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ABSTRACT

On-line optimization is an effective approach for process operation and economic

improvement and source reduction in chemical and refinery processes.  On-line optimization

involves three steps of work as: data validation, parameter estimation, and economic optimization.

This research evaluated statistical algorithms for gross error detection, data reconciliation, and

parameter estimation, and developed an open-form steady state process model for the Monsanto

designed sulfuric acid process of IMC Agrico Company.  The plant model was used to

demonstrate improved economics and reduced emissions from on-line optimization and to test the

methodology of on-line optimization.  Also, a modified compensation strategy was proposed to

improve the misrectification of data reconciliation algorithms and it was compared with

measurement test method.  In addition, two ways to conduct on-line optimization were studied.

One required two separated optimization problems to update parameters, and the other combined

data validation and parameter estimation into one optimization problem.  Two-step estimation

demonstrated a better  performance in estimation accuracy than one-step estimation for sulfuric

acid process, while one-step estimation required less computation time.

The measurement test method, Tjoa-Biegler’ contaminated Gaussian distribution method,

and robust method were evaluated theoretically and numerically to compare the performance of

these methods.  Results from these evaluation were used to recommend the best way to conduct

on-line optimization.  The optimal procedure is to conduct combined gross error detection and data

reconciliation to detect and rectify gross errors in plant data from DCS using Tjoa-Biegler’s

method or robust method.  This step generates a set of measurements containing only random
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errors which is used for simultaneous data reconciliation and parameter estimation using the least

squares method (the normal distribution).  Updated parameters are used in the plant model for

economic optimization that generates optimal set points for DCS.

Applying this procedure to the Monsanto sulfuric acid plant had an increased profit of  3%

over current operating condition and an emission reduction of 10% which is consistent with other

reported applications.  Also, this optimal procedure to conduct on-line optimization has been

incorporated into an interactive on-line optimization program which used a window interface

developed with Visual Basic and GAMS to solve the nonlinear optimization problems.  This

program is to be available through the EPA Technology Tool Program.
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 CHAPTER I  INTRODUCTION 

The objective of this research is to investigate the optimal implementation of on-line

optimization for industrial plants.  This includes the establishment of a framework for on-line

optimization, the construction and validation of plant models, the evaluation of algorithms for

conducting gross error detection, data reconciliation, parameter estimation and economic

optimization, and the comparison of the available program languages.  The results of this research

should help determine the optimal way to perform on-line optimization.

This chapter introduces the structure of on-line optimization and describes the relations of

the components in on-line optimization.  It provides an overview of the detailed descriptions to be

presented in subsequent chapters.

A. An Overview of On-Line Optimization

On-line optimization adjusts the operation of a plant based on product scheduling and

production control to maximize the plant’s profit. It provides the means for continuously driving a

process toward its optimum operating point.  In most industrial processes, the optimal operating

point constantly moves in response to changing market demands for products, fluctuating costs of

raw materials, products and utilities, and changing equipment efficiencies and capacities.  In

addition, ambient conditions, variations in feed quality and availability, and changes in equipment

configuration are additional constraints that can alter the location of the optimal operation point. The

time frame over which these various changes can occur ranges from minutes to months.  The

competitive economic environment requires timely response to these changing factors.  This means
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that the optimization must be done on-line to have the plant operate continually under the best conditions.

With the availability of distributed control systems (DCS) for process control and data

acquisition as well as the application of multivariable controllers, large scale application of on-line

optimization has become feasible.  DCS provides current plant operating data (plant

measurements) for updating the parameters in plant models to avoid the plant-model mismatch.

Multivariable controllers ensure the control ability to quickly and accurately response to new

optimal setpoints.  Moreover, the decline in cost of computer hardware and software and the

increase in the cost of energy and pollution prevention have stimulated manufacturers to improve

and optimize their processes, which has boosted the development of on-line optimization. 

There have been several industrial applications of on-line optimization reported recently

in refineries and chemical plants, and the improvements in plant operations and economics ranged

from a 5% to 20 % increase in profit (e.g., Lauks, et al., 1992; Van Wijk and Pope, 1992; Hardin,

et al., 1995; Mudt, et al., 1995; and Kelly, et al, 1996).  Also, on-line optimