX 1.5%
Hest Duty, MMJ/sec. 18.41 18.36 0.3%
Superheater 1\ 41 oss MMJsec. | 0.484 0.33 31.8%
EX67
Trans. Coef., Jsec.-ft>-K YK YK 1.5%
) Hest Duty, MMJ/sec. 11.30 11.26 0.4%
Economizer
3B Hesat Loss, MM J/sec. 0.297 0.296 0.3%
EX68
Trans. Coef., Jsec.-ft>-K YK YK 35.6%
, Hest Duty, MM Jsec. 13.27 13.29 0.2%
Economizer
4CD Hesat Loss, MMJ/sec. 0.349 1.047 200.0%
EX69CD
Trans. Coef., Jsec.-ft>-K YK YK 7.5%
) Hest Duty, MM J/sec. 10.55 10.52 0.3%
Economizer
4A Heat Loss, MM J/sec. 0.277 0.242 12.6%
EX69A
Trans. Coef., Jsec.-ft>-K YK YK 1.5%
Heat Duty, MM J/ sec. 74.31 74.94 0.8%
Waste Boiler
0,
BLROOL Heat Loss, MM J/ sec. 1.95 1.95 0.0%
UA", Jsec.-K XXX XXX 1.6%

The heat trandfer coefficent for waste bailer is not available from design data, hence
the product of heat transfer coefficient and areais compared here.
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exchanger network. In addition, Table 4-11 compares the reconciled input and output
temperatures from model prediction with plant design data.

Asshown in Table 4-10 , the difference of heat duties between the smulation and plant
design data are within 1.0% for dl units in the heat exchanger network. The largest difference
among dl unitsis 1.0% of the design data for cold inter-pass heat exchanger, and the average
difference of heat dutiesfor dl unitsis 0.46% of their design deta.

Table 4-10 shows that the difference between the predictionby the smulationand plant
design datafor heat transfer coefficient iswithin 3% of plant desgn data for al units except for
Economizer 3B and 4CD. The largest and average differences of heat transfer coefficients

excduding for Economizer 3B and 4CD are 2.9% and 1.8% of the plant design data respectively.

However, the predicted heat transfer coefficients for Economizer 3B and 4CD are
different from the plant design data, and the differences are 35.6% and 7.5% of design data
repectively. Thereason for the differenceisthat the steam stream flow for these two unitsin the
origina design is different from that in present operation which is Smulated by the present plant
modd. In the plant now, the sseam stream SS2 goes to economizer 3B and then to economizer
4AC in szid. Inthe origind design, the steam stream SS2 was splitted into two streams SS2' and
SS2", where SS2' went to economizer 3B and SS2" went to economizer 4C. Then, the output
steam streams of economizer 3B and 4C were combined together as SS3 and went to

economizer 4D. The output temperature of steam stream of economizer 3B and the input
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temperature of steam stream of Economizer 4CD in origind design were different from that in

present smulation shown in Table 4-10, and the predicted

Table 4-11 Comparison of the Reconciled Temperatures from Mode Prediction
and the Plant Design Data for Heat Exchanger Networks

Plant Desgn Model Percent
Data Predictions | Differences
Hot Side.  Input, F 869.4 870.2 0.09%
Cold IP Heat Output, F 541.6 541.6 0.00%
Exchanger
EX65 ColdSide: Input F 180.0 179.6 0.22%
Output F 609.7 609.7 0.00%
HotSide:  Input, F 967.1 967.4 0.03%
Hot 1P Hesat Output, F 824.0 823.0 0.12%
Exchanger
EX66 ColdSide: Input F 609.7 609.8 0.02%
Output F 797.0 796.6 0.05%
HotSide:  Input, F 1142.9 1143.9 0.09%
Superhester Output, F 824.0 822.9 0.13%
EX67 ColdSide InputF| 4982 500.0 0.36%
Output F 750.1 750.0 0.13%
HotSide:  Input, F 541.6 541.6 0.00%
Economizer 38 Output, F 330.0 329.0 0.30%
EX68 ColdSide InputF| 3100 310.0 0.00%
Output F 430.0 403.0 -
HotSide.  Input, F 835.2 835.2 0.00%
Output, F 524.3 523.4 0.17%
Economizer 4CD [ oo gde Input F|  4c: 3100 403.0 .
EX69CD 4D: 430.0
Output F|  4C: 430.0
4D: 499.0 500.0 0.20%
Economizer 4A | Hot Side:  Input, F 524.3 523.4 0.17%
EX69A Output, F 270.0 269.6 0.15%
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ColdSde InputF| 2200 220.0 0.00%

Ouput F|  310.0 310.0 0.00%

HotSide Input, F|  2054.0 2054.0 0.00%

Waste Boiler Output, F|  788.41 788.0 0.05%
BLROOL ColdSide InputF|  500.0 500.0 0.00%
Ouput F|  500.0 500.0 0.00%

mean temperature differences for thesetwo unitsdo not match plant desgn data. This mismeatch
directly affectsthe vaues of heat transfer coefficientsfor these two units. However, thiswill give
an accurate prediction of plant operations whendatafromthe distributed control system is used.

The differences between predicted heat |osses from the smulation and the design data
vary and are as much as 200 % of design data for Economizer 4CD, 30.8% of the design data
for cold IP heat exchanger, and 31.8% of design datafor superheater 1B as shown in Table 4-
10. The reason for thisis that the magnitude of heat lossvauesis smal compared with the heat
duties and that they are very sengtive to the variation of stream temperatures. Even 0.5 K
difference of a reconciled stream temperatures from design data will significantly change the
percent error of estimated heat |oss, but does not change muchthe rdaive difference of heat duty
between its predicted value and the design data. In addition, smdl amount of water in steam
stream S$4 has been vaporized in economizer 4D in actua operating. While stream S$4 is
considered as saturated water in present plant mode, which makes the smulated heat duty of
economizer 4D isdightly lessthan the actud operation data.  This results in larger heet lossin
model prediction for economizer 4CD than the plant design data.

Table4-10 showsthat the average difference of reconciled streamtemperaturesbetween

model prediction and the plant design dataiis 0.09% exduding the steam streams for Economizer
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3B and 4CD for which the data can not be used to compared (the stream configurationof these
two units for present plant is different from one for the design). The largest and average
differences of temperatures between prediction of mode smulaionand plant desgndataare 1.8
°F and 0.37 °F respectively, for al of stream temperatures excluding the output stream of steam
of Economizer 3B and input stream of steam of Economizer 4CD. The differences of steam
stream temperatures for Economizer 3B and 4CD between the reconciled and the plant design
data are caused by the different configuration of steam stream flow as discussed above.
Insummary, the comparisons show that the predi cted heat dutiesand transfer coefficients
for the unitsin heat exchanger network are close to the plant design datawith 0.46% and 1.8%
of the average differences of the plant design data respectively. This results indicate the materid
and energy balance equations inthe plant model accurately describe the process operations. The
differences for heat losses between model prediction and design data varies for different units.
The average difference for dl units excluding Economizer 4CD is 12.65% of ther design data.

Reactor Sysem: As shown in Figure 4.3, the reactor system in the sulfuric acid plant

conggts of sulfur burner for the sulfur oxidationreactionand four packed bed chemical reactors
for the SO, oxidation reaction. The condraint equations for these units include materia and
energy balance equation as wdl as reaction rate equations. The comparisons of GAMS
smulation and plant design data for these units are given in the following paragraphs.

Insulfur burner, sulfur iscompletely converted into SO,, and 2.0% of the produced SO,
isfurther converted into SO;. The mode prediction agrees with plant design data as shown in

Table 4-12. The reconciled component flow rates of gas streams and sulfur flow rate are the
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same as the plant design data, and the stream temperatures from the model and the plant design
dataarethe same. Thedatafor heet ossin sulfur burner was not available from the plant design
data. The model predicted 5.272 MM J/sec. (or 5.1% of the total heat duty) for the heet lossin
sulfur burner. The value of heat lossin sulfur burner predicted by the plant model is reasonable
compared withthe data of heat lossesin heat exchangers. The operating temperatureinthis unit
isashigh as 1396 K, and a larger amount of heat loss is expected as compared with the heat
exchangers.

Table4-12 The Comparison of Modd Prediction and Plant Design Data
for Sulfur Burner

Desgn Data Model Prediction
F04S0,-F05S0,, Kmol/sec. 0.0 - xxxx 0.0 - xxxx
F04S0,-F050; , Kmol/sec 0.0 - xxxx 0.0 - xxxx
F040,-F050, , Kmol/sec XXXX = XXXX XXXK= XXXX
FO4N,-FO5N, , Kmol/sec XXXX = XXXX XXXX = XXXX
Temp. (S04 -S05), K 383.2 - 1396.2 383.2 - 1396.2
Hest |oss, MM J/sec. - 5.272

For four packed-bed reactors, the reconciled gas component flow rates and stream
temperatures from model prediction are compared with plant design data, and they are shown
in Table 4-13 through 4-16. These four tables show that all component flow rates predicted by
the plant mode are the same as the plant design dataand the differences of streamtemperatures

between the reconciled and plant design data are less than 0.7 K.
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The GAMS smulation predicts the effectiveness factors of the SO2 oxidation reaction
as0.241, 0.161, 0.109, 0.035 for convertorsl, 11, 11, and IV. These effectivenessfactors are
parametersin the plant model. As discussed previoudy, the effectiveness factors

Table 4-13 The Comparison of Modd Prediction and Plant Design Data
for Convertor |

Desgn Data Model Prediction

FSO, (mOW Kmol/sec XXXX = XXXX XXXX = XXXX
FSO, (mOW Kmol/sec XXXX = XXXX XXXX = XXXX
FO, (MO Kmol/sec XXXX = XXXX XXXX = XXXX
FN, ("0 Kmol/sec XXXX = XXXX XXXX = XXXX
Conversion of SO, 62.5% 62.5%
Temp. (S06 - S07), K 693.2 - 890.2 692.5 - 890.9
Effectiveness factor - 0.241

Table 4-14 The Comparison of Modd Prediction and Plant Design Data

for Convertor |1
Desgn Daa Mode Prediction

FSO, (MO Kmol/sec XXXX = XXXX XXXX = XXXX
FSO, (MO Kmol/sec XXXX = XXXX XXXX = XXXX
FO, (mOW Kmol/sec XXXX = XXXX XXXX = XXXX
FN, (oW Kmol/sec XXXX = XXXX XXXX = XXXX
Conversion of SO, 86.9% 86.9%
Temp. (S08-S09), K 713.2-792.2 712.5-792.8
Effectiveness factor - 0.161
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Table4-15 The Comparison of Modd Prediction and Plant Design Data

for Convertor Il
Desgn Data Model Prediction

FSO, (MO Kmol/sec XXXX = XXXX XXXX = XXXX
FSO, (MO Kmol/sec XXXX = XXXX XXXX = XXXX
FO, (mOW Kmol/sec XXXX = XXXX XXXX = XXXX
FN, (MO0 Kmol/sec XXXX = XXXX XXXX = XXXX
Conversion of SO, 94.8% 94.8%
Temp. (S10 - S11) 713.2 - 738.2 712.5-738.8
Effectiveness factor - 0.109

Table4-16 The Comparison of Modd Prediction with Plant Design Data

for Convertor IV

Desgn Daa Mode Prediction
FSO, (MO Kmol/sec XXXX = XXXX XXXX = XXXX
FSO, (MO Kmol/sec XXXX = XXXX XXXX = XXXX
FO, (mOW Kmol/sec XXXX = XXXX XXXX = XXXX
FN, (oW Kmol/sec XXXX = XXXX XXXX = XXXX
Conversion of SO, 99.7% 99.7%
SO, emission, PPM 400 400
Temp. (S16-S17), K 698.2 - 719.2 697.9 - 719.4
Effectiveness factor - 0.035
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are lump parameters that combine al of the mismatches in the kinetic model.  This includes
current bulk density and current activity of the catayst, variation of red wet surface of catalyd.
The definition of these reaction effectiveness factor parameters are dightly different from the
origind definition in kinetic theory. In kinetic theory, the reaction effectiveness factor is defined
astheratio of intringc reactionrate that ismeasured under no other masstransfer limitationto the
real reaction rate that is measured with mass transfer limitation. Therefore, the reaction
effectiveness factor under this definition only reflects the effect of mass transfer rates. The
reaction effectivenessfactor defined inthe present model isalump parameter whichincorporates
more mismatch information in the process. Although there is no data for reaction effectiveness
factors avalabdle from plant design data for comparison, agreement between the plant model
prediction and plant design data for component flow rates and conversions of sulfur dioxide
indicatesthat the vaues of these parametersareaccurate. Thereactor effectivenessfactorswere
origindly determined from the empirical formulas with the assumption of pseudo first order
reaction. The modification of the reaction effectiveness factors to plant parameters provides
better smulations of the plant.

The step Size isan important parameter in discretizing the differentid equaionsto have
an accurate solution. The differentia balance equations for four convertors were discretized as
dgebraic difference equations usngimproved Euler’ smethod. A comparison of the solutionsfor
various step sizesis presented in Tables 4-17 and 4-18 for SO, flow rate and totd flow ratein
Convertors | and IV. Tables 4-17 and 4-18 show the tota flow rate and SO, flow rate as a

function of step size through the Convertors| and IV. Step number
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Method for Convertor |
Position Totd flow rate of gas stream in Convertor |
ZIL 5 steps 10 steps 50 steps 100 steps 200 steps
0.0 2.99700 2.99700 2.99700 2.99700 2.99700
0.2 2.97966 2.97960 2.97963 2.97964 2.97964
0.4 2.95668 2.95629 2.95621 2.95620 2.95620
0.6 2.93018 2.92926 2.92898 2.92897 2.92897
0.8 2.90901 2.90697 2.90642 2.90641 2.90640
1.0 2.89791 2.89479 2.89412 2.89410 2.89410
Position SO, flow rate of gas stream in Convertor |
Z/IL 5 steps 10 steps 50 steps 100steps 200 step
0.0 .33700 .33700 .33700 .33700 .33700
0.2 .30231 .30220 .30227 .30228 .30228
0.4 .25636 .25557 .25541 .25541 .25541
0.6 .20335 .20152 .20096 .20094 .20094
0.8 .16103 .15695 .15585 .15581 .15580
1.0.0 .13882 13257 13124 13121 13120

Table 4-18 Comparison of Various Step Sizes for Improved Euler’s

Method for Convertor 1V

Position Totd flow rate of gas stream SO, flow rate of gas stream

ZIL S5steps 10steps 50 steps 100 steps| 5 steps 10 steps 50 steps 100 steps
0.0 |251100 251100 251100 251100 |.01800 .01800 .01800 .01800
0.2 |250942 250943 2.50942 250940 |.01485 .01487 .01485 .01480
0.4 250779 250780 250779 2.50772].01158 .01161 .01159 .01144
0.6 |2.50609 250610 2.50609 2.50597(.00818 .00819 .00817 .00795
0.8 |2.50434 250434 2.50433 2.50419 |.00467 .00468 .00466 .00438
10 1250282 250271 250267 250255100163 00143 00134 00111
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of 5, 10, 50, 100, and 200

0.03
were used. Also, the total — SO2 flow rate - Total flow rate |2.518
0.025
flow rate and SO, flow rate 0.02 2514
) B I
profiles are shown in Figure &’0'015 \ 251 &

0.01 \
46 for Convertor IV. 0.005 \ 2.506

]

Comparison result of 0 2 502
0 0.2 0.4 0.6 0.8 1

Convertor | shows that Length, Z/L

there was two significant Figure 4.6 Flow Rate Profiles for Convertor IV

figures of accuracy for the
flow rate of sulfur dioxide and four significant figures of accuracy for the totd flow rate for step
number of 10. For step number of 100, there was six significant figure of accuracy for the total
flow rate. The comparison result of Convertor IV shows that there was two significant figures
of accuracy for the flow rate of sulfur dioxide and four significant figures of accuracy for the total
flow rate for step number of 5. Since concentration of SO, is very smdl in Convertor [V, the
reaction rate is very smdl, and it became zero or a negative vaue for step number larger than
100. Thismay be caused by round off and truncation errors. An interva size of five sepswas
used in this modd for Convertors| to V. Based on the comparison results of step sizes, it is
recommended that 50 steps be used for Convertors | and Il and 10 steps be used for
Convertors 1l and IV.

Summary. The plant model for the sulfuric acid plant written in GAMS program

accurately predicts the conversion from sulfur to sulfuric acid product and the extraction of hest
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generated inthe processesto produce steamas a by-product. The smulation results agree with
plant design datawith a overal average difference of 1% from the design data. Particularly, this
smulation successfully predicted the steam production, overal sulfur converson and SO,
emisson which are very important factors in terms of plant’s economics and emissions to

environment.



CHAPTERYV OPTIMAL IMPLEMENTATION OF ON-LINE OPTIMIZATION
A. Introduction

Inthis chapter, the current operating data for sulfuric acid plant isused to conduct on-line
optimization. Thisincludes rectifying gross errors of plant datasampled fromdistributed control
systemusing combined gross error detection and datareconciliationmethod, esimating process
parameters and reconciling plant data usng smultaneous data reconciliation and parameter
estimationmethod, optimizing plant operating set points usng the updated process and economic
models. Also, anumber of casesthat can be encountered in plant operations are investigated to
demongtrate how on-line optimization improves the plant profit and reduces the emission.

The measurement test method and the methods based on Tjoa-Biegler' s contaminated
Gaussan didribution and Lorentzian distribution are used to conduct combined gross error
detection and data reconciliation; and their performances on various magnitudes of gross errors
and multiple gross errors are evaluated based on the numerica results. Also, the proposed
modified compensation strategy isincorporated with measurement test method, which is called
modified compensation measurement test (MCMT) method. It is to demongtrate how this
srategy improvesthe misrectification of data that occursindatareconciliationfromthe presence
of large grosserrors. Thisdrategy hasasgnificant advantagein termsof the method of solutions
and computation efficiency compared with the modified iterative dimination srategy, whichwas
incorporated in measurement test method and known as MIMT method.

Bothtwo-step and one-step methods are used to estimate parameters in the plant model

for onHine optimizationusng the smulated plant data. The results from these two drategies are

234
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evauated to determine the best way to conduct parameter estimationbased onthe accuracy and
compuitation efficiency of the methods. For the two-step method, astrategy to construct the new
set of measurements from step one has been proposed to avoid the interaction of both data
reconciliationinstep one (combinedgross error detectionand datareconciliation) and instep two
(smultaneous data reconciliation and parameter estimation) inChapter 111, and it isincorporated
inthe two-step method. In addition, how process model formulations affectsthe results of gross
error detection, data reconciliation, parameter estimation is discussed based on computation
results. This provides guidelines for the best way to formulate process models.

Based on the results of this research, the optima way to conduct on-line optimization is
proposed, and this is tested withthe sulfuric acid plant of IMC Agrico Company. Moreover, an
interactive on-line optimization system is developed to dleviate engineer’ seffort of applying on-
line optimization. This program incorporates the resultsof thisresearch. Findly, themain results
from this research are summarized, and a comparison with the research of other investigatorsis
given.

B. Results of On-Line Optimization Using Current Plant Data from DCS

As discussed in Chapter 111, on-line optimization takes plant data (measurements) from
distributed control systemand solvesthree optimization problems in sequenceto provide optimal
set points for digtributed control system. The following paragraphs will discuss results from
conducting on-line optimization using data from the distributed control system of the sulfuric acid

plant.
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The processmeasurementsaretaking fromthe Baily distributed control systemof sulfuric
acid plant. The digtributed control system provides the direct measurements for dl of
temperatures, pressures, and compostions and some of flow rates required for on-line
optimization. However, the direct measurements of flow rates for gas streams (air from
compressor FO4, gasesfromsulfur burner FO5, gasesfrominter-pass absorptiontower F14, and
gasesfromeconomizer 4A F20) are not available. Therefore, these measurementsare obtained
usng the discharge pressure and speed of compressor (Fan). Theflow rate of stream S04 (FO4)
is determined by the discharge pressure and speed of the compressor with the compressor
performance chart. Then the flow rates of FO5, F14, and F20 are determined by the flow rate
FO4 and assuming 2%, 94.8%, and 99.7% (99.7% isadirect measurement) of SO2 conversion
at the corresponding streams.  Also, the standard deviations of the measured variables are
needed for on-line optimization, and these values are listed in Table 5-1 aong with the names,
descriptions, and plant design data. The standard deviations were determined from plant data,
and they were given by Zhang (Zhang, 1993). In addition, two setsof plant datafromDCS are
used to conduct ortline optimization, and they are given with the optima solutions in the
subsequent tables.

The three optimization problems of on-line optimization for two-step method are
combined gross error detection and data reconciliation (data validation) using Tjoa-Bigder's

contaminated Gaussian didtribution given in Eq. 3-33, smultaneous data
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Table 5-1 Mant Design Data of Measured Variables for Sulfuric Acid Plant

Measured - : Standard
varizbles Definition Desgn Data deviation
T04, K Temperature of gas stream S04, 383.150 3.6
TO5, K Temperature of gas stream S05, 1396.176 3.6
TO06, K Temperature of gas stream S06, 692.538 3.6
T07,K Temperature of gas stream S07, 890.787 3.6
T08, K Temperature of gas stream S08, 712.554 3.6
T09, K Temperature of gas stream S09, 792.732 3.6
T10, K Temperature of gas stream S10, 712.585 3.6
T11, K Temperature of gas stream S11, 738.712 3.6
T13, K Temperature of gas stream S13, 438.083 3.6
T14,K Temperature of gas stream S14, 355.202 3.6
T15, K Temperature of gas stream S15, 594.156 3.6
T16, K Temperature of gas stream S16, 697.632 3.6
T17,K Temperature of gas stream S17, 719.628 3.6
T19, K Temperature of gas stream S19, 546.184 3.6
T20, K Temperature of gas stream S20, 405.192 3.6
T21, K Temperature of gas stream S21, 355.136 3.6
T58, C Temperature of acid stream S58, 80.857 3.6
T59, C Temperature of acid stream S59, 119.173 3.6
T60, C Temperature of acid stream S60, 82.095 3.6
T61, C Temperature of acid stream S61, 92.904 3.6
TS1, F Temperature of steam stream SS1, 219.957 3.6
TS2, F Temperature of steam stream SS2, 310.003 3.6
TS3, F Temperature of steam stream SS3, 402.934 3.6
TH, F Temperature of steam stream S$4, 500.128 3.6
TS7, F Temperature of steam stream SS7, 749.997 3.6
FO4, kmol/s Mole flow rate of gas stream S04, XXXX 0.04
FO5, kmol/s Mole flow rate of gas stream S05, XXXX 0.04
F14, kmol/s Mole flow rate of gas stream S14, XXXX 0.04
F20, kmol/s Mole flow rate of gas stream S20, XXXX 0.04
F50, kmol/s Mole flow rate of sulfur stream S50, 0.344 0.00557
F58, kmoal/s Mole flow rate of acid stream S58, 14.595 0.1637
F59, kmal/s Mole flow rate of acid stream S59, 14.920 0.1637
F60, kmol/s Mole flow rate of acid stream S60, 6.953 0.07385
F61, kmol/s Mole flow rate of acid stream S61, 6.970 0.07385
FS1, kmol/s Mole flow rate of steam stream SS1, XXXX 0.03843
FS5, kmol/s Mole flow rate of steam stream SS5, XXXX 0.05438
PS5, psa Pressure of steam stream SS5, 680.704 10.0
PS7, psa Pressure of steam stream SS7, 654.701 10.0
X, mol% Tota conversion of SO, to SO, 0.997 0.001
CS02,100ppm [Moale fraction of SO, in gas stream S21, 4.153 0.1
CO2, mol% Mole fraction of O, in gas stream S21, 0.045 0.001
C58, wt% Weight concentration of H,SO, in stream S58 0.980 0.001
C60, wt% Weight concentration of H.SO, in siream S60 0.980 0.001
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reconciliation and parameter estimation usng least squares method given in Eq. 3-34, and the
plant economic optimizationgiveninEq. 3-37. Theobjectivefunctionsinthesethreeoptimization
problems are specified in Eq. 3-34, 3-35, and 3-37 respectively. The equaity congraints are
the same for these optimization problems, and they were given in Chapter IV. In addition, the
inequality condraints given in Chapter IV are included in plant economic optimization problem.
These three optimization problems were written as three GAMS programs (DataV ali.gms,
ParaEsti.gms, and EconOpti.gms), and they were solved by GAMS. Thesethree programsare
givenin Appendix F.

The procedure to conduct on-line optimization and the program communication are
shown in Figure 5.1. As shown in Figure 5.1, firgt the plant data file (pdt6-12p.dat) from the
DCSand parameter file (pdt6-10p.pe2) fromthe last sequent of on-line optimizationareincluded
in the data validation program,

DataVdigms DaaVai.gmsis executed . Exatiets, pdi- 10

Draza Vatdat:on

‘Plaal daa, pil - Zp.da La i gms
to congtruct plant data file, pdt6-12p.dv. A
. L . ~7 Didribrtes ™ Rl L S
This data file is used in parameter ¢ C‘hfm]bﬂe_'_ ; i
T ..;-j-:t.,l'ilf,-f i
edimation  program, ParaEsti.gms, to T
e T ala Foevom alialion o
edimateprocessparametersand variables. ety sz.uu & *'“%‘;;%ifg‘?“"“
Executing ParaEsti.gms generatestwo data e T J, '
| | | Optimizd:
files  One is the edimated process EzonOpagrrs

parameters, pdt6-12p.pe2, and this data Figure 5.1 Procedure for On-Line Optimization

fileisused in plant economic optimization next and in data vdidation for the next sequent of on-
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line optimization. The other datafile is the reconciled plant measurements, pdt6-12p.pel. After
parameters are updated, the plant economic optimization program, EconOpti.gmsis executed to
generate a datafile, pdt6-12p.eol. Thisdatafile containsthe optima set points, and it issent to
digtributed control system. 1n addition, GAM S generatesacomprehensi ve corresponding output
file for each optimization program, and they are Datavdi.l€, ParaEti.Ist, and EconOpti.I<.
These files contain detall information about the solutions. All of these files (three GAMS
programs, three corresponding output files, and five datafiles) are given in Appendix F with the
samefile names.
B-1. On-Line Optimization Cycle

WhenorHine optimizationis conducted at the first time, the parameter valuesfor current
operating conditions are not available. However, these vaues must be given in the plant mode
for combined grosserror detectionand data reconciliationif two-step method is used to estimate
plant parameters. Therefore, the one-step method (simultaneous gross error detection, data
reconciliation, and parameter estimation) is conducted to estimate the vaues of plant parameters,
and these estimated va ues were used as the parameter vaues in the plant mode for combined
grosserror detectionand data reconciliationinthe first sequence of on-line optimizationcycle for
two-step method. After the firgt sequence of on-line optimization, the procedure to conduct on-
line optimization as well as data generation and exchange among on+line optimization programs
are the same as described in Figure 5.1.

The resultsof ortline optimizationgiven in the following were based onthe plant dataon

June 10, 1997, 3PM (6-10-97) and June 12, 1997, 3PM (6-12-97). The plant data on June
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10, 1997 was used to conduct on-line optimization for the first cycle, and plant dataon June 12,

1997 was used to conduct on-line optimization for the second cycle. The vaues of parameters
edimated from smultaneous data reconciliation and parameter estimation of the first cycde were
used inthe plant model for combined grosserror detection and data reconciliation of the second
cycle. Table5-2 liststhe reconciled operation conditions on 6-10-97, 3PM and 6-12-97, 3PM

and the corresponding optima set points. Inthistable, thefirst and second columnslist the names
and cost coefficientsof process variablesin the profit function. The third and fourthcolumns are
the current reconciled operating data and the optimal set pointsfromontline optimizationfor the
plant data on 6-10-97, 3PM, and the fifth and six columns are the current reconciled operating
dataand the optima set points from on-line optimization for the plant data on 6-12-97, 3PM.
As shown in Table 5-2, on-line optimization gave a 2.3% (or $313,000/year) and 3.1% (or
$410,000/year) profit improvement over current operating condition on 6-10-97 and 6-12-97
respectively if the optimal setpoints were sent back to DCS as control targets. Thisistypica of
the improvement on profit obtained from on-line optimization, and it leads to pay back periods

of six monthsto one year according to Ayda (1997).
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from Plant Profit Optimization
Plant data Plant data
Cost 6-10-97, 3PM 6-12-97, 3PM Hant
Variables oeffic design
lcents | operating | Optimal | Operating | Optimal | conditions
data |[setpoints| data St points
F50, kmol/sec  |$1.70/kmol 0.373 0.379 0.370 0.380 0.345
FS1, kmol/sec |$0.00675/kmol XXXX XXX XXX XXX XXX
F51, Ib/sec $0.00005/1b 20.83 21.15 20.64 21.21 19.15
F64, |b/sec $0.0097/1b 86.43 87.88 85.67 88.04 795
FS8, kmol/sec  |$0.0616/kmol XXXX XXXX XXX XXX XXX
FS14, kmol/sec |$0.103/kmol XXXX XXXX XXX YOO YOO
Emission, Ib SO,/ Ton H,SO, 4.2 4.0 4.1 4.0 4.0
Profit, $/second 0.4316 0.4415 0.4281 0.4411 0.3917
Profit Improvements 2.3%, 3.1%, $410,000/year

The parameters in the plant mode include seven heat transfer coefficients and four

reaction effectiveness factors for four convertors. Table 5-3 gives the estimated values of

parameters usng some of plant design data as measurementsin column two, the estimated vaues

of parameters with one-step method usng plant data on 6-10-97 in column three, and the

estimated vaues of parameters from on-line optimization with two-step method using the plant

operating data on 6-10-97 and 6-12-97 in columns four and five respectively. As shown in

columns two and three of Table 5-3, the vaues of parameters estimated by current operating

conditions are larger than the design parameter vaues. The reason is the estimated values of
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parameters are determined by the operating conditions, suchasflowratesand temperatures. If
the plant was running with a production rate that is higher than the plant design production rate,
thenthe current operating flowratesand/or temperature differences between the input and output
of heat exchangers may be larger than thosefromplant desgndata. Asshownin Table5-2, the
sulfur feed rate (F50), steam flow rate (FS1), and sulfuric acid flow rate (F64) of the two sets
of current operating data are greater than those of plant design conditions. This gave larger

estimated vaues of the parameters.



243

Table 5-3 The Estimated Parameters from On-Line Optimization

Edimated | Edimated vaues| Edimated vaues withl Estimated vaues
Parameters vduesudng| with one-step two-step method with two-step
Names plant desgn | method using 6- | using 6-10-97 plant | method using 6-

data 10-97 plant datgy data 12-97 plant data

Upgilers BLRU XXX XXXX XXXX XXXX
Ues: EX65U XXXX XXXX XXXX XXXX
Ueees EX66U XXX XXXX XXXX XXXX
Ueer, EX67U XXXX XXXX XXXX XXXX
Ues: EX68U XXX XXXX XXXX XXXX
Uggo, EX69CDU XXXX XXXX XXXX XXX
Uogon, EX69AU XXXX XXX XXXX XXXX
E, EFFl 0.24011 0.2923 0.2881 0.2789
= EFFI 0.1597 0.1471 0.1372 0.1426
E", EFFII 0.1071 0.1113 0.1111 0.1044
E", EFFIV 0.03605 0.0367 0.0396 0.0418

Tables 5-4 and 5-5lig the plant datafromDCS, constructed data from data vaidation,

reconciled data from data reconciliation and parameter estimation, and optimal set points from

plant optimization using plant data on 6-10-97 and 6-12-97. In Tables 54 and 5-5, the

measurements that were detected as containing gross errors are shown in underline under

reconstructed data column, and the values of these measurements were replaced by the

reconciled datafromdatavdidation. Six and ten measurements were identified containing gross

errorsin plant data on 6-10-97 and 6-12-97 respectively. The same six measurements (T07,
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T20, TS3, TS7, FS1, and CO2) in two sets of plant data were identified with gross errors. In

these X measurements, TO7 and T20 are the temperatures



Table 5-4 The Reconciled Data and Optima Solution from On-Line

Optimization Using Plant Data on 6-10-97, 3PM
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Measured Plant dat Recongtructed data| Reconciled data  Optimd solution from
variables ant oda from Datavdi.gms | from ParaEsti.gms EconOpti.gms
TO4 394.8 394.8 394.4 393.2
TO5 1382.0 1382.0 1381.8 1404.1
TO6 681.5 681.5 681.1 692.0
TO7 873.2 888.8 885.2 895.0
TO8 725.4 725.4 728.8 740.0
TO9 796.0 796.0 795.0 807.7
T10 709.0 709.0 710.8 731.0
T11 737.0 737.0 736.3 758.4
T13 450.4 450.4 451.8 455.4
T14 355.4 3554 354.3 397.7
T15 591.5 591.5 591.3 622.4
T16 699.8 699.8 699.4 721.0
T17 722.0 722.0 721.3 747.8
T19 533.2 533.2 536.0 548.4
T20 425.9 412.2 412.3 407.2
T21 356.5 356.5 356.3 378.2
T58 83.3 83.3 80.6 80.9
T59 1194 1194 122.2 123.0
T60 85.6 85.6 86.6 82.1
T61 100.6 100.6 99.5 92.9
TS1 233.0 233.0 233.2 219.2
TS2 315.0 315.0 312.7 308.1
TS3 430.0 3954 393.3 410.0
THA 500.0 500.0 500.0 520.8
TS7 734.0 709.0 711.8 740.0
FO4 XXX XXX XXX XXX
F05 XXKX XXKX XXX XXX
F14 XXKX XXXX XXX XXX
F20 XXXX XXXX XXXX XXXX
F50 0.3624 0.3624 0.3732 0.3790
F58 14.99 14.99 14.99 13.90
F59 15.33 15.33 15.34 14.25
Fe0 7.02 7.02 7.02 6.200
F61 7.04 7.04 7.04 6.224
FS1 XXX XXX XXX XXX
FS5 XXX XXX XXX XXX
PS5 689.7 689.7 694.4 675.7
PS7 654.7 654.7 652.9 640.0
X 0.997 0.997 0.9969 0.997
CS02 413 413 4,129 4.059
CcO2 0.0453 0.0497 0.0509 0.0457
C58 0.986 0.986 0.986 0.98
Cc60 0.986 0.986 0.986 0.98
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Table 5-5 The Reconciled Data and Optima Solution from On-Line

Optimization Using Plant Data on 6-12-97, 3PM

Veasured Plart data Reconsructed daa Reconciled dala | Opuma solaton irom
variables from Datavdi.gms | from ParaEsti.gms EconOpti.gms
TO4 395.9 395.9 396.0 393.2
TO5 1382.0 1382.0 1382.2 1402.8
TO6 679.3 679.3 679.0 694.6
TO7 868.2 883.0 881.2 895.0
TO8 723.2 723.2 724.9 739.2
TO9 794.8 794.8 793.5 809.1
T10 708.2 708.2 709.5 731.1
T11 735.9 735.9 733.6 757.6
T13 448.7 448.7 450.6 453.1
T14 355.4 3554 353.9 392.2
T15 589.8 589.8 590.5 619.6
T16 698.2 698.2 698.3 719.8
T17 7215 7215 721.3 747.6
T19 533.2 533.2 536.0 549.3
T20 424.3 412.5 411.0 404.3
T21 357.0 357.0 356.8 379.8
T58 82.8 82.8 80.6 80.9
T59 118.9 118.9 121.2 123.2
T60 86.1 86.1 87.4 82.1
T61 101.1 101.1 99.8 92.4
TS1 232.0 232.0 234.6 215.1
TS2 320.0 320.0 314.7 307.1
TS3 440.0 393.0 393.9 408.9
TS 500.0 500.0 500.2 519.9
TS7 730.0 710.0 712.0 740.0
FO4 XXXX XXX XXX XXXX
FO5 XXXX XXXX XXXX XXXX
F14 XXXX XXXX XXXX XXXX
F20 XXXX XXXX XXX XXXX
F50 0.3663 0.3663 0.3699 0.3801
F58 15.16 15.16 15.17 13.90
F59 15.51 15.51 15.51 14.25
F60 7.23 7.23 7.23 6.200
F61 7.25 7.25 7.25 6.225
FS1 XXXX XXX XXX XXKX
FS5 XXXX XXXX XXX XXXX
PS5 689.7 689.7 692.1 630.4
PS7 654.7 654.7 655.0 640.0
X 0.997 0.997 0.9970 0.997
CSO2 4.06 4.06 4.06 4.050
CO2 0.046 0.051 0.0511 0.0460
C58 0.986 0.986 0.986 0.98
C60 0986 0986 0986 098
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of gases exiting from convertor | and exiting from find absorption tower. TS3 and TS7 are the
temperatures of seam exiting from Economizer 3B and exiting fromsuperheater. FS1 and CO2
arethe flow rate of sseaminput to Economic 4A and the concentrationof O, ingas streamexiting
find absorption tower. The errorsinthese measurementsare from instrument measuring errors.
In addition, four flow rates (FO4, FO5, F14, and F20) in the plant data on 6-12-97 were
detected containing gross errors. The reason that four flow rates were detected as containing
gross errors in the same set of plant data was that dl four flow rates were cdibrated from the
same measurement sources, the discharge pressure of compressor and the speed of turbine.
Therefore, the measuring error inelther/both discharge pressure of the compressor or/and speed
of the turbine would cause gross errors in these four flow rates.
B-2. Plant Economic Optimization

Inthis section, the economic benefit fromontline optimization is sudied for plant design
data cases and current operating data cases. For plant design data cases, the parameter values
estimated by plant design data for measured variablesin Table 5-1 were used in the plant mode
for economic optimization, and the optima profit from economic optimizationis compared with
the plant profit under the plant design operation conditions. For current operation data cases, the
parameter vaues estimated by the plant data on 6-12-97 were used in the plant model for
economic optimization, and the optima profit from economic optimization is compared with the
plant profit under operating conditions on 6-12-97. Also, a number of cases that can be
encountered in plant operation are smulated to show how plant optimizationimproves the plant

profit and reduces the emisson.
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Plant Optimization for Plant Desgn Cases. In this section, the parameter vaues

determined by plant design data were used in plant economic optimization. Table 5-6 ligs the
optimization cases and compares them with plant design data. Table 5-7 lists the operation
conditions for the corresponding casesin Table 5-6. In Table 5-6, thefirst and second columns
list the names and cost coefficients of process varigblesin the profit function. The third through
gxth columns ligt the corresponding optima vaues of the process variables, the optimd profits
and the improvement over design datafor design case and cases 110 3. In Table 5-7, the first
column ligts the names of the important process

Table 5-6 The Basic Economic Cases for the Sulfuric Acid Process

Var. |Cog Cosfficients | Design datgy Case 1 Case?2 Case3
F50 |$1.7/kmol 0.3450 | 0.3456 0.3420 0.3447
FS1 |$0.00675/kmol XHXXX XHXXX XHXXX XXX
F51 |$0.00005/1b 19.15 19.29 19.13 19.25
F64 |$0.0097/Ib 79.50 80.04 79.41 79.89
FS8 [$0.0616/kmol XHXXX XHXXX XHXXX XXX
FS14{$0.1030/kmol XHXXX XHXXX XHXXX XXX
Plant profit, $/sec 0.3917 | 0.4032 0.3791 0.4009
Profit improvement -3.2% and 2.3% and
- 2.9% 80% emission 25% emission

reduction reduction
Solf) asgjtgrr‘] wso, | 404 | 400 0.742 3.00
Optimizetion objective rrgg;ze m;ii)rfr:[ze minimize emisson Z:I(g;el Er;;f::};v; tg
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Table 57 Operation Conditions of Basic Economic Cases for the Sulfuric Acid Process

Names of Desgn Lower Upper
Varizbles e e T s ™
TO4, K 383.2 393.0 373.0 393.0 373 393
TO5, K 1396.2 1428.8 1318.3] 1417.7 1296 1496
TO6, K 693.2 696.2 704.3 696.8 688 895
TO7, K 890.2 895.0 895.0 895.0 688 895
T08, K 713.2 713.9 727.3 714.9 688 895
TO9, K 792.2 796.4 801.1 796.6 688 895
T10, K 713.2 725.3 713.3 723.6 683 895
T11, K 738.2 752.6 735.5 750.3 688 895
T12, K 556.2 584.3 550.9 580.0 500 650
T13, K 438.2 431.5 443.0 432.6 388 488
T14, K 355.2 400.8 337.2 393.3 305 405
T15, K 594.2 621.8 575.5 616.6 534 654
T186, K 698.2 713.5 688.0 710.7 688 895
T17, K 719.2 739.9 702.8 735.4 688 895
T19, K 546.2 552.6 552.0 552.1 496 596
T20, K 405.2 394.4 406.4 395.5 355 455
TSI, F° 220.0 200.0 200.0 200.0 200 220
TS2, F° 310.0 296.2 309.0 297.1 260 360
TS3, F° 403.0 411.5 406.5 410.3 352 452
T, F° 500.0 510.7 504.0 509.2 450 550
TS7, F° 750.0 751.1 7725 752.2 740 800
FO4, kmol/g XXXX XXXX] XXXX XXXX 0.0 4.0
FO5, kmol/g XXXX XXXX] XXXX XXXX 0.0 4.0
F14, kmol/g XXXX XXXX] XXXX XXXX 0.7 3.3
F20, kmol/g XXXX XXXX XXXX XXXX 0.7 3.3
F50, kmol/s 0.345 0.3456 0.3420] 0.3447 0.0 0.354
FO05S03, kmol/s XXXX XXXX] XXXX XXXX 0.0 1.0
FO7S03, kmol/s XXXX XXXX] XXXX XXXX 0.001 4.0
F09S03, kmol/s XXXX XXXX] XXXX XXXX 0.001 4.0
F11303, kmol/s XXXX XXXX] XXXX XXXX 0.01 4.0
F17S03, kmoal/g XXXX XXXX] XXXX XXXX 0.0001 4.0
F20S02, kmoal/g XXXX XXXX] XXXX xxxx| 0.00005 1.0
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X 0.9970 0.9970 0.9995| 0.9978 0.0 10

variables, and the second through fifthcolumns give the corresponding va ues of these variablesfor
design and case 1 to case 3. The gxth and seventh columns list the lower and upper bounds of
these variables which were imposad in the GAMS program for economic optimization.

Case 1 wasto maximize the profit of the sulfuric acid plant with the profit function given
in FHgure3.6. Theemisson redriction isthat theamount of SO, emisson should be less than four
Ib when aton of sulfuric acid isproduced, and it was added to the economic optimization problem.
As shown in Table 5-6, the plant profit of case 1 was a 2.9% improvement in profit over the
desgncase. It canbeseenfrom Table5-7, the operating of gas streamsfor sulfur burner and four
convertors (TO4 to T11 and T16 to T17) given by economic optimization were higher than the
desgn temperatures, which were an average of 10 degree higher. This higher operding
temperatures gave higher reaction rates, and therefore, it dlowed a 0.0006 kmol/second higher
aulfur feed ratefromcase 1 thandesigndata. Hence, case 1 gave a2.9% profit improvement over
design data, which is $370,000/year of profit improvement.

Case 2 was to investigate the limitation of reducing SO, emisson. The objective in this
case was to minimize the amount of SO, discharge for per tonof sulfuric acid, i.e., F21S0O.,/F64.
In this objective function, F21S0, is the component flow rate of SO, in the stack and F64 isthe
rate of sulfuric acid product. The optimization solution showed the minimum emisson for sulfuric
acid plant was 0.74 b SO,/tonH,S0O,. Inthisoptimizaion, minimizing F21S0,/F64 wasthe man

driving force for determining the operation conditions. To achieve this, the optimization solution
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reduced 0.005 kmol/sec. aulfur feed rate (F50), increased 0.231 kmol/sec. ar feed rate(F04), and
reduced operating temperature at convertor four to the lower limit, 688 K. These changes gave
alower equilibrium concentration of SO, and higher sulfur conversion. Theoptima solution from
case 2 showed that the sulfuric acid process is able to reduce the emissonto 0.74 b SO./ton
H,SO, and achieved a 99.95% sulfur conversion.

Case 3 was to maximize the plant profit at a lower SO, emisson redtriction, i.e,
F21S0O,/F64 < 3 Ib SO ,/ton H ,SO ,. The optimization solution gave a 2.3% of profit
improvement over design data and 25% lower SO, emisson. Under the optimal operating
condition, the sulfur conversion was increased about 0.08% compared with design data and this
resulted in alower emission rate and 2.3% higher profit.

This section is to investigate the effect of the product prices on the optimal operation
conditions of the plant and to show the improvement of plant profit under optima operation
conditions over the design profit of the sulfuric acid plant. Table 5-8 summarizes the optimal
operationconditions under various pricesof products and the corresponding plant profits. In Table
5-8, thefirst and second columns lig the names and the units of cost coefficients of the process
variablesin the profit function, and the third column ligts the plant design conditions with respect
to the raw materids and products. Table 5-8 shows four different economic cases and the
respective optimal operation conditions from plant economic optimization.

In Table 5-8, cases 4 and 5 were to show the effect of changein eam or sulfuric acid

prices on the optimd profit. The objective of case 4 isto maximize the plant profit function



Table 5-8 Impacts of Parametersin the Economic Mode on Plant Profits for the Sulfuric Acid Process

gi“?eg%f(;ee U |t e Case 4 Case5 Case 6 Case7
derntion | - | 2 |costcoet OPImE | Cost coe. | P | cost cout. | MY | Cost cout. | T
F50, kmol/seci $/kmol 0.345 0.3453 1.70 0.3466 0.3414 0.3492
FS1, kmol/sec] $kmol XXXX 0.00675 | XxxxX 0.00675 XXX XXX XXXX
F51, Ib/sec] &b 19.15 0.00005 | 19.27 | 0.00005 19.34 19.05 19.49
F64, Ib/sec] $lb 79.5 0.0097 79.97 0.01358 80.27 79.07 0.0097 80.87
FS8, kmol/sec] $¥kmol XXXX 0.0862 XXXX 0.0616 XXX 0.0616 XXX XXXX
FS14,kmol/sec] $kmol XXXX 0.144 XXXX 0.103 XXXX 0.103 XXX XXXX
Optima profit $0.4963/sec $0.7142/sec $0.2346/sec $0.7844/sec
Plant design profit $0.4817/sec. $0.7001/sec $0.2261/sec $0.7712/sec
Profit improvement over current 33% 2 0% 38% 1.7%

Plant operation conditions
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given in Figure 3.6 with a40% of price increase for both high and low pressure steams. Under
this objective, the economic optimization gave the optima operating conditions that could
achieved 3.3% profit improvement over the plant design conditions. The objective of cae5is
to maximize the plant profit function given in Figure 3.6 with a 40% of priceincreasefor sulfuric
acid. Under this objective, the economic optimization gave optima operating conditions that
could achieved 2.0% profit improvement over the plant design conditions.

Cases 6 and 7 were to investigate how plant optimizationimprovesthe plant economics
for some specia cases, suchas plant must run under reduced rate for certain products. Case 6
assumed that the production rate of the sulfuric acid was more than the market demand; and
therefore, the operating objective was to produce more seams only, i.e., P = FS8 S.¢5 + FS14
Srs14- Theobjective of case 6 wasto maximize the profit from steam only. Under thisobjective,
the economic optimizationgave the optima operating conditions that could achieved 3.8% profit
improvement on steam products over the plant design conditions. Case 7 assumed that the
production rate of steam was more than the market demand; and therefore, the operating
objective wasto produce more sulfuric acid only, i.e, P=F64 Scs,. Theobjectiveof case 7 was
to maximize the profit of sulfuric acid only. Under this objective, the economic optimization gave
the optima operating conditions that could achieved 1.7% profit improvement on sulfuric acid
product over the plant design conditions.

Profit Senstivity to Parameters: The impact of the variations of plant parameters onthe

optima profit was sudied using the plant design data. Table 5-9 shows the impacts of these

parametersonthe plant profitsfor cases 8 through 10. In case 8, it was assumed that the catayst
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in convertor 111 was replaced with other shape of catayst; and therefore, the reaction
effectivenessfactorsinthis convertor increasesfrom0.11t0 0.13. Incase9, it was assumed that
the catalyst inconvertor 1V was replaced with other shape of catayst; and therefore, the reaction
effectiveness factors in this convertor increases from 0.036 to 0.055. Under these new
conditions for the plant, the optimization for both cases adjusted the optimal operation conditions
to have a higher sulfur feed rate, and this resulted in a higher sulfuric acid and steam production
rates and high optima plant profit. The profit improvement under the optima operation
conditions over the design profit was 4.4% for case 8 and 5.2% for case 9.

Table 5-9 Impacts of Parametersin the Plant Modd on Plant

Profits for the Sulfuric Acid Process

Name of Var. Cost coef. le(';a(:?gn Cae 8 Cae9 Case 10
F50, kmol/sed $1.7/kmol 0.345 0.3504 0.354 0.356
FS1, kmol/sed $0.00675/kmol XXX XXX XXX XXX
F51, Ib/sed  $0.00005/1b 19.15 19.56 19.76 19.87
Fo64, Ib/sed  $0.0097/Ib 79.50 81.16 81.99 82.45
FS8, kmol/sed $0.616/kmol XX XXX XXX XXX
FS14, kmol/sed $0.103/kmol XX XXX XXX XXX
Plant parameter change Increase | Increase Increase

capacity in | cgpacity in|  capacity in

Convertor | Convertor | Convertor IV

Il v and sulfur feed

Profit, $/sed 0.3917 0.4089 0.4121 0.4137
Profit |mprqvement qyer current 4.4% 5,204 5.6%
plant operation conditions
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In case 10, the conditions of the plant was the same ascase 9. The additiond change
inthis case was that the suifur feed rate limit was increased. Under this condition, the optimal
optimizationsolutionincreases the sulfur feed rateby 0.002kmol/sec. compared withcase 9. The
profit improvement of case 10 over plant design profit was 5.6% or $727,000/year.

Plant Optimization for Current Operation: In this section, the parameters in the plant

mode were estimated using plant dataon 6-12-97, 3PM. These parametersvaueswere used
in the plant model for plant economic optimization. Also, the reconciled values of plant data on
6-12-97, 3PM were used to determine the plant operating profit for various profit functions and
to compared with the results of plant economic optimization.

Table 5-10 ligs the optima solutions from plant economic optimization for four specid
operation cases, case 11 to case 14. In Table 5-10, thefirgt to third columns list the names of
variables in the profit function, the cost coefficients, and the reconciled operation conditions of
plant data on 6-12-97, 3PM. The fourth to seventh columns list the optima solutions from
economic optimization for four specia operation cases.

Cases 11 and 12 assumed that the plant must run under a reduced rate for steam
production. Therefore, the objective function of the plant economic optimization was changed
to maximize the sulfuric acid profit withalower cost for case 11 and to maximize the production

of sulfuric acid only for case 12. Cases 11 and 12 showed that plant



Table 5-10 The Optima Solutions from Plant Economic Optimization for the Specid Operation Cases

Varides  [costansfient| FEE| ST 0 ST | ronction e | producton ets. | of SOz anisson

F50, kmol/sec | $1.70/kmol 0.370 0.484 0.385 0.377 0.3790

FS1, kmol/sec |$0.00675/kmol|  xxxx XXX XXX XHXKX XOKX

F51, Ib/sec $0.00005/Ib 20.64 21.44 21.47 21.04 21.16

F64, Ib/sec $0.0097/Ib 85.67 89.00 89.09 87.31 87.80

FS8, kmol/sec | $0.0616/kmol | xxxx XXX XXX XXKX XX

FS14, kmol/sec| $0.103/kmol XXX XXX XXX XXKX XXKX

Profit function ;5%64 F64-Crs, LS. FSB+ Sy FSI14 :+SS:.S4 F|6:4é I4S:ch:8 FS8

CreiFSL-Cry |~ oot FO4 - Cron P50~ Cray FSL g™ ~

F51 F51 - Cpgy FS1 -Cp; F51

Current plant profit, $/second 0.1809 0.8310 0.2472 0.4281

Optima profit, $second 0.1899 0.8642 $0.2554/sec $0.4397/sec

Profit Improvements 5.0% 4.0% 3.3%, 2.7%

SO, Emisson, Ib SO2/ Ton sulfuric acid 4.0 4.0 4.0 3.6
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optimizationgave’5.0% and 4.0% profit improvementsover the operating conditions on 6-12-97,
3PM respectively. Case 13 assumed that plant must run under a reduced rate of sulfuric acid
product. Therefore, the objective function of plant economic optimization was changed to
maximize the production rate of seamonly. The plant optimization for case 13 gave 3.3% profit
improvement over the current operation condition if the plant must run under a reduced rate of
sulfuric acid product. Case 14 wasto optimize the plant operation conditions with a 10% lower
emission redriction, 3.6 Ib SO2 emisson for per ton of produced sulfuric acid. The plant
optimization for case 14 adjusted the operation conditions to have 2.7 prafit improvement and
10% emission reduction compared with current operation conditions.

Summary. Plant economic optimization demondrated a potentia in improving the plant
profits and reducing pollutant emisson. The plant economic optimization showed 3% profit
improvement or 2.3% profit improvement and 25% emissonreductionover thedesignconditions
for the sulfuric acid process at IMC Agrico Company’ splant. On-line optimizationusing current
operating datademonstrated that plant economic optimization gave 2.3% ($313,000/year) and
3.1% ($410,000/year) profit improvement over the plant operation conditions on 6-10-97 and
6-12-97. Also, plant economic optimizationwas able to achieve up to 5% profit improvements
over the current plant operation conditions for some specid operating cases, such as plant must
run under cut rate of certain product. Moreover, plant optimization could assign the operation
set pointsthat reduced the SO, emissonand il achieved 2.7% profit improvement over current
operation condition.

B-3. Gross Error Detection and Data Reconciliation for Current Plant Operating Data



258

In this section, the current plant operating data given in Table 5-4 and 5-5 are used to
conduct combined gross error detectionand datareconciliationusng three methods. Thesethree
methods are TjoaBiegler's contaminated Gaussan didtribution method, measurement test
method, and robust method using Lorentzian digtribution function. The mathemetica statement
for these three methods were given in Eq.3-4 for measurement test method, Eq. 3-10 for
contaminated Gaussan digtribution method, and Eq. 3-14 for Lorentzian distribution method
repectively. Thesethreeoptimization problemswerewrittenin GAMS programs, and they were
solved by GAMS. These three GAMS programs are given in Appendix F. The gross error
detection results from these three methods are summarizedin Table 5-11 and 5-12 for the plant
data on 6-10-97 and 6-12-97.

Table 5-11 ligs the plant data on 6-10-97 and the constructed plant datafrom Tjoa
Biegler’ smethod, measurement test method, and robust method. 1n thetable, the measurements
that were identified with gross errors are showed underline. As shown in Table 5-11, Tjoa
Biegler’ smethod detected six grosserrors (T07, T20, TS3, TS7, FS1, and CO2), measurement
test method detected three grosserrors (T07, TS3, FS1), and robust method detected fourteen
grosserrors (TO4, TO7, T14, T15,T16, T17,T20, TS3, T4, TS7, F58, F59, FS1, and CO2)
among 43 measurements.

Table 5-12 ligsthe plant data on 6-12-97 and the reconstructed plant data from Tjoa-
Biegler’ smethod, measurement test method, and robust method. Inthistable, measurementsthat

were identified with gross errors were marked underline. As shown in Table 512, Tjoa
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Biegler’ smethod detectedtengrosserrors(T07, T20, TS3, TS7, FO4, FO5, F14, F20, FS1, and

C0O2), measurement test method detected three gross errors (TO7,
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Table 5-11 Comparison of the Reconstructed Data from Plant Data
on 6-10-97, 3PM for the Three Methods

MesUred 1 otdata | T-Bmethod |V OV OmELES] o i method
variables method
TO4 394.8 394.8 394.8 417.8
TO5 1382.0 1382.0 1382.0 1382.0
TO6 681.5 681.5 681.5 681.5
TO7 873.2 888.8 890.2 888.4
TO8 725.4 725.4 725.4 725.4
TO9 796.0 796.0 796.0 796.0
T10 709.0 709.0 709.0 709.0
T11 737.0 737.0 737.0 737.0
T13 450.4 450.4 450.4 450.4
T14 355.4 3554 3554 336.7
T15 591.5 591.5 591.5 572.4
T16 699.8 699.8 699.8 688.2
T17 722.0 722.0 722.0 705.0
T19 533.2 533.2 533.2 533.2
T20 425.9 412.2 425.9 413.9
T21 356.5 356.5 356.5 356.5
T58 83.3 83.3 83.3 83.3
T59 119.4 1194 1194 1194
T60 85.6 85.6 85.6 85.6
T61 100.6 100.6 100.6 100.6
TS1 233.0 233.0 233.0 233.0
TS2 315.0 315.0 315.0 315.0
TS3 430.0 3954 401.8 388.7
THS 500.0 500.0 500.0 488.4
TS7 734.0 709.0 734.0 698.9
FO4 XXXX XXXX XXXX XXXX
FO5 XXXX XXXX XXXX XXXX
F14 XXXX XXXX XXXX XXXX
F20 XXXX XXXX XXXX XXXX
F50 0.3624 0.3624 0.3624 0.3624
F58 14.99 14.99 14.99 17.73
F59 15.33 15.33 15.33 18.08
F60 7.02 7.02 7.02 7.02
F61 7.04 7.04 7.04 7.04
FS1 XXXX XXX XXXX XXXX
FS5 XXXX XXXX XXXX XXXX
PS5 689.7 689.7 689.7 689.7
PS7 654.7 654.7 654.7 654.7
X 0.997 0.997 0.997 0.997
CS02 4.13 413 413 413
CcO2 0.0453 0.0497 0.0453 0.0547
Ch8 0986 0986 0986 0986
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C60 | 0.986 | 0.986 | 0.986 | 0.986
Table 5-12 Comparison of the Reconstructed Data from Plant Data
on 6-12-97, 3PM for the Three Methods
Mesred 1 pontdata | T-Bmethod |V oV OmEtES] o it method
Var. method
T4 395.9 395.9 395.9 447.7
TO5 1382.0 1382.0 1382.0 1382.0
TO6 679.3 679.3 679.3 692.7
TO7 868.2 883.0 889.4 890.5
TO8 723.2 723.2 723.2 723.2
TO9 794.8 794.8 794.8 794.8
T10 708.2 708.2 708.2 708.2
T11 735.9 735.9 735.9 735.9
T13 448.7 448.7 448.7 448.7
T14 3554 3554 3554 320.7
T15 589.8 589.8 589.8 564.0
T16 698.2 698.2 698.2 681.0
T17 7215 7215 7215 695.0
T19 533.2 533.2 533.2 533.2
T20 424.3 412.5 424.3 424.3
T21 357.0 357.0 357.0 357.0
T58 82.8 82.8 82.8 82.8
T59 118.9 118.9 118.9 118.9
T60 86.1 86.1 86.1 86.1
T61 101.1 101.1 101.1 101.1
TS1 232.0 232.0 232.0 244.4
TS2 320.0 320.0 320.0 320.0
TS3 440.0 393.0 399.5 389.7
THSA 500.0 500.0 500.0 484.6
TS7 730.0 710.0 730.0 696.5
FO4 XXXX XXX XXX XXX
F05 XXXX XXXX XXX XXXX
F14 XXXX XXXX XXX XXXX
F20 XXXX XXXX XXXX XXXX
F50 0.3663 0.3663 0.3663 0.3663
F58 15.16 15.16 15.16 18.53
F59 15.51 15.51 15.51 18.88
F60 7.23 7.23 7.23 7.23
F61 7.25 7.25 7.25 7.25
FS1 XXXX XXXX XXXX XXX
FS5 XXXX XXXX XXX XXX
PS5 689.7 689.7 689.7 689.7
PS7 654.7 654.7 654.7 654.7
X 0.997 0.997 0.997 0.997
CS02 4,06 4,06 4,06 4,06
co2 0.046 0.051 0.046 0.060
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C58 0.986 0.986 0.986 0.986
C60 0.986 0.986 0.986 0.986

F14, FS1), and robust method detected fifteen gross errors (T04, TO7, TO8, T14, T15, T16,
T17, TS, TS3, TS, TS7, F58, F59, FS1, and CO2) among 43 measurements.

The results from these three methods for gross error detection and data reconciliation
showed that Tjoa-Biegler' s method and measurement test method gave better result than robust
method. Although the true gross error information was not available for comparison, a 10% to
20% gross errorsin measurementsis the commoncase inthe plant sampled data. Tjoa-Biegler's
method identified that 18% of measurements contain gross errors, measurement test method
identified that 7% of measurements contain gross errors, and robust method identified that 34%
of measurements contain gross errors.

Asdiscussed in Chapter 111 for the comparison of rddive efficiencies of disributions,
variation of Lorentzian digtribution is larger than the contaminated Gaussian distribution and
normd didribution; and therefore it has a lower relative efficiency (or low accuracy) when
measurements do no have very larger gross errors. The numerical studies of gross error
detection, whichwill be discussed inSectionD of this chapter, showed that L orentzian committed
alarger number of typel errors (i.e., migdentify anorma measurement as one withagrosserror)
than Tjoa-Biegler’ smethod and measurement test method whenthe gross errors in messurements
are less than 20F (as shown in Figure 5.5 and Figure 5.6). Therefore, it is reasonable to
concludethat robust method using L orentziandisiributionfunction committed some type | errors
inidentifying gross errorsfor the plant dataon 6-10-97 and 6-12-97, and some of measurements

that did not have gross errors were misidentified with gross errors.
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B-4. Sengtivity of Results for Combined Gross Error Detection and Data Reconciliation to
Parameter Vauesin the Plant Model

Inthis section, the effect of parameter vaues in the plant model onthe result of combined
gross error detection and data reconciliation is given. In Chapter 111, it was proposed that
parameter vaues from previous parameter estimation be used in the plant modd for combined
gross error detection and data reconciliation to construct a set of measurements from the data
sampled by DCSfor esimating current plant parameters. In this section, two sets of parameter
vaues were used in the plant model for combined gross error detection and data reconciliaion
to congtruct a set of measurements in the first sequent of on-line optimization. These two sets
of starting parameters are plant design parameters and one-step estimated parameters using
current plant data. Then the constructed measurementswere used to estimate current values of
parameters. The estimated current values of parameters were compared for these two sets of
sarting parametersto show how sengtive the results of the on-line parameter estimation isto the
darting parameter vaues in the plant modd for combined gross error detection and data
reconailiation.

Table 5-13 lids the edtimated parameter vaues usng plant operating data for two
different cases. For case of plant design parameters, the plant parameters estimated by plant
design data, which are listed incolumntwo (Set A), were used inplant modd for data vaidation

at the first sequence of on-line optimization. The parameters estimated sequence



Table 5-13 Estimated Parameters Using M easurements Reconstructed from Plant Operating

Datafor Cases of Plant Design Data and One-Step Estimated Data

Plant design parameter case One-step estimated parameter case
Parameters | get A Set B: Set C: Set D: SetE: Set F:
Names Desgn Estimated values | Estimated values | One-step estimated | Etimated values | Estimated vaues
parameters | using 6-10-97 using 6-12-97 Parametersusing 6- | using 6-10-97 using 6-12-97
plant data plant data 10-97 plant data plant data plant data
BLRU XXXX XXXX XXXX XXXX XXXX XXXX
EX65U XXXX XXXX XXX XXXX XXXX XXXX
EX66U XXXX XXX XXXX XXX XXXX XXXX
EX67U XXXX XXX XXXX XXX XXXX XXXX
EX68U XXXX XXXX XXXX XXXX XXXX XXXX
EX69CDU XXXX XXX XXXX XXX XXXX XXXX
EXG69AU XXXX XXXX XXXX XXXX XXXX XXXX
EFF 0.24011 0.2591 0.2627 0.2923 0.2881 0.2789
EFFII 0.1597 0.1400 0.1369 0.1471 0.1372 0.1426
EFHII 0.1071 0.1208 0.1123 0.1113 0.1111 0.1044
EFFIV 0.03605 0.03520 0.0390 0.0367 0.0396 0.0418
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was that firg the plant design parameters shown in column two (Set A) were used in the data
vaidation of plant data on 6-10-97. Then the reconstructed plant measurements were

used to estimated plant parameters, and the estimated va ues are shown in column three (Set B).
The parameters in set B were used in the data vaidation of plant data on 6-12-97. Then the
reconstructed plant measurements were used to estimated plant parameters, and the estimated
vauesare given in column four (Set C). For the case of one-step estimated parameters, fird the
plat data on 6-10-97 was used to edimate plant parameters using one step method
(smultaneous gross error detection, data reconciliation, and parameter estimation), and the
edimated parameter vaues were given in columnfive (Set D). These parameters (Set D) were
used in data vdidation of plant dataon 6-10-97 (step one of two-step method) to construct the
plant measurementsfor next step of parameter etimeation. The constructed plant data was used
to esimate plant parameters in step two of two-step method, and the vaues of the estimated
parameters are shown in column six (Set E). Then, the parameters in set E were used in data
vaidation of plant data on 6-12-97, and the reconstructed plant data on 6-12-97 was used to
edtimate plant parameters as shown in column seven (Set F).

As showninTable 5-13, the vaduesof parametersin Set B and Set C are closer to those
inSet A thanto Set D, and the vauesof parametersin Set E and Set F are closer to thosein Set
D thanto Set A. This meansthat the estimated vaues of parametersin step two are sengtive to
the vauesof parameters used inthe plant model of step one (combined grosserror detectionand

datareconciliation). Thisaso can be seen by the comparison of the estimated parametersusng
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plant design parameters and one-step estimated parametersinthe plant model of the first sequent

data validation for plant data on 6-10-97 and on 6-12-97.

Table5-14 showsthedifference of estimated parametersbetweenplant desgn parameter

case and one-step method case. In Table 5-14, fractional differences of estimated parameters

between plant design case (Set B) and one-step estimated case (Set E) for plant dataon6-10-97

arelised incolumntwo, and fractiona differences of estimated parameters between plant design

case (Set C) and one-step estimated case (Set F) for plant data on 6-12-97 arelisted incolumn

three. The average percentage differences are 9.6% for plant data on 6-10-97 and 10.4% for

pl afiatiietobbTHR: Svach best@rieresme of EabledctliPdwamsters Using Plant Design Data
and One-Step Estimated Data in the Recongtruction of Plant Measurements

| StE-SetB|/SetB

| SetF-SetC|/SetC

Parameters Names Using plant dataon 6-10-97 | Using plant data on 6-12-97
BLRU 0.118 0.134
EX65U 0.102 0.102
EX66U 0.047 0.049
EX67U 0.090 0.071
EX68U 0.115 0.075
EX69CDU 0.178 0.234
EX69AU 0.087 0.231
EFF 0.101 0.062
EEFLI 0.020 0.042
EFFLI 0.087 0.070
EFFLV 0.111 0.072
Average 0.096 0.104
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that the accuracy of the estimated parameters from smultaneous data reconciliation and
parameter estimation is sengitive to parameter vaues in plant mode for data validation.

The parameters used for the data validation should be close to the current operating parameter
vaues. The proposed drategy that using the parameter vaues estimated from the last sequent
orHine optimizationinthe plant mode for combined grosserror detectionand datareconciliation
is appropriate. The reasons are that these values are the most current values of parameters
available, and that they are close to the true values.

C. Theoretical Evadugtion Results

The performance of agorithms and plant modds for onHine optimization have been
theoretically evauated in Chapter I11. It was determined that measurement test method, Tjoa
Biegler's method, and robust digtribution method are gpplicable for conducting the combined
gross error detection and data reconciliation and the smultaneous data reconciliation and
parameter estimation.

In Chapter 111, the comparison of influence function and rddive efficience showed
theoretically that Tjoa-Biegler's contaminated Gaussian distribution and Lorentzian distribution
(robust function) methods have better performance in terms of less sengitive to the presence of
gross errors and higher relative efficiency when measurements contain both random and gross
erors. TjoaBiegler's method is more effective for moderate size of gross errors, while
Lorentzian distributionmethod is more effective when a gross error is extremely large. Norma
distribution of measurement test method hasthe highest relative efficiency (estimation accuracy)

when measurements only contain random errors.



268

Ingenerd, two separate steps are required to estimate process parameters, i.e., step one
to conduct gross error detection and data reconciliation to generate a set of measurements that
only contains random errors, and step two to conduct Smultaneous data reconciliation and
parameter estimationusing the set of measurements generated in step one. Thisis the two-step
esimetion. Based on the fact that both contaminated Gaussian distribution and Lorentzian
distribution methods have the ability to automatically rectify both random and gross errors in
measurements, it was proposed in Chapter I11 that grosserror detection, datareconciliation, and
parameter estimation can be conducted smultaneoudy usng the plant data from distributed
control system. Thisisthe one-step estimation.

Asdiscussed in Chapter 111, precise and accurate process modd is essentia for ortline
optimization. The processmodel serves as condraintsin the nonlinear optimization problemsfor
data reconciliation, parameter estimation, and economic optimization. In addition, the process
model used for data reconciliation optimization problems must satisfy the observability and
redundancy. The genera procedure to formulate a process model and the method to examine
the observahility and redundancy of a plant model have been proposed in Chapter 111, and it was
gpplied to sulfuric acid process which will be described in later section.

InChapter 1V, the plant modd for the sulfuric acid plant was formulated as a set of open
formequations based on the conservation lawsand the engineering knowledge. The parameters
in the plant model were selected, and they include seven heat transfer coefficients for seven heat
exchangers and four reaction effectiveness factors for four packed-bed reactors given in Table

4-8. The plant required 43 measured variables to satisfy the observability and redundancy, and
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these measured variableswere givenin Table 5- 1 withthe plant design vauesfor these variables.
In total, the sulfuric acid plant modd has 775 process variables, anong which 43 variables are
measured variables and 732 are unmeasured variables, 761 linear and nonlinear equality
congraints, and 11 parameters.

D. Numerica Evauationof Combined Gross Error Detection and Data Reconciliation M ethods
Usng Sulfuric Add Plant

I nthissection, the measurementstest, contaminated Gauss andistribution, and Lorentzian
digribution methods are used to conduct the combined gross error detection and data
reconciliationusngsmulated plant data. The nonlinear optimization problem statementsfor these
methods were givenin Eq. 3-4 for measurement test (or least squares) method, Eq. 3-10 for
contaminated Gaussan digtribution method, and Eq. 3-14 for Lorentzian distribution method
respectively. For the contaminated Gaussiandidtribution, the equa prior probability for random
and gross errors is assumed, whichisO = 0.5 in the distribution function. Also, two vaues (10
and 20) are used for parameter b in the distribution function to evauate how the shapes of the
contaminated distribution affect the performance of the dgorithm. Parameter bistheratio of the
standard deviation for gross error to the one for random error in the digtribution. The terms
TB10 and TB20 will be used to represent the contaminated Gaussian distributionwith parameter
b equa to 10 and 20 respectively.

Although the objective functions are different for these three methods, the congtraints of
the plant modd in Eq. 3-4, 3-10, and 3-14 for these methods are the same. These condtraints

were describedinthe plant model formulationchapter. The detail plant mode includes 761 linear
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and nonlinear congtraints and 775 process variables of which 43 variables are measured. The
true vaues and standard deviations of these measured variables are given in Tables 5-1
previoudy. The plant design data for the measured variableswas used asthe true vauesand the
standard deviations were determined by the plant operationdatafromdistributed control system

which were provided by IMC Agrico Company and reported in Zhang' thesis (Zhang, 1993).

Inorder to compare and evauate the performance of combined grosserror detectionand
data reconciliation agorithms, the true measurement errors must be known and the same
measurements must be used for these methods.  Therefore, a number of sets of measurements
with known random and gross errors were constructed and used to conduct combined gross
error detection and data reconciligtion. Each set of measurements was constructed by adding
random errors e and gross errors a* to the true values of measured variables, X, i.e.,

y=x+e+a* (5-1)
wherey representsthe smulated plant measurements and x denotesthe true values of measured
varidbles. a* represents the gross errors added to true values of measured variables. The
dementsinvector * will be one for the measured variableswithgross errors and will be zero for
other measurements. “d’ represents the magnitude of agross error.

The random errors e were generated by pseudo random generator in GAMS with a
function NORMAL, i.e,

&(i) = NORMAL( 0, F()) (5-2)



271

Therandomerrorsgenerated by Eq. 5-2 will possess the normd digtributioncharacter withzero
mean and F? variance, and these random errors are added to the true vaues of dl measured
variables.

The generation of smulated plant data was incorporated in the GAMS program. For
each run, the seed number for randomerrors and the location and magnitude of grosserrorswere
specified; and a set of new measurements was automatically generated to conduct data
reconciligtion.

The performances of these agorithms were evaluated based on the correct gross error
detection rate, type | error, type Il error, and the error reductions of measurements from the
results. The gross error detection rate isthe ratio of number of gross errors tha are correctly
detected to the number of total gross errors smulated in measurements. It was caled overdl
power by Narasmhan and Mah (1987). This criterion indicates how successful an dgorithm
detects grosserrorsand quditatively reflects the accuracy of the rectification from an agorithm.
Higher gross error detection rate means better performance by the agorithm. Type | and Il
errors reflect faulty decison by the test satistic. If the null hypothesisis true for a measurement
(i.e., ameasurement does not contain grosserror) and the test rgjects the null hypothesis (i.e., the
test misidentifies the measurement as having agrosserror), thenthisiscaled atypel error. The
number of type | errors indicates quditatively the degree of the misrectification by an agorithm.
I the null hypothesisis not true for ameasurement (i.e., a measurement contains grosserror) and

the test accepts the null hypothesis (i.e., the test misidentifies the measurement as not having a
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grosserror), thenthisiscaled atypell error. The number of typell error representsthe number
of gross errors that are not detected.

The both random and gross error reductions of a set of measurements after data
reconciliationareimportant criteriato eva uate the performance of adatareconciliationagorithm.
They quantitatively indicate the accuracy of error rectification from the data reconciliation. The
relaive error reduction after data reconciliation for each measurement, >;, is determined by:

> =(Eni-&)/en (5-3)
where e,; isthe true measurement error and is the absolute difference between a measurement
y; and itstruevauex, i.e.,

€n = | Yi - %] (5-4)
e; isthe remaining error of the reconciled vaue for a measured varigble after datareconciliation
and it is the absolute difference between the reconciled vaue %X, and the true vaue x, for a

measured variable, i.e,

& = |% - x| (5-5)

The optimization problem of Eq. 3-4 for

Ge-erate zimulate: plznt dzta

measurement test, Eq. 3-10 for Tjoa-Biegler's ¥
&bz the opti~izzion problem

contaminated Gauss andistributionmethod, or Eq.
¥

3-14 for Lorentzian digtribution method was Feconziled daza of crocezs variaZles

\
[d2ntify gross zrmos

written as a GAMS input code and solved by

GAMS. The procedure is shown in Figure 5.2.

Figure 5.2 Procedure of GAMS

Firdt, the smulated plant data is generated with Implementation
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Eqg.5-1, and then this set of measurements is used in the optimization problem to reconcile the
process variables by solving the optimization problem. Based on the reconciled data,
measurement errors are determined and compared with the test statistic to determine if a
measurement contains gross error.

The results from the optimization solution of combined gross error detection and data
reconciliation agorithms were compared with the true information to determine the evauation
criteriac gross error detection rate, number of type | errors, and relative error reductions, which
are the indication of dgorithm performance in rectifying random and gross errors and are a
function of the magnitudes and numbers of gross errors in a set of measurements.  Then, the
performance of these dgorithms was evauated based on these criteria. Firdt, the cases of the
sngle gross error with various error magnitudes were conducted to investigate the ability of
detecting gross error and rectifying the errors by these dgorithms. Then, the cases of multiple
gross errors were examined to see how multiple gross errors affected the rectification results.
Also, the proposed modified compensation Strategy was incorporated with measurement test to
demondrate the improvements in the misrectification from the presence of larger gross errors.
D-1. Comparison of Algorithm Performances for the Single Gross Error Cases

The objective of thissection is to compare the performance for data reconciliation by
these methods and to show how the digtribution functions affect the results. For this purpose,
each set of the smulated plant data was generated by adding one gross error to one of the
measured variablesand random errorstothetrue vaues of dl measured variables as stated in Eq.

5-1 withone dement in* being one and others being zero. The magnitude of a gross error was
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Figure5.3 Comparison of Detection Rates for one Gross Error Added to one
Measurement in the Intermediate Streams

set from 3F to 30F. Thenthe normd distribution for measurement tet, contaminated Gaussan
digtribution for Tjoa-Biegler' smethod, and Lorentziandistribution for robust method were used
to reconcile the data using the smulated plant data. The performance of these dgorithms was
compared based on the data reconciliation and grosserror detectionresults. The same 645 sets
of amulated plant datawere used for each dgorithm. Each set of Smulated plant data contained
only one gross error. In these 645 sets of data, each 45 sets of data had the gross error in the
same measured variable (one of 43 measurements)withgross error magnitudesin 3F, 5F, 10F,
20F, and 30F and three different random seed numbers.

The datidtica results from 2580 runs for the gross error detection rate, number of type
| errors, and error reductions of these dgorithms were summarized as functions of gross error
meagnitudes, and they are shown in the fallowing figures. In these figures, the legends, MT, TB,
and LD are for measurement test method, Tjoa-Biegler's method and Lorentzian distribution

methods respectively.
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Gross Error Detection Rate and Number of Typel Errors: Figures5.3 and 5.4 compare

the gross error detection rates for the cases that one gross error was added to one measured
varigble in the intermediate streams of the process and for the cases that one gross error was
added to one measured variable inany streams of the process.  Figure 5.3 isto show how well
the algorithms rectify the gross error when this gross error exists in the measured varidble in an

intermediate stream of the process. In the plant model, these types
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Figureb .4 Comparison of Detection Rates for One Gross Error Added to one
measurement in any stream in the Process

of measured varigblesarein condraint equations for a process unit as defined in Chapter 1V, and
the reconciled values of these types of measured variables must satiafy more balance equations
than those of measured variablesin the input or output stream of the process.

For dl dgorithms, Figure 5.3 showsthat the gross error detection rate increases withthe
increaseinthe 9ze of grosserrors. All methods have essentidly the same detection rates of 95%
for the gross error magnitude larger than 5F.  Summarized over 645 runs results, al of three
dgarithms are able to correctly detect over 95% of the gross error that was added to the
measured variables in the intermediate streams and whose size was larger than 5F. For gross
error szefrom3F to 5F, Tjoa-Biegler’ smethod (TB) has better performance than measurement
test (MT) method and Lorentzian distribution (LB). For grosserror sizeat 3F, the measurement
test method was not able to detect the gross error at dl. The reason is that the criticd vaue
determined by Eq. 2-23 (Mahand Tamhane, 1982) for normd distributionwith 95% confidentia

level isabout 3.2, whichislarger thanthe smulated grosserror ze, 3. Asdiscussedin literature
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review, it has been reported that the criterionto determinetheindividud sgnificant level proposed
by Mahand the coworkersistoo conservative, and thisresultsinlarger numbersof typell errors
for smdl gross errors.

InFigure 5.4, gross error detection rates of the agorithms are compared for the cases
that one gross error was added to a measured variable in either intermediate streams or in the
beginning or ending sreams. The figure shows that the patterns of detection rates versus gross
error gze are amilar to onesin Figure 5.3 for the case that one gross error was added to the
measured varigble in the intermediate streams.  The detectionratesincrease with the increase in
size of agrosserror for the error lessthan 5F, and they remain a the uniform and higher leve for
agross eror above 5F. However, the detection rates for all ranges of a gross error are about
25% less than the case where a gross error was added only to the measured variables in the
intermediate streams.  The pattern of grosserror detectionratesversus error Szefor TB and LD
isthe same asthe cases that agross error was added to the measured varigble inthe intermediate
streams with 20%-30% lower error detection rates. The measurement test method has higher
gross error detection rates than TB and LD method for a standardized error greater than 10.

Figures5.5 and 5.6 show the dependency of numbers of type | errors on the size of the
gross error.  The patterns of curves in the figures show that measurement test method is very
sengtive to the magnitude of the grosserror; the number of typel errorsincreases exponentialy
withthe increase of magnitudes. Tjoa-Biegler' smethod has avery smal number of typel errors

for standardized errors less than 20. However, the number of type | errors committed by TB
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Figure5.5 Comparison of TYPE | Errorsfor One Gross Error Added to one
measurement in the Intermediate Streams over 390 runs

increases with a pattern smilar to MT for alarger gross error.  This agrees with the prediction
from theoretica evauationas discussed in Chapter 111. The contaminated Gaussian distribution
has the functional form of the norma distribution and it is not able to bound the effect of a
extremdy large gross error. Lorentzian ditribution method has a very uniform number of type
| errorsfor dl rangesof agrosserror sze. Itisableto bound the effect of alarger or eveninfinite
gross error as discussed in theoretica evauation of Chapter 111. It is not sengtive to the

magnitude of agross error.

As shown in Figures 5.3 to 5.6, the gross error detection rates and numbers of type |
errors from TB10 and TB20 are smilar. TB10 and TB20 do not have sgnificantly different
performance. It is concluded that smal variaion of parameter b in contaminated Gaussan

distribution does not have sgnificant impact on the performance of this dgorithm. However, it
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is expect that the increase of parameter b shifts the performance of this agorithm from norma
digribution to robust function.

Random and Gross Error Reductions: The rdative random error reduction and relative

gross error reduction after data reconciliationare givenasafunctionof grosserror sze in Figure
5.7 and 5.8 respectively for the dgorithms. Figure 5.7 compares the resultsfor relative random
error reductions defined in Eq. 5-3 after data reconciliation averaged over 645 runs' results for
eachadgorithm. Tjoa-Biegler’ smethod with b=10 hasthe highest relative random error reduction
among the three dgorithms, which is 66.1% reduction of the origina measurement errors in
average. Measurement test method has the lowest random error reduction, 44.0% reduction of
the origind measurement errors. Also, the relative random error reduction for the measurement
test method is reduced with the increase in size of gross errors. As discussed in theoretical
evauation, the normd digtribution function is not able to bound the effect of gross errors and
larger gross error will cause larger biased estimation. The decrease of the average error
reduction from M T was caused by the misrectification from the presence of larger gross errors.
Also, the figuresshow that the random error reductions from TB and LD arelesssengtive to the

variaions of eror szesthan onefrom MT.
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Figure5.8 compares the relative grosserror reduction after datareconciliationaveraged
over 645 runs results for each dgorithm. The gross error reduction is determined by Eq. 5-3
as the random error reduction. However, this reduction was summarized only on the
measurements withgrosserrors. The gross error reductions from TB and LD increase with the
increase of error Szes. TB and LD have the comparable performanceingross error reduction.
Tjoa-Biegler smethod hasthe highest average gross error reductionas 97% of the origind gross
errors. Measurement test method has the lowest gross error reduction as 84.2% of the origina
gross errors. Measurement test method has higher gross error reduction at 10F of gross error
sze, and then the gross error reduction decreases with the increase in Sze of grosserrors. The
reason for this probably is the method is based on the normd distribution function where gross
errorsarenot alowed, and it isnot able to rectify larger grosserrors. Thismethod isnot effective

in rectify the gross errors larger than 10F, and this may cause the reduced gross error reduction.

Summary. Fgures5.3 and 5.4 show that TjoaBiegler’ smethod has highest gross error
detection rates for the gross errors ranging in 3F to 30F. Asmentioned erlier, the test satistic
of measurement test istoo consarvative (the critica vaue is 3.2F for the modd of sulfuric acid
processif 95% confidentid level isused). Therefore, it was unable to detect the gross errors at
3F and thesmaller. For size of gross errors larger than 5F, dl dgorithms have dmost perfect
error detection rates for the case that a gross error was added to the measured variable in the

intermediate streams.
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The patterns of number of type | errors, rddive random and gross error reductions
versus gross error szes shown in Fgures 5.6, 5.7, and 5.8 indicate that the performance of
measurement test method is senditive to the magnitudes of gross errors and its performance
decays with the increase of error szes. Both Tjoa-Biegler’smethod and L orentzian distribution
have more uniform performances over awide range of gross error magnitudes compared with
measurement test method. The number of type | errors for gross error size from 3F to 30F
increased 259 for measurement test method, 86 for Tjoa-Biegler’ smethod, and 90 for Lorentzian
distribution method. The relative random error reduction for gross error size from 5F to 20F
reduced 18.9% for measurement test method that had an averaged 44.0% reductionand 7.2%
for Tjoa-Biegler smethod that had an averaged 66.1% reduction. There ativerandomreduction
increased 7.2% for Lorentzian distribution method that had an averaged 53.7% reduction. The
relaive gross error reduction for gross error sze from 5F to 20F reduced 16.3% for
measurement test method that had an averaged 84.2% reduction. The relative gross error
reductionincreased 3.8% for Tjoa-Biegler's method that had an averaged 96.7% reductionand
8.1% for Lorentzian distribution method that had an averaged 93.3% reduction.

In average, TjoaBiegler's method gave highest gross error detection rate, smallest
number of type errors, highest random and gross error reduction for the gross error size from
3F to 30F. TjoaBiegler'smethod has the best performance for these gross error sizes. The
resultsin Figures 5.7 and 5.8 aso showed that L orentzian demongtrated an better performance
improvement than Tjoa-Biegler's method when the size of gross error goes to larger. This

indicates a trend that Lorentzian distribution will perform better than contaminated Gaussian
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digtributionwhenthe grosserror islarger than 30 times the standard deviation. It agreeswiththe
conclusion from the theoretica evauation that L orentziandistributionis more effective for larger
gross errors.

The overdl performance of the dgorithms is summarized in Table 5-15. The second row
in the table lists the average gross error detection rates over the gross error sizes from 3F to
30F. The detection rates are 78.2% for measurementstest, 97.4% for Tjoa-Biegler's method,
and 89.7% for Lorentzian digribution. The third row in Table 5-2 gives the average rdative
random error reductions, which are 44.0% for measurement test method, 66.1% for Tjoa
Biegler’ smethod, and 53.7% for L orentziandistributionrespectively. Thefourth row of thetable
shows the average relative gross error reductions that are 84.2% for measurement test, 96.7%
for Tjoa-Biegler's method, and 93.3% for Lorentzian digtribution. The comparison for single
gross error cases concluded that Tjoa-Biegler's method has the best performance in error
reductions and gross error identification for the errors ranging from 3F to 30F.

Table 5-15 Summary of the Overal Performances of Algorithms for One Gross Error

Measurement Test Tjoa-Biegler's Lorentzian
Method Method Didribution
Average gross error 0 o o
detection raie 78.2% 97.4% 89.7%
Relative random 44.0% 66.1% 53.7%
error reduction, >
Relative gross error 84.2% 96.7% 93.3%
reduction,>

D-2. Comparison of Performance of Algorithms for Multiple Gross Errors
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The objective of this section is to invedtigeate the effects of multiple gross errors on the
reconciliation results for the dgorithms. Therefore, asat of smulated plant datais generated by
adding one, two, three, or four gross errors to the measured variables and random noises to all
measured variables. Then, the norma distribution, contaminated Gaussian distribution, and
Lorentziandistributionwere used to reconcile the processvariablesusngthe same smulated data
withone, two, three, or four gross errorsranging from5F to 20F. Inthissection, thegrosserror
sze of 3F and 30F was not conducted. The reasonwasthat the resultsfromthe one grosserror
casefor the grosserror rangesfrom5F to 20F was able to demonstrate the important characters
of gross error detection results.  In addition, the modified compensation strategy was
incorporated with measurement tes, i.e., modified compensation measurement test (MCMT),
to demondrate how it improves the misrectification.

The datigtica results for gross error detection rates and numbers of type | errors were
summarized based on the 640 runs for each algorithm and they are listed in Tables 5-16 and 5-
17. Asshown in thesetwo tables, the grosserror detectionrates decrease and numbers of type
| errors increase when the number of gross errorsin a set of measurements increases for all
dgorithms. Thereasonisthat the dgorithms are more difficult to judge if measurements contain
gross errors or not when more gross errors are present in a close neighborhood (e.g., two or
more gross errors are present in one unit or two adjacent units). Therefore, the rectification
accuracy reduces. However, if two abnorma measurements located in two non-adjacent units,

these two gross errors will act likeindividua gross errors, and they will not interact.
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Table 5-16 The Comparison of Gross Error Detection Rates for Multiple Gross Errors

Gross error detection rate

Algorithms Sizes of Onegross | Twogross | Threegross | Four gross
gross error error errors errors errors
5F 1.0 0.878 0.867 0.789
Tjoa- Biegler's
method 10F 1.0 0.956 0.845 0.778
20F 0.987 0.922 0.867 0.867
5F 0.962 0.922 0.830 0.817
Lorentzian
distribution 10F 0.974 0.933 0.859 0.806
20F 1.0 0.933 0.852 0.872
5F 0.923 0.878 0.733 0.739
Measurement
test method 10F 1.0 0.989 0.918 0.944
20F 1.0 1.0 0.948 0.967
Modified 5F 0.923 0.856 0.726 0.733
compensation 10F 0.987 0.989 0.889 0.917
measurement
test method 20F 1.0 0.989 0.933 0.950
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Table 5-17 The Comparison of Numbers of Type | Errors for Multiple Gross Errors

Number of typel errors

Algorithms Sizes of Onegross | Twogross | Threegross | Four gross
gross error error erors erors errors
5F 2 13 18 41
Tjoa- Biegler's
method 10F 5 12 41 79
20F 3 54 47 79
5F 65 58 70 74
Lorentzian
distribution 10F 74 70 80 155
20F 78 107 164 167
5F 0 0 4 2
Measurement
test method 10F 3 13 57 85
20F 53 145 258 396
Modified 5F 0 0 1 1
compensation 10F 0 1 9 9
messurement
test method 20F 0 0 33 39
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Figure5.9 comparesthe effects of numbers of grosserrorsongrosserror detectionrates,
and Figure 5.10 shows the effects of gross error magnitudes on the gross error detection rates
for multiple gross error cases. As showninFgure5.9, the patterns of grosserror detection rate
versus number of gross errors are smilar for four dgorithms. The gross error detection rates
reduce withthe increase of number of gross errors. The reduced gross error detectionratesare
probably caused by the increase possbility of muitiple gross errors existing in a close
neighborhood (e.g., more than two gross errors exist in one unit or two adjacent units) when
number of gross errorsin a set of measurements increases. As seen in Figure 5.10, the pattern
of gross error detection rate versus gross error sizes for multiple gross errorsis samilar to those
for single gross error cases showninFigure5.4. In generd, gross error detection ratesincrease
with the increase of gross error Szes. However, the variaions of the detection rates for Tjoa-
Biegler's method and Lorentzian digtribution are inggnificant. These two agorithms are not
sengtive to the variation of gross error Sizes.

Figures 5.11 and 5.12 compare the effect of number of gross errors and gross error
meagnitude on number of type | errorsfor four agorithms. It is seen from these two figures that
the increase of gross error numbers and magnitudes tends to cause larger numbers of type |
errors which indicates a higher misrectification. This dtuation is particularly serious for
measurement test method. The increase of numbers of type | error fromone grosserror to four
gross errors is 427 for measurement test, 49 for MCMT, 189 for Tjoa-Biegler's method, and

179 for Lorentzian digtribution. The increase of numbers of type | error from 5F to 20F for
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multiple grosserrorsis 846 for maturement test, 70 for MCMT, 320 for Tjoa-Biegler' smethod,

and 249 for Lorentzian distribution.
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The comparisonsinFigures5.11 and 5.12 show that the modified compensationstrategy
sgnificantly reduces the misrectification in measurement test method for the cases of multiple
gross errors and larger Size of gross errors. In the four dgorithms, the modified compensation
measurement test has the best performance, and measurement test method has the worst
performance. Also, the numerica resultsfor both single and multiple grosserror cases show that
Tjoa-Biegler smethod and L orentzian distribution committed smdl number of typel errors. This
suggests that this modified compensation strategy be incorporated with Tjoa-Biegler’ s method
and robust method to further improve thelr performance. This strategy is easy to implement
without requiring the modification of main program of the optimizationproblem. 1t only requires
replacing the input plant data with the reconstructed plant data from the last run’s solution as
discussed inthe previous chapter. 1t can be automatically conducted by the computer program.
Based on the location of detected gross errors, the built-in program determines which
measurements need to be compensated with the reconciled data and updates the vauesof these
measurements for next datareconciliationautometicaly. This Strategy iseasy to incorporated in
orHine optimization implementation.

D-3. Summary

The numericd study for both sngle and multiple gross errors concluded that Tjoa
Biegler's method has the best performance for moderate gross error size (3F - 30F) in
smultaneoudy rectifying both randomand grosserrors. Lorentzian distribution demongratesthe
tendency to exceed the performance of Tjoa-Biegler’s method whengrosserrorsare larger than

30 times the standard deviation. The measurement test method results in significant biased
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edtimationin reconcilingmeasurementscontainingbothrandomand grosserrors. Also, theresults
showed that Lorentzian digtribution is the least sengtive to the variations of the gross error size,
and measurement test method is the most sengitive to the variations of the gross error Size.

The numerica results from modified compensation measurement test demonstrated that
the modified compensation strategy Sgnificantly reduced the biased estimation in measurement
test method. Thiswas observed by sgnificantly reduced number of type | errors committed by
MCMT compared with measurement test method. Also, asmal number of type | errors from
Tjoa-Biegler's method and Lorentzian distribution method were observed from the numerica
results. It is expected that this modified compensation strategy can further improve the
performance of Tjoa-Bieger's method and Lorentzian distribution method. In addition, this
drategy is easy to conduct without requiring modification of main program of the optimization
problem. It can be automatically conducted by computer program, and it is gppropriate for use
with on-line optimization.

The gross error detection results using the actua plant operating data (plant data on 6-
10-97 and 6-12-97) givenin Table 5-11 and 5-12 are in agreement with the theoretical and
numerica evauationresultsfor grosserror detectionusng smulated plant data. For the two sets
of current plant data on 6-10-97 and 6-12-97, measurement test method detected six gross
errors, TjoaBiegler's method detected 16 gross errors, and Lorentzian distribution method
detected 29 gross errors. All of the detected gross errors were smaler than 20F, and most of
themweresmdler than10F. Asshownin Figures5.3 and 5.4 for gross error detection rate and

Figures5.5 and 5.6 for number of type | errors, measurement test method had the smallest gross
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error detection rate and committed the smallest number of type one errors in three methods for
gross errors less than 20F. Lorentzian distribution function of robust method committed the
largest number of typel errorsinthree methodsfor grosserrorslessthan20F. Also, therdative
efficiency of Lorentzian distribution of the robust method is lower than the norma distribution
function of measurement test method and contaminated Gaussian distribution function of Tjoa-
Biegler’ smethod. This means than Lorentzian distribution has alower accuracy whenthe gross
errors in measurements are smaler (eg., lessthan 20F). The detected gross errors for current
operaing data are smaller than 20F, and the numbers of gross error detected by three methods
for plant data on 6-10-97 and 6-12-97 agreed with results from the theoretical and numerica
evauation results given above.
E. Results for Parameter Estimation

In this section, the one-step and two-step estimation strategies are used to conduct
parameter esimation. In one-step estimation, the gross error detection, data reconciliation and
parameter estimation are conducted smultaneoudy usng anagorithm that is able to rectify both
random and gross errors. One-step estimation combines gross error detection, data
reconciliation, and parameter estimation into one optimization problem. The mathematica
datement for one step esimation isgiven in Eg. 3-36 usng TjoaBiegler's method. One step
edtimation diminates the interaction betweentwo data reconciliation associated with gross error
detectionand with parameter estimation. However, the estimation accuracy may bereduced due
to the reduced data qudity. In one-step estimation, the plant data sampled from distributed

control systemisdirectly used in the one-step optimization to estimate the parameter vaues, and
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this data may contain both gross errors and random errors.  In two-step estimation, the
measurements with gross errors are rectified in combined gross error detection and data
reconciliation, and the dataused to estimate plant parametersin step two only contains random
error.

The two-step estimation requires a separated gross error detection and data
reconciliationstep to detect and rectify the grosserrorsinplant dataand adatareconciliationand
parameter estimation step to update the parameter values using the data from gross error
detectionand datareconciliaion. Asdiscussed in previouschapter, thesetwo sepsusethesame
plant mode and only the differenceisthat parametersin a plant modd are constants for gross
error detection step and variables for parameter estimation step.  The data reconciliation in
combined gross error detection and data reconciliation should use the current vaues of the
process parameters, but these vaues come from the subsequent parameter estimation step.
Therefore, astrategy isproposed to avoid thisdilemma It usesthe old parameter data estimated
from the last on-line optimization cycle for gross error detection and data reconciliation to
reconcile process variables and detect gross errors. Then a new set of measurements, which
contains only random errors, is constructed using part of the origina data that contains only
random errors combined with the reconciled vaues of the plant data that contains gross errors.
This set of constructed measurementsis used to Smultaneoudy estimate process parameters and
vaiables. The mathematica statement for step one and step two are given in Eq. 3-34 using
Tjoa-Biegler' s method for combines gross error detectionand datareconciliation and Eq. 3-35

using the least squares method for s multaneous data reconciliation and parameter estimation.
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The procedure to solve optimization problems in Eq. 3-34 for step one of two-step
edimation and Eq. 3-36 for one-step estimation is the same as described in Figure 5.2 for
combined grosserror detectionand data reconciliation. Theonly differencein Eq. 3-36 for one-
step estimation is that the parameters in the plant model are variables rather than constants for
step one (combined gross error detection and datareconciliation) of two-step estimation in Eq.
3-34. Theoptimization problem (Eq. 3-35) of step two for two-step estimation isessentidly the
same asEq. 3-36 for one-step estimation. The only differenceis that the measurements contain
only random errors for Eq. 3-35, but they contain both random and gross errors for Eq. 3-36.

The parameters are variables in Egs. 3-35 and 3-36, and they are to be estimated with the
process variables.

The plant model for conducting parameter estimation is given in Chapter IV for the
sulfuric acid process, and it is the same as used in the combined gross error detection and data
reconciliation of last section. The same 110 sets of smulated plant data were generated by
GAMS using Eq. 5-1 and were used to conduct one-step and two-step estimation. These 110
sets of smulated plant data contain 110 gross errors with a 10F of magnitude. In each set of
data, one measured variable was added with a gross error, and al measured variables were
added with random errors.

When GAMS solved the optimization problem of smultaneous data reconciliation and
parameter estimation in Eq. 3-35 (step two of two-step method) or Smultaneous gross error
detection, data reconciliation, and parameter estimation in Eq. 3-36 (one-step method), it was

encountered that about 50% of casesfaled to converge to the optima solution, if dl the seven
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heat transfer coefficients and four reaction effectiveness factors listed in Table 4-7 were
considered as parameters in the plant mode. While searching for the optima solution, the
optimization dgorithm failed to bring the searching points back to the feasibleregion. Thisis a
problem associated with the optimization agorithm or the bound setting for some important
variables.

The solver, CONOPT, wasused inGAMS to solve the optimizationproblems inortine
optimization primarily. Also, the solver, CONOPT2, has been used to solve the smultaneous
data reconciliation and parameter estimation optimizationproblems to see if other dgorithm can
improve the solution. The result was that both CONOPT and CONOPT2 had similar
performance. However, CONOPT could find the optimal solution of some problemsfor which
CONOPT2 could not, and CONOPT2 could find the optima solution of some problems for
which CONOPT could not. The reason of solution failure was that the step search brought
searching pointsto aninfeasble region, and thenit was not able to get back to feasible regionand
then failed to reach the optima solution. Therefore, atighter upper bound on sulfur feed (F50)
in the optimization problem was given to improve the solution, and it was successful for some
smulated plant data sets.

Using different solver or changing bounds on some variables canimprove the solution of
the smultaneous data reconciliation and parameter estimation problem or smultaneous gross
error detection, data reconciliation, and parameter estimation problem. However, one set of
smulated plant data required usng CONOPT to successfully solve the optimization problem, and

the other set of amulated plant data required CONOPT2 or changing bound on F50 to
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successully solve the optimization problem. This is not appropriate for the comparison and
evauationof different agorithmsand strategies, which requiresthat the sameinformation be used
for different agorithms or drategies.

The number of parameters was reduced by dividing the € evenparameters into two sets
of parameters, i.e.,, one set of parameters includes seven heat transfer coefficients and the other
set of parametersincludes four reaction effectivenessfactors. Thesetwo setsof parameterscan
be updated dternately inthe sequence of on-line optimization. Then, the plant mode is modified
to include only seven heet transfer coefficients as plant parameters. After the modification, the
solution of the optimization problemfor smultaneous datareconciliationand parameter estimetion
or dmultaneous gross error detection, data reconciliaion, and parameter esimation was
sgnificantly improved, and about 95% of the cases were able to reachthe optimal solution with
this procedure.

The computation results of the reconciled data for one-step estimation are summarized
inTable 5-18 using the 110 sets of smulated plant data. The table ligsthe grosserror detection
rates, numbers of type | errors, remaning standardized errors, rddive standard deviation
reduction, and relative error reductionafter data reconciliation for key measurements. The key
measurements are the measured variables that are directly related to the determination of
parametersinplant models. Itisrequired that the key measurements must bedirectly related with

other measured variables through at least three independent equaity congraints.
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InTable5-18, thefirg column givesthe names of the measurements. The second column
lists the gross error detection rates for each measurement when gross errorswere added to this

measurement. The third column lists the numbers of type | errors committed
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Table 5-18 Statistical Results of Reconciled Data for One-Step Estimation

Vaizdle | Grosseror No. Of Remaining Rd atiye SD. Rel atiye error
Name | detection rates typel error a_fter reductlor_l after | reducti on after
erors reconciled reconciled reconciled

TO6 100% 5 0.5097 0.718 0.541
TO7 100% 4 0.4115 0.763 0.708
TO8 100% 4 0.3396 0.8 0.685
TO9 100% 1 0.3734 0.785 0.704
T10 100% 2 0.6001 0.683 0.547
T11 100% 1 0.6002 0.711 0.575
T15 100% 4 0.6255 0.656 0.503
T16 100% 3 0.2731 0.841 0.749
T17 100% 1 0.3543 0.803 0.68
T19 40% 9 0.9038 0.0076 0.221
TS2 40% 11 1.0803 0.169 0.376
TS3 60% 13 0.9726 0.266 0.354
TS 100% 3 0.6329 0.483 0.263
FO4 100% 1 0.321 0.816 0.582
FO5 100% 2 0.3256 0.825 0.73
F14 100% 3 0.2999 0.84 0.742
F20 100% 1 0.2925 0.835 0.723
F50 100% 0 0.1746 0.904 0.824
FS1 100% 0 0.2976 0.808 0.817
FS5 100% 1 0.1904 0.856 0.837
X 100% 1 0.0649 0.895 0.883
CO2 100% 0 0.4457 0.731 0.625
Average 92.7% 70 0.459 0.691 0.621
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by one step estimationfor each measurement whengrosserrorswereadded to this measurement.
The fourth column gives the average of remaining errors in key measurements after data
reconciliation over 110 runs result. The remaining error is the absolute difference between the
reconciled and the true vaue as defined in Eq.5-5. The average remaining error over key
measurements is about 0.459F, where F is the standard deviation of measurements given in
Table 5-1. The fifth column indicates the relative standard deviation reduction after data
reconciliation for key measurements over 110 runs result. The relative standard deviation
reductionisthe ratio of the standard deviations of the 110 sets of reconciled datato those of 110
sets of measurements. There is an average 69.1% of standard deviation reduction for key
measured variables. The sixth column givesthe relative error reduction after data reconciliation.
The relaive error reduction is defined in Eq.5-3, i.e, the ratio of the remaining errors after data
reconciliation to the absolute measurement errors.

Table 5-18 summarizesthe computationresultsfromone-step estimation. It shows that
one-step estimation achieved a 92.7% of average gross error detection rate and committed 70
type | of errors over the 110 runs. The average remaining error, relative standard deviation
reduction, and relative error reduction after data reconciliation were 0.459F, 69.1% reduction
of the measurement variations, and 62.1% reductionof the origind errors over 110 runs result.

Table 5-19 summarizesthe computationresultsfromtwo-step estimation. Thetwo-step
esimation used the same 110 sets of smulated plant data as one-step estimation to conduct

combined gross error detection and data reconciliation of step one. At this step,
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Table 5-19 Statistical Results of the Reconciled Data for Two-Step Estimation

Vaiable Gross error No. Of Remaining Rd atiye SD. Rd etiye eror
Name detection typel eror a_fter reducti on after reducti on after
rates errors reconciled reconciled reconciled

TO6 100% 2 0.465 0.741 0.525
TO7 100% 2 0.3558 0.805 0.73
TO08 100% 0 0.2806 0.856 0.721
TO9 100% 1 0.3097 0.851 0.775
T10 100% 2 0.4985 0.752 0.624
T11 100% 1 0.4986 0.779 0.674
T15 100% 0 0.6475 0.643 0471
T16 100% 0 0.2577 0.855 0.751
T17 100% 2 0.3376 0.826 0.717
T19 100% 1 0.522 0.732 0.551
TS2 100% 1 0.6262 0.723 0.64
TS3 100% 2 0.675 0.669 0.575
TS 100% 4 0.4799 0.719 0.435
FO4 100% 2 0.3315 0.8 0.568
FO5 100% 4 0.3268 0.817 0.735
F14 100% 2 0.307 0.837 0.755
F20 100% 3 0.2992 0.833 0.731
F50 100% 2 0.1511 0.91 0.853
FS1 100% 2 0.1655 0.914 0.898
FS5 100% 1 0.1054 0.934 0.91
X 100% 0 0.0651 0.898 0.882
CO2 100% 1 0.475 0.725 0.564
Average 100% 35 0.3718 0.797 0.686
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the grosserrors are detected and rectified, and a set of plant datawas constructed fromthis step
usng the proposed drategy. Then this set of constructed plant data was used to conduct
smultaneous data reconciliation and parameter estimation of step two.

InTable 5-19, the results for grosserror detectionrate and number of typel errorswere
obtained from step one. While the remaining error, rddive standard deviation reduction, and
relativeerror reductionwere obtained fromstep two. Table5-19 showsthat two-step estimation
achieved a 100% of average gross error detection rate and committed 35 type | of errors over
the 110 runs. The average remaining error, relative sandard deviation reduction, and relative
error reduction after data reconciliation were 0.37F, 79.7% reduction of the measurement
variations, and 68.6% reduction of the origina errors.

Table 5-20 comparesthe parameter estimationresultsfromtwo srategies. Inthistable,
the first and second columns list the namesand plant design values of parameters in the process
model, wherethe plant design vauesof parameters was determined by the plant design data for
measured variablesgivenin Table 5-1. The third, fourth, and fifth columns give estimated means
of parameters, ratios of estimated parameter standard deviations to estimated means, and the
relative difference between estimated meansand true valuesfromone-step estimation. Thesixth,

seventh, and eighth columns give the estimated means of
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Table 5-20 Comparison of Estimated Parameter Data from Two Strategies

Plant One-step estimation Two-step estimation

Parameten desi
Names e:lgn Edimated | Edtimated | (mean+ | Edimated | Edtimated | (mean-

VAU | means | SD./mean true) ftrue|] means | S.D./mean |true) /true
BIrU XXX XXX 0.73% 0.21% XXX 0.31% 0.17%
Ex65U XXX XXXX 3.37™% 0.65% XXKX 2.40% 0.54%
Ex66U XXX XXXX 3.42% 0.98% XXKX 2.96% 0.61%
Ex67U XXX XXXX 1.83% 0.60% XXKX 1.48% 0.52%
Ex68U XXX XXXX 16.8% 0.99% XXKX 4.11% 1.85%
Ex69cdU | xoxx XXX 6.98% 0.15% XXX 1.99% 0.62%
EX69aU XXXX XXXX 12.0% 0.93% XXKX 3.54% 1.53%
Average 6.44% | 0.64% 2.40% | 0.83%

parameters, the ratios of estimated parameter standard deviations to estimated means, and the

relative differences between estimated means and true va uesfromtwo-step estimation. For one-

step edimation, the largest and average estimated standard deviations were 16.8% and 6.4% of

the mean vaues, and the largest and average rel ative differences between the estimated and the

true were 0.99% and 0.64% of the true values. For two-step estimation,the largest and average

estimated standard deviations were 4.1% and 2.4% of the mean vaues; and the largest and

average rddive differences between the estimated means and the true vaues were 1.8% and

0.8% of the true vaues.
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The resault in Table 5-20 showed that the estimation variation (standard deviation of
edimated parameters) from one-step estimation was larger than one from two-step estimation.
The reason is the redundancy condition in two-step estimation is better than one in one-step
edimation. Thisprovidesmoreredriction for two-step estimation when the optimization solution
adjusts the variable vaues and makes the solution have a amdler variation. The difference
between the estimated means and the true is comparable for these two Srategies.

In Table 5-21, the overal performance is compared for these two strategies on
parameter estimation accuracy, data reconciliation accuracy, gross error identification, and
computation effort. As shown in Table 5-21, two-step estimation demonstrated 4% lower
variation onestimated parameter vaues, 6.5% higher error reduction, and 10.6% higher relative
standard deviation reduction on reconciled data than one-step edimation. Also, two step
estimation had 6.3% higher gross error detection rate and committed 50% less of type | errors
than one-step esimaion. Both two-step and one-step estimation had comparable estimation
accuracy on the plant parameters. However, two-step estimation required 82% more
computation time than one-step estimationdid. 1t isconcluded that two-step estimation strategy

isrecommended for the sulfuric acid plant modd.
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Table 5-21 Comparison of the Overall Performances of Two Strategies

One-step N
estimation Two-step estimation
Overdl Variation of esimation; S.D./mean 6.44% 2.40%
parameter
esimation | Rdative difference of estimated
0 0
accuracy parameters from true 0.64% 0.83%
Overal Relative error reduction after 62.13% 68.57%
reconciled | "econciled
data : ;
Reative S.D. reduction after
0, 0,
accuracy reconciled 69.06% 79.72%
Gross error Average gross error detection rate 0.927 1
detection Number of typel errors 70 35
7.62 Second
Computation time 4.16 nd Step one: 3.88 Sec.

Step two: 3.74 Sec.

Insummary, the comparisons in Tables5-7 and 5-8 for these two strategies showed that

both one-step and two-step were able to accurately estimate the plant parameters and process

variablesfor the aulfuric acid process. Two-step estimationdemonstrated abetter performance

in esimation accuracy than one-step estimation, while one-step estimation required less

computation time as discussed in above paragraph. Also, one-step estimation eiminates the

interaction between two data reconciliations for gross error detection and for parameter
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edimation. For the sulfuric acid process, the two-step estimation is recommended to be used in
on-line optimization based on the numerical results.
F. Evdugtion of Plant Modd Formulations

The condraint equations for al unitsof sulfuric acid contact process have been devel oped
in Chapter 1V. In this section, the objective is to examine the observability and redundancy of
aulfuric acid plant mode and to investigate how the plant modd formulationaffectsthe accuracy
of the optimization problems in on-line optimization.
F-1. Examination of Observability and Redundancy for Sulfuric Acid Plant Mode

The process measurements are taking fromthe Baily distributed control systemof sulfuric
acid plant. The digtributed control system provides the direct measurements for all required
temperatures, pressures, sseamflowrates, and acid flow ratesfor on-line optimization. However,
the direct measurements of flow rates for gas streams are not available a dl. Some of
measurements of gas steams are required to satisfy the observability in datareconciliation. The
examination of observability and redundancy determinesthat four flow rates for gas streams (air
from compressor FO4, gases from suifur burner FO5, gases from inter-pass absorption tower
F14, and gases from economizer 4A F20) must be measured to satisfy the observability of
variables, which are associated with gas streams, for detail plant model. How the observability
and redundancy was determined will be described inthe following usng waste heat boiler unit as
an example. Therefore, these required gas flow rate measurements are obtained using the
discharge pressure and speed of compressor (or turbing). The flow rate of stream S04 (FO4)

is determined by the discharge pressure and speed of the compressor with the compressor
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performance chart. Then the flow rates of FO5, F14, and F20 are determined by the flow rate
FO4 and assuming 2%, 94.8%, and 99.7% (99.7% isadirect measurement) of SO, conversion
at the corresponding streams.

The open form equation based plant model for sulfuric acid plant has been established
inChapter 1V, and the measured variables and parameters for this plant were lised inTable 4-7
and 4-8. How the observability of unmeasured variables and parameters was examined is
discussed using the waste heet boiler unit in the following.

For the waste heat bailer, the congraint equations are shown in Table 5-22. This unit
has 20 condraint equations in tota, and they are four species materid balances for four
components in gas stream, one materia baance for steam stream, and materia relationship on
the blowdown between streams SS4 and SS6, one overal energy balance, one hesat transfer
equation, eight enthal py equations for four components of two gas streams (S05 and S06), three
enthdpy equations for three steam streams (S$4, SS5, and SS6), and one logarithm mean
temperature equation. All these equations contains 29 variables. Among these variables, FS5,
THA, TS5, TS6, PS5, T05, TO6, are measured variables where the temperature for steam
streams S$4, SS5, and SS6 are the same, i.e.,, TS4= TS5= TS6. FO502, FOSN2, FO5S02,
FO5S03 are dummy measured variables, and they are determined
by measured variables (FO4 and FO5), concentrationrelationof componentsinstream S04, and
molar balances of the burner. FS4isadummy measured variable, and it equal measured variable

FS1 in the up stream. The heat loss Q. and heat tansfer area A, &€ constant. Therefore,
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this unit has 12 measured variables and 17 unmeasured variables ()t,,,, FO602, FO6S02,

FO6S03, FO6N2, FS6, h0502, h05S02, h05SO3, h05N2, h06S03, h06S02,

Table 5-22 The Congraint Equations for Waste Heat Boiler

Waste boiler extracts the heat generated in sulfur burner.

Description
Inlet:  S05, SS4
Outlet:S06, SS5, SS6
Spedes 0, Fg’-Fg’=0
meterid oD
balances N,: Fy -Fp =0
50,: FsP-FE? =0

so; FREP-rEP-p
Steam: Fg = FotFg,
0.09F, = Fy
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Overd|
energy {XE Fighig 'Zﬁ: F&’hg} " F ooy Fihss Fpdpg * o, =0
balances
where

hE(TY = .R(alT+%a27'2+%a3Ts+%a4T4+%a5T5+bl ~Hog) KJlbme

| = §0,,80,,0,N,, k = 05,06

h, = 1.0861707T- 5.63134x 10" 4T2+2.34491x 10" 773

_ 114266x10% _ 1.61224x10°
T
n = 54,86

h, = 5.32661T-0.2835015.P-7.352389~ 107 312

+3.581547x 16" 6 78 - 7.285244x 16" ° P2+ 4.5554065x 16" 4 TP
n = 85, BTUID

. BTU/Ib

Hest
transfer {Zﬁ: FEn2-3 R - 0~ Ut Areie AT = 0

(T05-T85-(T06-TSH
in{(705- TX5)/ (T06- T54)}

AT, =

h0602, hO6N2, h$4, hSb, hS6). Also, the heat transfer coefficient U, iS a parameter to be
estimated. Hence, the degree of freedom of this unit is (29 variables + 1 parameters - 20
equations) = 10, and this unit has 12 measured variables. The number of measured variablesis
larger than the degree of freedom, and this unit satifies the loca observability.

If the flow rate variables FO4 and FO5 for gas streams S04 and S05 are not measured
variables, then the component flow rates FO502, F05S02, FO5S03, and FO5N2 can not be

considered as dummy measured varigbles. Therefore, the waste heat boiler has only eight
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measured variableswhichislessthanthe degree of freedom (10 degree of freedom) for this unit.
If the four gas stream flow rates (FO4, FO5, F14, and F20) are not measured variables, then all
variables associated with gas streams in the sulfuric acid process are unobservable.

Theloca observability and redundancy wasexaminedfor 14 unitsinsulfuric acid process
smilar to the waste heat boiler unit as discussed here. After local observability was examined,
the globa observability and redundancy was determined by the number of measurementsand the
degree of freedom for entire process. The detail process modd of sulfuric acid plant has 761
equations, 775 variables anong which 43 are measured variables, and 11 parameters. The
degree of freedom for this plant modd is 25, and the number of measured variables for this
processis43, whichislarger thanthe degree of freedom. Therefore, the plant satifiesthe globa
observahility and redundancy.

F-2. Comparison of Detail and Smple Plant Models

In generd, a detail plant model includes materia and energy balances, reaction rate
equations, heat trandfer equations, and others. It will represent the process behavior more
accurately than a ample plant mode that includes only material and energy balances, where
reactor conversons and column separation are specified. The following compares the
performance of the ample and detail plant models for sulfuric acid contact process. The same
215 sets of smulated plant data generated with Eq. 5-1 were used to conduct combined gross
error detection and data reconciliation with Tjoa-Biegler's method. The procedure isthe same

as discussed in combined gross error detection and data reconciliation section.
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The detail plant modd for sulfuric acid process includes the species mass and energy
balances and heat transfer equations for seven heat exchangers, species mass and energy
balances, kinetic modd (reactionrate equations) for four sulfur dioxide convertors, species mass
and energy balancesfor two absorption towers and one sulfur burner. These fourteen units are
linked together by the species mass bal ances, energy balances, reactionrate equations, and heat
transfer equations. The smple plant model includes only the species mass and energy baances
for dl fourteenunitsinthe sulfuric acid plant. The species mass balances for four convertorsare
established based on the conversion of SO, and the stoichiometric coefficients of the reaction.
The numbers of equations, variables, and measurements are given in Table 5-23 for these two
plant models. The smple plant modd

Table 5-23 The Configuration of Smple and Detail Plant Modds

Smple Plant Detall Plant
Model Model
Tota number of varigbles 221 775
Number of measured variables 61 43
Number of unmeasured variables 160 732
Number of congtraint equations 197 761

has 221 process varigbles and 197 condraint equations. Among the process variables, 61
variables must be measured variables to satisfy the observability and redundancy of the smple
plant modd. Thedetall plant model has 775 process variables and 761 condraint equations.
Among the process variables, 43 variables must be measured variables to satisfy observability

and redundancy of the detail plant modd.
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Both smple and detall plant modds were used as condraint equetions for gross error
detection and data reconciliation. InTable 5-24, the overdl performance is summarized for the
smple and detall plant modds averaging over the results of 215 runsfor each plant model. These
215 runs used 215 sets of smulated plant data that were generated with Eq. 5-1. Asshownin
Table 5-24, the detall plant model has 29.3% higher gross error detection rate, 76 less type |
errors, 32.1% higher randomerror reductionand 25.7% higher grosserror reductionthansmple
plant mode. It requires 2.3 times longer computation time than the smple plant modd. The
comparisons in Table 5-24 concluded that the detail smulation plant mode is recommended for

the use in on-line optimization.

Table 5-24 Comparisons of Overal Performance for Two Plant Models

Simple plant modd Detall plant mode
Gross error detection rate 67.1% 96.4%
Number of type| errors 102 26
Redative rmdom eror 38.2% 64.3%
reduction
Relative gross error reduction 66.1% 91.9%
Computation time 1.65 Sec. 3.84 Sec.

The detall plant modd has higher gross error detection rate, more accurate estimation results,
and required fewer measured varigbles.

G. Optimd Solution of On-Line Optimization
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Asdiscussed in previous chapters, on-line optimization involves solving three nonlinear
optimizations as wdl as the communication of data between the optimization problems and
between on-line optimization syssemand plant distributed control system. It isnecessary to have
a coordination program to integrate them. An interactive interface program is developed to
dleviaethe effort of engineersin gpplying on-line optimization and to coordinate the solution of
optimization problemsin on-line optimization. The three-step procedure (combined gross error
detection and data reconciliation, Smultaneous data reconciliationand parameter estimation, and
economic optimization) isincorporated intheinterfaceprogram (I nteractive On-Line Optimization
System) to conduct on-line optimization.

G-1. Program Structure of Three Nonlinear Optimization Problems

For on-line optimization, the three nonlinear optimization problems usethe same process
model as condraints, and they are solved by the same optimization agorithm with GAMS, the
Generd Algebraic Modding System. These three optimization problems have asmilar program
content as shown in Figure 5.13. The optimization problems for the combined gross error
detection and data reconciligtion and the smultaneous data reconciliation and parameter
edimation require the information listed in Figure 5.13, except the inequadity condraints. While
the economic optimization problemrequirestheinformationlisted in Figure’5.13, except the plant
measurements and the standard deviations. Also, the plant parameters are constants in the

combined gross error detection and data reconciliation and in economic optimization, and they
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to conduct the three nonlinear
optimization problems for sulfuric acid process are given in Appendix F.

Theinitid points of variables and scaing of the variables and equations are optiond inthe
optimization programs. However, successful optimization solutions strongly rely on the
appropriate initid point to start searching for the optima solution. Because the mode is highly
nonlinear and multiple optima solutions exi<, the optimizationagorithm may not be able to find
the correct optima solution or reach the optima point if the appropriate initid point information
is not provided. Also, scding of dl variables and coefficient matrix of the linearized condraint
equations is important in reducing the computation error and improving the solution of the
optimization problem. In addition to the condderation of agorithms and the plant mode

formulation as discussed previoudy, the knowledge about the process, appropriate initid point
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assgnment, and scaing for the process modd are the essentia conditions for the success of the
optimization solutions.
G-2. Coordination of Optimization Problems and Data Exchange

Based on the investigation results and computation experience, the best procedure to
conduct the on-line optimization system is proposed as shown in Figure 5.14. This includes
solving the three optimization problems in sequence, the data exchange between the three

optimization problems,
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optimization system has been developed to perform this work and to dleviate the effort for
engineersto gopply the on-line optimization.

As shown in Figure5.14, the procedureto conduct on-line optimization is firg the plant
data is extracted from distributed control system to detect if the processis in steady state
condition. If itisin steedy state, then the plant sampled data is incorporated in the program of
gross error detection and data reconciliation and the system has GAM S solve the optimization
problem. After solving this optimization problem and reconciling the process data, the GAMS
programdetectsthe gross error inmeasurements based onthe estimated errors of measurements
and the built-in test gtatistic. Also, this step generates a data file that includes a set of plant
measurements with only random errors which is constructed from the result of data vaidation
usng the proposed strategy discussed inprevious chapter.  Then the solution is examined to see
if the solution is successful. It is suggested that the success of solution be based on the number
and location of the detected gross errors. If it is found that more than five measurements in a
close neighborhood contain gross errors, then this usudly is an indication of the falure of an
agorithminrecondling processdata. If thisisthe case, thentheresult from datavaidation should
be discarded, and the on-line optimization procedure is restarted.

Once the solution of datavaidationis successful, then the generated plant data file from
data vdidation step is incorporated in the smultaneous data reconciliation and parameter
edimation program. The system has GAMS execute this program and solve the optimization
problem. After the optima solutionisfound, the GAMS program automatically generatesaplant

parameter datafile that includes the names and estimated values of the parameters. Then, the
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optimization solution is examined to see if the estimated parameter values are reasonable. Each
estimated parameter vaue iscompared withthe pre-specified ranges of the parameter. If itisout
of the pre-specified range, then this vaue can not be used in economic optimization. The
parameter data from the optimal solution is discarded, and the on-line optimization procedure
is restarted.

Once the solution of parameter estimation is successful, then the generated plant
parameter data file is incorporated in the economic optimization program to update the plant
modd. Also, the new economic dataand contraller limitsareincorporated inthisprogram. Then
interactive on-line optimizationsystemhas GAM S execute this program and solve the economic
optimization problem. When the optima solution is found, the program generates a optimal set
point data file that includes the optima objective vaues and the optimal operation conditions.
Then, the satus of the processis reexamined to seeif the process till operates under the same
steady state conditions asthe plant sampled data was taken to updated plant parameters. Also
the controller limitsare examined to seeif the optima set pointsviolatethe controller limits. If the
process gill operatesin the origind steady state conditions and no violationwith controller limits
is found in the optimd set points, then the optimal set points are sent to the distributed control
system to adjust the set points for controllers.

When the distributed control system implements the new optimad set points, the plant
movesfromthe old operating conditions to new optima conditions. The plant remains operating
in these optimal conditions for a time period, and then the on-line optimization procedure is

repesated again to search for the new optimal set points.
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Aboveisthe optima procedure to conduct on-line optimizationand it canbe applied to
any process. Inaddition, two optimization problemsfor combined grosserror detection and data
reconciliationand for smultaneous data reconciliationand parameter estimationmay be combined
into one optimization problem as discussed inthe previous chapter. In this case, the two boxes
in Figure 5.14 for combined gross error detection and data reconciliation (deta vaidation) and
for parameter estimation become one step to identify the gross error in measurements and
estimate process parameters and variables.

G-3. Development of Interactive On-Line Optimization Interface Program

The interactive on-line optimization system provides a mechanism where al of the
informationneeded to build the three nonlinear programming problems is provided by the process
engineer through interface windows, and the three optimization problems share and transfer
informationasshowninFigure5.15. Theengineer providesthe process smulation and economic

models, raw material

avalability and product
demand data through the

interface windows for the ¢

Interictive Dn-Line Optimization oy an

Data Paramit e Featmandc
Validatise |- Listhmatiens | Dyptumazat iods

extracts plant data from the I'ignre 5.15 Structure of the nksract e Do Lane
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performs datavaidation, parameter estimationand economic optimizationto generate the optimal
st points for the digtributed control syslem. The interactive on-line optimization system guides
the engineer to enter the necessary information, and the engineer does not need to understand the
details of methodology of on-line optimization. Also, the system ensures that a complete set of
information is obtained.

Microsoft'sVisud Basic 5.0was used for development of interactiveon-lineoptimization
program, whichis shown diagrammaticadly in Figure 5.16. Visud Basic 5.0 providesan efficient
way to create User Access Windows as an interface to enter information (data and equations)
which can be used to generate programs to be run by applications such as the optimization
language GAMS. The Visud Basic program is used to create an interface program (interactive
orHine optimization system) that provides user access friendly windows for engineers to enter
plant information, generates GAM S programs for three optimization problems based onthe built-
in methodology of on-line optimization and entered plant information, has GAMS compile and
execute the programs of the optimization problems, and presents the optima solution for
engineers. This only requires that the process engineer provide the plant model, economic
model, and plant datafrom the distributed control system. The process engineer does not have
to know the methodology of on-line optimization and write GAMS programs for the three
optimization problems because the interactive orHine optimization systemwritesthese programs.

Also,
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a friendly and easy access on-line HELP is available to guide the engineer entering the plant
information.

Above is the generd information about the interactive on-line optimization interface
program. Thedetail description and example demonstration about this program have been given
in the manud and tutorid of the interactive on-line optimization system which is included in
Appendix G.

H. Comparison with Other Investigations

The objective of this research project was to sysematicdly invesigete the optimal
structure of orHine optimization and to theoreticaly and numericaly evauate the goplicable
agorithmsfor conducting orHine optimization.  Also, an actud chemica process, sulfuric acid
plant from IMC Agrico Company was used to conduct this investigation. The following
compares the contribution from this research project with other investigations.

Invedtigation of Optimal Structure:  Previous research on on-line optimization was

reported by two groups: industria gpplications and academic sudies, dl of whichfocused onthe
study of individua components of on-line optimization. Therewasno detail description about the
whole structure of on-line optimization asthis research project does which includes the study of
dgorithms for individual component and the integration of these components. The industria
goplications (Baley, et d., 1993; Bayles, M., 1996; Culter and Ayala, 1993; Fatora, et d.,
1992; Gott, et d., 1991; Hardin, et a., 1995; Kdly, et d., 1996; Mudt, et d., 1995; Mullick,
1993; and Scott, et d., 1994) focused onthe implementation of economic optimization, and they

did not give the detall information of the methodology used. Also, most of theindudtrid on-line
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optimization gpplications did not have gross error detectionstep or just used asmple time series
screening method to filter out the abnormal measurements, whichisnot effective in detecting the
persstent gross errors.  The academic studies (Albuguerque and Biegler, 1993 and 1995; Tjoa
and Biegler, 1991; Britt and Luecke, 1973; Crowe, C. M., 1986, 1989, 1992, and 1994;
Johnstonand Kramer, 1995; Leibmen, et d., 1992; Mahand Tamhane, 1982; Mah, etd., 1976;
Mah, 1990; Narasmhan and Mah, 1987 and 1988; Rallins, D.K., and JF. Davis, 1992 and
1993) focused on the study of the agorithms for individua components, such as gross error
detection, datareconciliation, and parameter estimationindividudly. Most of them used asmple
hypothetical process modd with al variables measured and linear congraints to test the
developed dgorithms. These process models do not represent the rea, complicated chemical
and refinery processes in which congraints are highly nonlinear and large portion of process
variables are unmeasured.

Thisresearchproject sysematicdly investigated the structure and the methodol ogy of on-
line optimization usng an actual chemica process, the sulfuric acid process from IMC Agrico
Company at Convent, Louisana. It covered the methodology and implementation for al
components required in orHine optimization, i.e., theoretica and numerica evaluation of the
agorithms for gross error detection, data reconciliation, and parameter estimation, study of
economic potential from on-line optimization for chemica processes and the impact of plant
model formulation on the performance of on-line optimization, as well as the integration of

individud components of orntline optimization.  The research results should provide a better
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understanding about the individua componentsof onHine optimizationand howthesecomponents
work together and communicate with one another.

Application of Industrid Process: Using an actua chemical process rather than a
hypothetical processto test the methodol ogy of ortline optimization provides better indght about
true behavior of on-line optimization. It is more vauable for examining the methodology and
more convincing to practicing engineers. Itisvery difficult for academic researchers to get plant
information because companies usudly do not want to share their proprietary information with
others. It was fortunate that IMC Agrico and Monsanto agreed to share their companies
proprietary data. Thisprovided uswith the opportunity to test the availabletheoretica dgorithms
with areal industria chemica process and made our research resultsmuchmore vauable. Also,
using an actud chemica process in our investigation provided first hand experience on how the
plant model formulationaffects the performance of orHine optimization. Thebasiccongderations
in better formulating plant modd were given based on our study results.

Theoretical and Numerica Evauaionof Algarithms: The present work theoretically and

numericaly evauated the available dgorithms and distribution functions used in the dgorithms.
These dgorithms are gpplicable to gross error detection, data reconciliation, and parameter
estimationfor complicated and nonlinear process models, and they are measurement test method
udng the norma didribution (Mah and Tamhane 1982), Tjoa-Biegler's method using
contaminated Gaussan digtribution (Tjoa and Biegler, 1991), and robust methods using
Lorentzian digtribution (Huber, 1981 and Johnston and Kramer 1995) or Fair function

(Albugquerque and Biegler, 1995). In addition to the works of Tjoa and Biegler (1991) and
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Albuquerque and Biegler (1995 and 1996), which tested their dgorithms using a smple
hypothetical process modd, and Johnston and Kramer (1995) that just briefly mentioned the
Lorentzian distribution, our work first goplied these dgorithms to the industria process, sulfuric
acid plant, and compared ther performance based on the results for sulfuric acid plant. The
resultsindicated thet the contaminated Gaussiandigtributionand Lorentziandistribution are more
effective in automdicdly rectifying random and gross errors than normal distribution
(measurement test or least squares method) that has been widdly studied and applied.

Albuquerque and Biegler (1996) and Johnstonand Kramer (1995) briefly discussed the
theoretica evauation of dgorithm usng influence function.  The present work systematically
evauated and compared the performances of al gpplicable distributions in reconciling process
data usng the combination performance of influence function and relative efficiency.

Serth and Heenan (1986 and 1987) have numericaly compared the performance of
measurement test (MT), iterative measurement test (IMT), modified iterative measurement test
(MIMT), method of pseudonodes (M P), and screened combinatoria (SC) methodusngasmple
linear seam-metering system. It was concluded that MIMT represents the best combination of
computation speed and efficiency (accuracy). Kim, et a., (1997) reported that performance of
MIMT was enhanced by using nonlinear program (NLP) technique and they demondgtrated the
enhancement usinga simple adiabatic CSTR processthat has sx variablesand three congraints.
The advantage of NLP technique over the successive linearization used by Serth and Heenan's
MIMT s that it explicitly handles nonlinear congraints and the bounds of variables are

automaticaly incorporated in the optimal solution. It was found that the linearization-based
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technique does not successfully treat the large measurement errorsfor highly nonlinear sysem as
NLP does. The present work used NLP technique to solve the nonlinear data reconciliation
problems as Kim, et d., did for the complicated and highly nonlinear chemica process. Also, a
modified compensation strategy was proposed to improve the data reconciliationaccuracy. The
proposed drategy is more effective and requires smdler number of iterations than modified
iterative srategy in MIMT.

Integration of On-Line Optimization: Based on the results of this research, the optimal

procedure and best agorithms to conduct on-line optimization have been proposed as discussed
previoudy. Also, the integration of components in on-line optimization was studied and the
strategy to congtruct data from the result of previous step to useinfollowing step was proposed.
Based on the results, an interactive onHine optimization interface program has been developed
to dleviatethe effort for engineersto apply on-line optimization. This program incorporatesthe
detall dgorithms for on-line optimizationand the detail procedure for data exchange. 1t provides
user friendly interface windows to guide engineers to enter required plant information, and it
automatically generates and executesthe programs of optimization problemsinvolved in on-line
optimization.

In summary, this research work provided a detail and systematica investigetion on the
methodology of on-line optimization. It should hep understand the on-line optimization
technology and provide the basis for continuing study in the integration of process economics,
design, operations, smulaion, optimization, and control, which represents the Postmodern Era

of Process Control as mentioned in Edgar’ s award lecture (Edgar, 1997).
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[. SUmmary

On-line optimization is an effective gpproach for economic improvement and source
reduction in chemica plants and refinery processes. On-line optimizationinvolvessevera steps
and these are gross error detection to identify and rectify the gross errors in plant data from
distributed control system, parameter estimation to update the vaues of process parametersin
the plant smulation modd, and economic optimizationto generate a set of optimal set pointsthat

will optimize the plant economic objective and satisfy the congraintsinthe plant smulationmodel.

Optima Procedure of On-Line Optimization The optimal procedure to conduct orHine

optimization has been proposed based onthe resultsfromthisresearch. For achemica plant or
refinery process, the best procedure for on-line optimizationis shown diagramméticaly inFigure
5.14. It involves solving three nonlinear optimization problems of Data Vdidation (gross error
detection and data reconciliation), Parameter Estimation (Smultaneous data reconciliation and
parameter estimation) and Economic Optimization. It first conducts combined gross error
detection and data reconciliation to detect and rectify gross errors in plant data sampled from
digributed control system usng the Tjoa-Biegler's method (the contaminated Gaussian
digribution) or robust method (Lorentzian didribution). This step generates a set of
measurements containing only random errors for parameter estimation. Then, this set of
measurementsisused for Smultaneous parameter estimationand data reconciliationusing the least
sguares method. This step provides the updated parameter values in the plant model for

economic optimization. Finaly, optimal set pointsare generated for thedistributed control system
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from the economic optimization using the updated plant and economic models. This optimal
procedure can be used for any process to conduct on-line optimization.

In addition, the gross error detection, data reconciliation, and parameter estimation can
be combined into one optimization problem and conducted smultaneoudy. For this case, the
DataVdidationand Parameter EStimationin Figure 5.14 can be combined into one step, and the
best procedureisfird to conduct the smultaneous gross error detection, datareconciliation, and
parameter estimation using Tjoa-Biegler's contaminated Gaussan distribution or Lorentzian
disgtribution with plant data from distributed control sysem. Then, the updated plant modd and
current economic model are used to conduct economic optimization to generate the optimal set
points for distributed control system to contral.

Economic Optimization: Plant economic optimization demondrated a potentid in

improving the plant profits and reducing pollutant emisson. The plant economic optimization
showed 3% profit improvement or 2.3% profit improvement and 25% emisson reduction over
the design conditions for the sulfuric acid process a IMC Agrico Company’s plant. On-line
optimization usng current operating data demonstrated that plant economic optimization gave
2.3% ($313,000/year) and 3.1% ($410,000/year) profit improvement over the plant operation
conditions on 6-10-97 and 6-12-97. Also, plant economic optimization was ableto achieve up
to 5% prafit improvementsover the current plant operation conditions for some specia operating
cases, such as plant mugt run under areduced rate of products. Moreover, plant optimization
could determine set points that reduced the SO2 emisson and ill achieved 2.1% profit

improvement over current operation condition.
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Data Vdidation The performance of dgorithms was theoreticaly evauated usng the
influence function and the relative efficiency of the digtribution used by the dgorithm. The
comparison of influence functions for the distributions showed that both contaminated Gaussian
and Lorentzian didributions are effective in rgecting the contribution of gross errors in
measurements on the estimation. They are able to rectify the measurements containing gross
errors through other measurements that do not contain gross errors.  While measurement test
method whichisbased onanormd digtribution has asgnificantly biased estimationinreconciling
processdatafor measurements containing both random and gross errors; and the degree of bias
increases unboundedly with the increase in the error magnitude. Therefore, an iterdive
elimination strategy was necessary for the normal digtributionto avoid the bias whenever a gross
error wasdetected. The comparison of relaive efficiency showsthat normd distribution hasthe
highest efficiency when measurements are norma (no gross error).  The relative efficiency
decreases in order as the contaminated Gaussian distribution, Lorentzian distribution, and Fair
function. 1t was concluded that the contaminated Gauss andistribution hasthe best performance
for the moderate gross error sSize, Lorentzian is more effective for extremely large gross errors
or infinite gross errors, and norma digtribution has the highest estimation accuracy when
measurements do not contain gross errors.

The numericd studyfor combinedgrosserror detectionand datareconciliation concluded
that TjoaBiegler's method has the best performance for moderate gross error size in
smultaneoudy rectifying both random and gross errors. It achieved the highest gross error

detection rate, highest random and gross error reduction, and committed the lowest number of
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type | errors in the three didributions (normal, contaminated Gaussian, and Lorentzian
distributions) for the gross error range in 3F - 30F. Lorentzian distribution demonstrated a
tendency to exceed the performance of Tjoa-Biegler' smethod whengrosserrorsare larger than
30 times the standard deviation. Measurement test resulted in significant biased estimation
(misrectification) inreconciling measurements containing both random and gross errors; and this
was observed by lower error reduction and large number of type | errors committed by
messurement test method. Also, the numerical results showed that Lorentziandigtributionisthe
least sengtive to the variations of gross error sizes, and measurement test is the most senditive to
the variations of gross error sizes.

A modified compensation strategy has been proposed and incorporated with
measurement test method to avoid the biased estimationdue to the presence of grosserrors. The
improvement on estimation accuracy from this strategy is the same as the modified iterative
strategy proposed in literature. However, the modified compensation strategy requires much
sndler number of iterations and is more draight forward to conduct without requiring
modification of the program of the optimization problem. It can be automatically conducted by
computer program, and it can be included in onHine optimization. The numerica results from
modified compensationmeasurement test (M CM T) demondrated that the modified compensation
drategy sgnificantly reduces the biased estimation of measurement test. This was observed by
sgnificantly reduced number of type | errors committed by the agorithm. Also, asmall number

of type | errors from TjoaBiegler's method and Lorentzian distribution was observed from
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numerica results. It isrecommended that this modified compensation strategy be incorporated
with Tjoa-Biegler's method and Lorentzian distribution to further improve their performance.

Parameter Edimation The methodology (mathematicad statement of optimization

problem) for parameter estimation in on-line optimization is Smilar to one for combined gross
error detection and data reconciligtion. The only difference isthat the process parameters are
variables in amultaneous data reconciliation and parameter estimationstep rather than constants
in combined gross error detection and data reconciliation.  Therefore the agorithm used to
reconcile datain smultaneous data reconciliationand parameter estimationstep should have the
same performance as it doesin combined gross error detection and data reconciliation. Based
on the dgorithm and characteristic of measurement data used for parameter estimation, two
dterndive estimation strategies have been proposed for conducting parameter estimation, two-
step estimation and one-step estimation, as described previoudy. Two-dep edtimation is
corresponding to the procedure of three optimization problems for on-line optimization, i.e.,
combined gross error detection and data reconciliation, Smultaneous data reconciliation and
parameter estimation, and economic optimization. One-step estimation is corresponding to the
procedure of two optimizationproblemsfor on-line optimization, i.e., the Smultaneous gross error
detection, data reconciliation, and parameter estimation, and the economic optimization.

The overdl performanceof both one-step and two-step estimationwas compared based
on parameter estimation accuracy, data reconciliation accuracy, gross error identification, and
computation effort.  Two-step estimation demonstrated 4% lower variation on estimated

parameter values, 6.5% higher error reduction, and 10.6% higher relative standard deviation
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reduction on reconciled data than one-step estimation. Also, two step estimation had 6.3%
higher gross error detection rate and committed 50% less of type | errors than one-step
estimation. Both two-step and one-step estimation had comparabl e estimationaccuracy onthe
plant parameters. However, two-step estimation required 82% more computation time than
one-step estimation did.

In summary, two-step estimation demondtrated a better performance in estimation
accuracy than one-step estimation for sulfuric acid process, while one-step estimation required
lesscomputationtime as discussed inabove paragraph. Also, the one-step estimationdiminates
the interaction between two data reconciliations for gross error detection and for parameter
edimation. For the sulfuric acid process, the two-step estimation is recommended to be used in

on-line optimization based on the numerical results.



CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS

A. Conclusons

Based on the results of this research for on-line optimization of chemicd plants and

petroleum refineries, it is concluded as following:

1.

For achemicd process or refinery, the optima procedureto conduct on-line optimization
includes solving three nonlinear optimization problems of combined grosserror detection
and data reconciliation, Smultaneous data reconciliation and parameter estimation, and
economic optimization in sequence, as well as the data exchange as shown in Figure
5.14. Also, the gross error detection, data reconciliation, and parameter estimation can
be combined into one optimization problem. Then, the optimal procedure includes
solving two nonlinear optimizationproblems for Smultaneous gross error detection, data
reconciliation, and parameter estimation and for economic optimization.

On-ine optimization using current operating data demonstrated that plant economic
optimizationgave 2.3% ($313,000/year) and 3.1% ($410,000/year) profit improvement
over the plat operation conditions on 6-10-97 and 6-12-97. Plant economic
optimizationdemonstrated apotentia inimproving the plant profitsand reducing pollutant
emisson. The plant economic optimization showed 3% profit improvement or 2. 3%
profit improvement and 25% emisson reduction over the design conditions for the
sulfuric acid process a IMC Agrico Company’s plant.

Theoretical studies of dgorithms used for datareconciliationwere based on the influence

function and relaive efficiency of the distribution functions used by the dgorithms. The
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comparison of influent functions of the digtribution functions showed that the sengtivity
of the digtribution functions to the presence of gross errors decreases in an order as.
normal distribution of messurement test method, Fair function of robust method,
contaminated Gauss an digtribution of Tjoa-Biegler’ smethod, and L orentziandistribution
of robust method. The comparison of rdative efficiencies of the distribution functions
used by the dgorithms showed that the estimation accuracy from a digtribution function
increased in order as. Fair function, Lorentzian distribution, contaminated Gaussan
digribution, and norma didribution. It was concluded that the TjoaBiegler's
contaminated Gaussian digtribution has the best performance for moderate gross error
gze, Lorentzian digtribution is more effective for extremely large gross errors or infinite
gross errors;, and norma didribution has the highest estimation accuracy when
measurements do not contain gross errors based on the theoretica studies.

Numericd studies were evaluated based on the results of gross error detection rate,
number of typel errors, rdative randomand grosserror reductions fromthreedgorithms
summarized on the smulation results from 4000 runs. The three dgorithms are
measurement test method using the norma digtribution, Tjoa-Biegler’s method using
contaminated Gaussian distribution, and robust method using Lorentzian distributionfor
combined gross error detection and data reconciligion.  The numerica evauation
concluded thet Tjoa-Biegler’ smethod hasthe best performance for moderate grosserror
szein Smultaneoudy rectifying both random and gross errors. It achieved the highest

gross error detection rate (97.4%), highest random and gross error reductions (66.1%
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and 96.7% respectively), and committed the lowest number of type | errors in three
digributions for the gross error range (3o - 300). The method based on Lorentzian
distribution demonstrated the tendency to exceed the performance of TjoaBiegler's
method whengrosserrorswerelarge (larger than 300). Measurement test method had
results with a sgnificant biased estimation (misrectification) in reconciling messurements
containing both random and gross errors.

A modified compensation strategy has been proposed to avoid the biased estimationdue
to the presence of large gross errors for the data reconciliaion dgorithms. The
improvement on estimationaccuracy fromproposed strategy is the same asthe modified
iterative dtrategy proposed in literature. However, the modified compensation strategy
requires fewer number of iterations and is more straight forward to incorporate without
requiring modificationof the program of the optimization problem. The numerica results
from modified compensation measurement test (MCMT) method demonstrated thet the
modified compensation dtrategy Sgnificantly reduces the biased estimation in
measurement test. This was observed by significantly reduced number of typel errors
committed by the agorithm.

The parameters in a plant model can be estimated by two-step estimation method or
one-step esimation. The numerica results on parameter estimation showed that both
one-step and two-step estimationstrategies can accurately estimate process parameters
and varidbles for the sulfuric acid plant. Two-step estimation demonstrated 4% |lower

variationonestimated parameter vaues, 6.5% higher error reduction, and 10.6% higher
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relative standard deviationreductionon reconciled data than one-step esimation. Also,
two step estimationhad 6.3% higher grosserror detection rate and committed 50% less
of typel errorsthanone-step estimation. However, two-step estimation required 82%
more computation time than one-step estimation did. For the sulfuric acid process, the
two-step estimation is recommended to be used in on-line optimization based on the
numerical results.

7. The Monsanto designed sulfuric acid process of IMC Agrico Company at Convent,
Louisana, was used to test the methodology of on-line optimization and to sudy the
effect of plant modd formulation on the results. Based on the results, the open form
equation based plant mode improvesthe performance of plant models and the solutions
of the nonlinear optimization problemsin on-line optimization.

8. A generd procedure to examine the observability and redundancy of openformequation
based mode has been proposed, and it was applied to sulfuric acid contact process
modd!.

0. Aninteractive, window interface program, Interactive On-Line OptimizationSystem, has
been developed to dleviae the effort of engineer to apply on-line optimizetion. This
program incorporated the detail methodology of on-line optimization developed in this
research project and autometically links with optimization software (GAMS) for solving

the optimization problems of on-line optimization.

B. Recommendations
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The following recommendations are made for future investigation in this arear

Although the methodology of on-line optimization is generd and applicable for dl
chemica processes, the plant model formulaionis specific for different types of chemica
processes. The plant mode formulation requires extens ve knowledge of the processfor
developing the plant smulation and examining the observability and redundancy of the
smulaion modd. Additional work can be focused on the software development for
edtablishing the open form equationbased plant modd. Thiswill sgnificantly reducethe
effort of engineersin goplying on-line optimizationand avoid the errors that are possibly
committed in the plant smulation.

The knowledge of error structures of the plant datais important for effectively verifying
and adjusting the data. Better understanding about the distribution behavior pattern of
measurement errors is very important in improving the gross error identification and
edimation accuracy in reconciling process data. Therefore, the further study of the
ingrument errorsis essentid to provide more accurate distribution function and to have
the agorithm perform better.

Although steedy state process smulaion modes represent the behavior of continuous
processes, the study of the modeling of dynamic response of these processesisimportant
in describing the unsteady state behavior of processes and investigating the transient

behavior of the process from set point change.



APPENDIX A. TERMINOLOGY

Bounds - define the dlowable range of processvariables. The low and up bounds represent the
alowable minimum and maximum operating conditions of the processvariables and the
raw materia availability and product qudity requirements.

Closed form sequent modular plant model - follows the traditional design rules, using the
information for the input streams of aunit to determine the vaues of the output variables.
Changes of variables in input Streams can affect variables in output streams, but the
changes of varidbles in output streams can not affect the determination of process
variablesin the input streams.

Control variables - are the variables whose vdues must be satisfied by adjusting the
manipulated variables.

Data reconciliation - Data reconciliation is a procedure to adjust or reconcile process data
obtained from distributed control system and obtain more accurate vaues by adjusting
the data to be consstent with materid and energy baances.

Digtribution function - is used to describe the behavior pattern of measurement errors.

Economic modd - is the objective function for economic optimization. It isafunction thet is
used to maximize the plant profit; minimize the operation cost, emission or energy
consumption; for example.

Economic optimization - is to determine the plant operation conditions that will optimize the

economic objective (modd) and satisfy the congraints of the plant model.
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Equality condraint equations - are mass and energy baances, heat trandfer equations,
reaction rate equations (kinetic model), thermodynamic equilibrium equations, physica
property functions, and others.

GAM S, Generd Algebraic Modeling System- was devel oped at the World Bank to solve large
and complex mathematica programming models by using a programming language that
makes concise agebraic statements of the modds and was eedly read by both the
modeler and the computer (Brook et al., 1988).

Gross error detection - is a gatistical procedure to detect and rectify gross errors in plant
sample data sampled from distributed control system.

Grosserror detection rate - istheratio of number of gross errorsthat are correctly detected
by the dgorithm to the actud number of gross errors in measurements.

I nequality congtraint equations - provideadditiona regtrictions for the economic optimization.
The inequdity congtraint equations for achemica process are the demand for main and
by products, avaldbility of raw maerids, maximum capacities of the equipment,
retriction on the waste/pollutant emission, and others.

Influent function - is proportiona to the derivetive of the distribution function. It reflects the
influence of contaminated measurements on the estimation.

Initial point - the garting values of variables in a optimization problem for the optimization
agorithmto searchfor optima solution. The default initid point of GAMS s zero or the
bound whichever iscloser to zero if the bounds are specified to be different fromdefault

vaues.
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K ey measured variables - are the varigblesthat are directly related to the determination of
plant parameters

Measurable variables - are the variables that can be measured by insruments, such as flow
rate, temperature, pressure, composition, or other.

M easur edvariables- arethe variablesthat have been sampled fromplant’ sdistributed control
system.

Manipulatedvariables- arethe variablesthat are adjusted to satisfy theregquirement on control
variables.

Open form equation based plant model - is written as a set of dgebraic and/or differentid
equaionsin theform f(x) =0. The equations are solved smultaneoudy for the vaues of
variables, rather than sequentialy.

Observability - An unmeasured varigble in steady state model is observable if and only if it can
be uniqudy determined from a set of vaues for the measured varigbles, which are
conssternt with dl of the given condraints. Any unmeasured variable which is not so
determinable is unobservable (Crowe, 1989).

Optimization algorithm - is a mathematical method to solve an optimization problem, such as
smplex method for linear optimization problems and successive linear programming,
successive quadratic programming and the generdized reduced gradient method for

nonlinear optimization problems.
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Parameter estimation - isadatistica procedure to update the va ues of parametersinthe plant
model using the plant data reconstructed from the combined gross error detection and
data reconciliation.

Plant (Smulation) model - isconsst of aset of equations that represent the relationship among
process variables and describe the process behavior. These include the equdity
equations (materia and energy balances, etc.) and inequdity equations (availability of raw
materials, demand of products, capacity of equipment, etc.).

Plant parameters - are parameters in plant mode that are unmeasurable and whose values
change dowly with time and are not affected by the changes of operation conditions.,
e.g., heat exchanger fouling factors, catayst effectiveness factors, or tray efficiency.
These parameters usually describe the condition of process equipment.

Redundancy - A measured quantity is redundant if and only if it would be observable if that
quantity was not measured. Otherwise, the measured quantity isnon-redundant (Crowe,
1989).

Relative efficiency - represents the asymptotic efficiency of a distribution to normality. It
indicates the estimation accuracy for norma measurements.

Relative error reduction - is the ratio of the remaining error after data reconciliation to the
origind measurement error.

Set points - are the operating points of the controllers in the distributed control systemthat are

adjusted by n-line optimization.
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Type | error - isthe event that the dgorithm hasincorrectly identified anorma measurement (no
gross eror) as an abnorma measurement (measurement containing gross error).

Type Il error - is the event that the dgorithm has incorrectly identified an abnormd
measurement (measurement containing gross error) as norma measurement.

Unmeasured variables - are the variables that are not sampled from plant distributed control
system. Their vaues will be determined by the measured variables through condraint

equations.



APPENDIX B STATISTICAL BACKGROUND INFORMATION

The gpplication of the methods of probability to the analyss and interpretation of
empirica data is known as datigtical inference. The basic idea is to develop a probability
digtribution function based on the data sampled from a population and to use this distribution
function to test other data that is from the same population. The datistical theory of data
reconciliation in on-line optimization is based on the sameides, i.e,, assume the datais subject
to acertain type of digtribution. Then, this distribution is used to reconcile the data for process
variables sampled from distributed control system.

The digribution functions for data reconciliation of onHline optimization have been
discussed in Chapters 1l and 111. They are the normad distribution function whichis used by the
leest squares method, the contaminated Gaussian distribution function, robust functions
(Lorentzian didtribution and Fair function). These digtribution functions are used to congtruct the
likdihood function (maximum likeihood method) or posterior density functions (Bayesian
method). Data reconciliation is conducted by maximizing the likelihood functionor the posterior
dengity function subject to process congraints.

The gatistical method of data reconciliation can generdly be stated as:

Maximize: P(x,y) (B-1)
X, Z

Subjectto: f(x,2=0
xXt<x<xY,A2<z<
where P(x, y) isthelikelihood function or pogterior density function. (X, z) = 0 isthe process

congraintssuchas massand energy balances. y isthe vector of measurements (sample data) for
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the measured variables and x is the vector of true vaues for the same varidbles asy. zisthe
vector of unmessured variables in the congtraints. x“< x < xYand 2 < z < 2’ arethe bounds
on the process variables. Solving this optimization problem gives a set of vaues for process
variables (x and 2) that will maximize the objective function P(x, y) and satidfy the process
condraints f(x, z2) = 0. This objective function is used to reconcile the sample data, and the
condraint equations are necessary to describethe process. The following will briefly discussthe
relation of adigtribution function, likelihood function, and posterior density distribution.
|. Relationship of Didribution, Likelihood Function, and Posterior Density Function

A didribution is the sum of al the probabilities of a random variable associated with
outcomes in sample set S.  Conceptually, it describes the probability structure of the random
varidble (Larsenand Marx, 1986). Itisempirica function regressed from the sampled data. As
discussed in Chapters Il and 111, the distribution functions that are applicable to reconciling the
sampled datafromdistributed control systemfor orHline optimizationare the norma ditribution,
the contaminated Gaussan distribution, and robust functions.

If the measured data are independent of eachother, then the probability for a particular
set of data{yi, Vs, .., Y.} isthe product of individua probabilities p(y;), i =1, 2, .., n. This

product is caled likelihood function (Barlow, 1989). The likelihood function is expressed as :

POy = POIPOY P = TIPG) (B-2)

where P(y;) is the probability digtribution function for measurement error i. This distribution

function can be different depending on the didtribution structure of sampled data, and it can be
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the norma didribution function, the contaminated Gaussan distribution function, or robust
function.

The concept of conditiond probability isused in Bayesiantheorem. The probability that
an event F oceursif it isknown or given that an event E has occurred is denoted by P(F| E) and
it is called aconditiona probability of F given E. Probability P(F| E) is obtained by letting E be
the new reduced sample space. Then fractiona probability on E which lies on E0F (the
intersectionof Eand F, i.e., the sample space conssts of the dements contained in the set where

E and F overlap) is given by (Guttman, et d., 1982):

PE|B) = 2500

5 (B-3)

Aninterpretationof Eq. B-3isthat posterior to observing that measurementsy have been made,
the probability of x changes from the prior probability, P(x), to posterior probability P(x |y)
(Guttman, et a., 1982).

According to Bayesiantheorem, the posterior density function P(x| y) can be written in
terms of the conditional probability P(y |x) of an event that has measurementsy and isgiventhe
true vauesof the variablesas x, the prior probability that the variables have the true values as x
in P(x), and the prior probability that the variables have measurementsy in P(y). TheBayesian

theorem is (Bretthorst, G. L., 1989):

P(x | y) =Py | x) P)/P (y) (B-4)



356

The prior probability P(y) is a normdized constant and independent of x. It does not
affect the optimization and can beexcluded. The conditional probability P(y | x) isthe product
of conditiona probability for individua measurement P(y|x), i.e.,

Pl | X) =P [ ) PO | %)+ PO [ %) =[] Py | %) (B-5)
This probability function P(y | x) is alikelihood function.

The prior probability of the true vaues of the variables x, P(x), can be constructed by
the principle of maximum entropy based on the prior quditative knowledge about the true vaues
of process variables. The detall methodology about maximum entropy is given in Shannon
(Shannon, 1948).

For a discrete probability distribution P(i# 1), i stands for some proposition and |
represents the information on which the probability distribution is based. The principle of
maximum entropy statesthat if one hassome testable informationl, one can assign a probability
distribution to a proposition i such that P(i# ) contains only information|. This assgnment is

done by maximizing Shannon's H function (Shannon, 1948),

H-= Z} PG| MogPGi| I (-6
=

subject to the congtraints represented by the prior information |, where H isreferred as entropy
by Shannon.

Theinformation could be the normdization, i.e.,, the summeation of probabilitiesis equa
to 1, or knowing mean and variance of the proposition i. If nothing is known about the

proposition i, the objective function, i.e., H function, isonly subject to normdization condraint
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Y P, = 1. Then, the resultant probability function is a uniform function whose value depends on
the range of propositioni. If it is known that only the variance exists and it has zero meen, the
congtraints of H function are the normalization, first moment, and the second moment. The
resultant probability didribution is a normd distribution function with zero mean. If more
informetionis known, then more congraintsare considered. Therefore, theresultant distribution
function will more complicated and more accurate. However, if thefault information isadded to
the condraints, it will midead the distribution function.

For the event of throwing a die with six faces, its probability can be congtructed by the
principle of maximumentropy. 1tisto maximizethe entropy function H subject to the condraints.
If nothing is known about the die except that the sum of probabilities for al possibles outcomes

of throwing adieis 1, then the congraint is only the nomalization, i.e.,

i‘, PG| = 1 (B-7)
=1

The possble outcomes of throwing a die will be on sx different faces, and 6 in Eq. B-7
representstotal number of the possible outcomes of throwing adie. Therefore, thismaximization
is expressed as.

Maximize

H= -3 Pg| BogPel b
. F (B-8)
Subject to: ;P(i“) =1

Eqg. B-8 can be solved by Lagrange multiplier method. Solving Eq. B-8 gives the
probability for the event of throwing adie as.

Pi|1)=16 (B-9)
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If noinformationis known about the true values of process variables, thenauniformprior
probability (a congtant) will be assigned to ther distribution, P(x), based on the principle of
maximum entropy. Therefore, the posterior density function is proportiona to the likelihood
function, i.e,

P(x | y) =P(y | x) PX)/P(y)>= P(y | X) (B-10)
where P(x) and P(y) are congtants. The Bayesan method is reduced to maximum likelihood
method.

The relationship among these digtribution functions is summarized in Figure B.1. As
shown in Figure B.1, pogterior dengity function from Bayesan method is the most generd
approach. Itisthe product of thelikelihood function and prior probability P(x) of the true vaues
of variablesx as showninEq. B-4. Thismethodincorporatesmoreinformationinthedidribution
function than the maximum likeihood method. If the prior probability P(x) is a uniform
digtribution (aconstant), thenthe posterior dengity functionis proportiond to likelihood function,
and the Bayesanmethod is converted to maximum likelihood method. The maximum likelihood

method isa specia case of the Bayesian approach.
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If some quditative distributioninformationabout the true vauesof variablesx isavailable
and P(x) can be congtructed asafunction of x, then the variances of x areincorporated in the
posterior dengty function. Using this posterior density functionto reconcile process data cannot
only providethe point estimation (the estimated values of x) as the maximum likelihood method
does, but dso it can predict the possible variationranges around the estimated vaues of x, which
isindicated by the variances of x.

The likdihood function is the product of the distribution function for individud
measurement errors as defined in Eq. B-2, i.g, it is congtructed fromthe distributionfunctionfor
individud measurement errors. Based on the error structure of sampled data, the distribution
function can be the norma didribution, the contaminated Gaussian didribution, gamma

digribution, robust functions, or others. If the distribution function of measurement errorsfollows
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anormal digribution, thenthe likelihood functionis the product of the normad distributions for all
measurement errors. Themaximization of thislikelihood function isequivaent to the minimization
of the sum of squared errors weighted by the variance. Therefore, the maximum likelihood
method is converted to the least squares method. The least squares method is aspecia case of
maximum likelihood estimetion.
[1. Comparison of Unconstrained and Constrained Optimization

The methodology of data reconciliationinon-line optimization is Smilar to the traditiona
mean estimation of uncongtrained optimization.  The relations among process variables and
parameters(congraintsof the plant modd) are the necessary conditions for the datareconciliation
in on-line optimization. These equations relate the individua measurements obtained from
digtributed control system and provide the resolution for reconciling data. The following gives
smple examplesto illugrate the difference and amilarity between traditional mean estimationand
data recondiliation in on-line optimization.

Traditiona estimation usesmrepeated datato estimate the mean of one randomvarigble
(or n variadles for multivariate with mxn data). If al m measurements are randomly measured
and normally distributed, whose variance is F2. Then the mean of a random variable can be
edimated by maximum likelihood method, i.e., maximizing the likelihood functionwhichisajoint
norma digtributionfor dl sample data or minimizing the sum of squared differences between the
sample datay, and estimated mean - . Thisis expressed mathematicaly as.

Minimize: ) (v - 2)?/F° (B-11)
: i
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where - and y; are the estimated sample mean and the sample data of the random variable.
Sdting the firg derivaive of Eg. B-11 with respect to - equd to zero gives the globa
minimization of Eq B-11. The solution for = of Eq B-11 is obtained by:

p=L130, 6-12)

m gl

Eg. B-12 isafunctionto determine the sample mean of repeated experimental data and it isgiven
in anumber of statistica text books (Johnson and Wichern, 1992 ). The accuracy of the mean
depends on the m, number of repeated measurements. In generd, the larger m is, the more
accurate estimation of - will be.

For data reconciliation of on+line optimization, the vaues of n measured variables are
estimated using one set of N measurementsy;, i = 1, 2, .., n, wherey; represents the measured
vaues of n measured variable x,. The maximum likdlihood method can used to estimate the
reconciled vaues of the measured variables. If al measurements are randomly measured and
normally distributed with variances F,'s, then the maximum likelihood estimationmethod for the

data reconciliation can be expressed as.

Maximize

: 1 ::xp{— 0-0% " lp-»)| (B-13)
(2my 2|3 |2 2

where y represent the measured values of the n measured variadbles x.  E isthe variance matrix
of the measured variables. Eq. B-13 can be rewritten as:

Mmimize: (p-x)S ~ Yp-x) = X: , - xg’/of
1

(B-14)
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Maximizing the likelihood function in Eq. B-13 is equivdent to the minimizing the leest
squares function in Eq. B-14. The measured variables x are related by the congtraints from the
plant model. Thus, Eq. B-14 used with plant model is a constrained optimization problem.

Eg. B-11 and Eq. B-14 for traditional mean estimation and data reconciliation have the
gamilaritiesand differences. Both usemaximum likelihood method. However, thetraditiona mean
estimation uses m repested data to estimate one unknown mean. Data reconciliation uses a set
of nmeasurementsand condraint equations to estimatethe values of n measured variables. The
congtraint equations are essentid to relate the process variables for data reconciliation, and the
variablesin achemica process are variables in the process model. These condtraint equations

imposed on the process variables make data reconciliation possible.



APPENDIX C PHYSICAL PROPERTIES OF PROCESS STREAMS

In the sulfuric acid contact plant, there are four sreams in the whole process. These are
the low pressure gases (SO,, SO;, O,, and N,), liquid sulfur, steam (compressed water and
superheated vapor), and sulfuric acid liquid. Since the pressure of the gasesislower (rangein
1 am. to 1.4 am.) throughout the whole process, they are considered as ided gases. Thelr
enthapy and heat capacities are caculated by the regression equations from NASA Technica
Memorandum 4513 (Mchride et al., 1993). Also, the enthapy for liquid sulfur is determined
from the regresson equation in the condensed state fromNA SA Technicad Memorandum 4513
(Mcbride et d., 1993). However, the pressure of steam stream is as high as 640-730 ps, and
the computation formulas of the enthalpy for steam are obtained by mean of aleast squarefit of
the data from the ASME Steam Table (1977). The enthdpy for sulfuric acid liquid is obtained
from a two variables (concentration and temperature) polynomid formula fit to the enthapy-
concentration chart (Ross, 1952).
|. The Physical Properties of Gases and Sulfur

For theided gases (O,, N,, SO,, SO;) and liquid sulfur, the data to caculate the hesat
capacity and sensble enthdpy istaken from NASA Technicd Memorandum 4513 (Mchride,
etd., 1993). Tables C-1and C-2lid the heat capacity coefficientsfor gases used inthe balance
equations asshown below. The heet capacity coefficients for liquid sulfur isgivenin Table C-3.
Thereference state for heat capacities and sensible enthalpies of the speciesispressureat 1 Bar

and temperature at 298.15 °K.
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Table C-1. The Coefficients of Heat Capacity and Enthapy for Ided Gases
a the Temperature Range of 1000-5000 K

SO2 SO3 02 N2
al 5.2451364 7.0757376 3.6609608 2.9525763
a2 1.97042e-3 3.17634e-3 6.56366e-4 1.39690e-3
a3 -8.03758e-7 -1.35358e-6 -1.41149e-7 -4.92632e-7
a4 1.51500e-10 2.56309e-10 2.05798e-11 7.86010e-11
ab 1.05580e-14 -1.79360e-14 -1.29913e-15 -4.60755e-15
bl -3.75582e4 -5.02114e4 -1.21598e3 -9.23949e2
b2 -1.074049 -11.187518 3.4153618 5.8718925
Table C-2. The Coefficients of Heat Capacity and Enthapy for |ded Gases
at the Temperature Range of 300-1000 K
SO2 SO3 02 N2
al 3.2665338 2.5780385 3.7824564 3.5310053
a2 5.32379e-3 1.45563e-2 -2.99673e-3 -1.23661e-4
a3 6.84376e-7 -9.17642e-6 9.84740e-6 -5.02999¢-7
A -5.28100e-9 -7.92030e-10 -9.68130e-9 2.43531e-9
ab 2.55905e-12 1.97095e-12 3.24373e-12 -1.40881e-12
bl -3.69081e4 -4.89318e4 -1.06394€e3 -1.04698e3
b2 9.6646511 12.265138 3.6576757 2.9674747
H.qe/R -3.57008e4 -4.75978e4 0.0 0.0
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Table C-3. The Cosfficients of Heat Capacity and Enthal py

for Liquid Sulfur

T >1000 K T < 1000 K
al 3.500784 -7.27406el
a2 3.81662e-4 4.81223e-1
a3 -1.55570e-7 -1.07842e-3
a4 2.72784e-11 1.03258e-6
ab -1.72813e-15 -3.58884e-10
bl -5.90873e2 8.29135e3
b2 -1.52117el 3.15270e2

Hooe/R 0.0 0.0

The empirical equations for heat capacity C'(T) and sensible enthapy h(T) for each

species are:

;(i- = ara,Tra,T?va,T1a

= 50,,80,,0,, Ny, Kllkmol-*

and

2=—H=-m+ T+1 T2
R a, ?“2

+%a37'3+%¢4T‘+%a5T5
: 80,50, 0,N, STy, KJlkn

(C-1)

(C-2)
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where R is molar gas constant, 8.3145 KJkmol-°K. T isthe temperatureinK. The reference
state for enthapy equation is the standard state, 298.15°K and 1 bar. H,eg is the absolute
enthapy at the standard state for each species giveninNA SA Technicad Memorandum. Itiszero
for dements and the heet of formation for the species. Eq. C-2 is used to calculate the sensible
enthapy of aspecieswithreference state as temperature 298.15 K and pressure a 1 Bar. The
units of enthapy and heat capacity are dependent on the units of the constant R.
[1. The Physica Properties of Steam

The steam properties are divided into two groups, compressed water from stream SS1
to S$4 and superheated vapor in stream SS5 and SS7. For the compressed water, the
variation of enthapy in the operating pressure range is not sgnificant. It is assumed that its
enthapy is only afunction of temperature. The polynomia function of enthapy for compressed

water is regressed from ASME Steam Table data (Meyer, et d., 1977) shown as following:

T07T-5.63184x 107472 + R 34¢

C-3
ssx1o4+1.o1324x1o‘, BTN (C-3)
T 72

where the unit of temperature T is °F, and the reference state of the enthalpy is298.15K and 1
am. Theregression rangesare 200-500°F and 600-750 ps. The comparison of predictionand
tabulated data is shown in Figure C-1. The symbol and solid line in the figure represent the
tabulated data and formula prediction respectively. The largest relative difference between

prediction value and tabulated datais 0.01%.
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Figure C.1 The Comparison of Prediction and Tabulated Data
for the Enthalpy of Compressed Water

The superheated vapor isfit to athird order polynomid in temperature and second order
polynomid in pressure with ASME steam table data (Meyer et d., 1977). The regression

function is

h = 5326617T-0.2839015P-"7.352389x 107372
+3.581547x 107673 - 7.289244x 10" S P2 (C-4)
+4.595405x 10" * TP, BTUIIb

where the unit of temperature is °F and unit of pressure is psa. The reference state of the

enthdpyis298.15K and 1 am. Theregressionrangesare 200-500 F for temperature and 600-
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750 psafor pressure. The comparison of prediction and tabulated datais shown in Figure C-2.

The symbol and solid line in the figure represent the tabulated data and formula prediction

respecti
1400
vely. e
T h e 21350 T - =
S A
= +
largest m o
=1300 + «
o +
. ] +
relative g e
[ . +
Wyo50 + P
error S
betwee 1200 L+
490 500 510 520 540 560 580 600 620 640 660 680 700 720 740
n Temperature F
predicti Figure C.2 The Comparison of Prediction and Tabulated Data

for Enthapy of Superheated Vapor at 600 ps
on and tabulated datais 0.15%.
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[11. The Physica Properties of Sulfuric Acid
For the sulfuric acid stream, one of the difficulties in writing the energy equations isusing
the right thermodynamic mode to cal culate the entha py of the sulfuric acid syssem. Onepossible
approach which was used by Crowe (1971), Doering (1976) and Richard (1987) is using
RENON activity equation, which leads to relaivdy complicated equations. Also, the
temperatures predicted by this method did not agree with the design data wel (Zhang, 1993).
Besides, the variaions in temperature and concentration of the sulfuric acid systemisvery small
in comparison to the range of application of the thermodynamic equation. Therefore, it was
decided that the enthapy of sulfuric acid system could be regressed directly from enthal py-
concentrationchart givenby Ross (1952). By inspecting the data of the chart, it wasfound that
the enthapy at the same concentrations are amost a linear function of temperature. Therefore,
the enthapy data was regressed into a two-variable function, linear in temperature and second
order in concentration. The regresson result is.
h = - 145.8407C + 9.738664e-3T + 8.023897e-3TC
+ 83.61468C2 + 60.19207 (C-5)
For 60°C < T < 120°C; 0.90 < C < 1.00
wherethe unit of T is°C, and C isthe weight fraction of sulfuric acid. The unit of enthdpy, h, is
kilogram calorie per gram mole, where one gram mole of solution is defined as.

80.06x+18.02(1-X) g

and x ismolefraction of SO; defined as:
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Figure C.3 The Comparison of the Prediction and Tabulated Data
for Enthapy of Sulfuric Acid Solution

The standard states were chosen as h,0=0.0 kca/gmol and hyg050.=-1.70kcal/gmol at
T=16°C. The enthdpy cadculated in Eq. C-5isreferenced to thisstandard state. The regressed
predictionis compared withthe chart dataas shown in Figure C-3. Thelargest relative predicted

error for thisenthalpy is 3%.



APPENDIX D. KINETIC MODEL FOR THE CATALYTIC
OXIDATION OF SO, TO SO,

Doering (1976) devel oped akinetic model for the cataytic oxidation of sulfur dioxide to
auifur trioxideover vanadiumpentoxide catalyst. Thismodd was modified for the contact sulfuric
acid plant design by Monsanto Envio-Chem System, Inc. and isdiscussed below. The oxidation

of SO, to SO,

so,»r.%o,xso, (D-1)

iscarried out over a vanadium pentoxide catayst promoted by potassum salts. Extensiveefforts
have beendirected at corrdating the reactionrate datafor thisreaction. Doering used Harrisand
Norman's rate equation for this reaction with Monsanto Type 11 and 210 catayss. Also, this
rate equation was applied to the new LP-110 and L P-120 vanadium pentoxide cataysts which
arebeing used by IMCAgrico'sUncle Sam plants (Richard, 1987). The difference betweenthe
old and new catalystsis only their shapes, and the former had a cylindrica shape, while the latter
utilizes the Rasching ring form.  The differencein shape does not affect the intringc reaction rate
equation; it only changes the diffusond effect. The new catalysts have 45% to 50% lower
pressure drops with the same conversion performance as the old catalysts. The intringc rate

equation given by Harris and Norman (1972) is.

o o 12
Ts0, o 12 o 2 PP p 12 ( )

371



372

where rgq, is the intringc reaction rate with units of Ib-mol of SO, converted per hour per Ib

catalyst, and K, is the thermodynamic equilibrium constant with units of a2, Po,, Pso,, and

Psos areinterfacid partia pressure of O,, SO,, and SO; in units of am; and Py, and PPy, are

interfacid partia pressures of oxygen and sulfur dioxide at zero conversion under the tota

pressure of reactor, in units of am. The thermodynamic equilibrium congtant can be caculated
by:

LogyK p = 5129/T - 4.869, T in °K (D-3)

The parameters A, B, C and D in the rate equation, Eqg. D-2, were derived from least

sguare regression of the rate data by Harris and Norman(1972). They are the function of

temperature in K as following:

Catalyst Type LP-110 Catalyst Type LP-120

A =exp (-6.80 + 4960/T) A =exp (-5.69 + 4060/T)

B=0 B=0 (D-4)
C =exp (10.32 - 7350/T) C=exp (6.45-4610/T)

D =exp (-7.38 + 6370/T) D = exp (-8.59 + 7020/T)

The intringc rate equation is the rate under the conditions on the catalyst surface. To
determine the real reaction rate from the conditions of bulk-gas stream, the folloning four
trangport phenomena need to be considered:

1) Diffuson of reactants and product through the pores within the catalyst.

2) Pdlet internd temperature gradient.

3) Bulk-gasto pellet temperature gradient.

4) Bulk-gasto pellet concentration gradients.
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Diffuson: The effect of diffusion through the catalyst pores is taken into account by
multiplying the intring ¢ reaction rate by an effectivenessfactor, E, to get the actud rate, rgog, i.€.,

I'sos = I'soz & (D-5)

In Doering's work (1976), followed by Richard (1987) and Zhang (1993), the
effectiveness factor for this reaction was caculated by the empiricd formulas. After examining
the formulas, some inaccuracy was found. Therefore, the model has been modified; and the
effectiveness factor was changed to a process parameter to be estimated by plant data for each
convertor.

Pelet Temperature Gradients The intrgparticle heast conduction could cause a

temperature gradient within the catalyst pellet if the heat conductionis dow relative to the rate of
heet generationdue to reaction. Based on the criterion developed by Carberry for determining
temperature gradient within a catayst particle, Doering(1976) concluded that a significant
temperature gradient does not exist. Therefore, itisassumed that the temperature gradient within
these catadyst particle has an inggnificant effect on the reaction rate for this system.

Bulk Gasto Pellet Temperature Gradient: The bulk gas temperatures in the packed bed

reactors are measured. The uniform pellet temperature can be determined if the temperature
gradient acrossthe externd film of the catdyst surface can be calculated. Yoshidaet d. (1962)

presented amethod of estimating the temperature gradient using the following equation:
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r‘.qp,Ahff:Prm

a,$C. Gy

AT (D-6)

)T = temperature drop from a catalyst surface to the bulk gas, K

r'so3 = actua reaction rate of SO, Ib-mol/hr-1b Cat.

I H,. 3 = 1.827%(-24,097-0.26T+1.69x10°T?+1.5x10°T)
= heat of reaction of SO,, Btu/lb-mole

C, = gas hest capacity, Btu/lb-°K

Pr = Prandtl number = 0.83

Dg = (1-,)D4p, b/t = Bulk density

N = shape factor = 0.91

G = mass velocity of gas, ll/hr-ft?

a, = Specific surface of pellet = 6(1-,)/d, , FT4/FT°

j;, = 0.91 Re05!

Re=Gl/(aN:)

- = gasviscosty, Ib/fft-hr

The bulk density and spherical diameters of cataysts are given in Table E-1 (Zhang, 1993).

TableD-1 Catadyst Physica Properties
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L-110 L-120
Bulk Density, Ibfft? 33.8 38.1
Spherical Diameter, ft 0.0405 0.054

The heat capacities of the gas streams are giveninEq. B-2 of Appendix B. The criticd

gas viscosty were caculated by the following equations(Bird, et d., 1960):

¢ T )112
U= 61.61\1"—43, Micropoise
va!
e, y 172 (D7)
= 0.0149————, 1b/ft-hr
o

where M,, isthe molecular weight. T.and V. arethe critical temperatureinK and vaumein CC

per gram-mol respectively. Theviscosity for temperature T can be calculated by (Zhang, 1993):

W= uiFny, (D-8)

wherey;’s are molar fractions of gas components, i= SO,, SO5, O,, N,. F,’s are temperature

factors for gases which can be calculated by (Zhang, 1993):

D.:
b.
(1.97Tz,)

IxTr 645 -

(D-9)

where T,” s are the relative temperature of gas componentsi.
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Bulk-gasto pellet concentrationgradients. Based on thework of Y oshida, et d. (1962),

Doering(1976) concluded that the partial pressure gradients from the bulk gas to the pellet was
aufficiently small to be neglected.

Summary: The kinetic modd for the oxidationof SO2 to SO3 isgiven in this gppendix.
The equations required to determine the reactionrate are summarized in FigureD-1, and they are

incorporated in GAMS program. Thiskinetic model precisely describes
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Reaction: so,+%o,-=sa,

80O, convarsion rata eguation:
[ ] al2

A+ BPY" + CPY, + DP,

Psa,
o) K PeoPs”
Ib mole of 80, converted
hr-Ib catalyet
qupsqrpsq= interfacial pertial pressures of
0,850,805 atm

P;’,P;O’ = interfacial partial pressures of O, and
SO, at zero comvarsion under the total

pressure at the point in the reator, atm

1

K, =thermodynaomic equilibrium constant,atm >
Log [Kp=5125T-4.265, Tin °K

Yo, 1-

Ky, =Patte of redction,

AB.C.D are finction of temperature T
Catalyst Type LP-110:

A=e" €. 80+4960NT B=0 C(=e 10.32- 7350/T D= 758+6370NT

Cutalyst Type LP-120:

A=¢ sm»,mr. B= 0. 02‘8.45- 4ﬂlll1'. D=¢” 8.59+7020iT

FigureD.1 Rate Equation for the Catalytic Oxidation of SO, to SO; Using Type LP-110
and LP-120 Vanadium Pentoxide Catdyst
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the relation of the reaction operation conditions, such as temperature, pressure, concentrations
of gas components. In addition, the modification of reaction effectiveness factors determined
from empiricd formulas with the assumption of pseudo firs order reaction to plant parameters
improves the performance of the kinetic modd in GAMS program.  The smulation with present
kinetic model predicted conversionand energy transportinthe packed bed reactors as described

in Chapter V.



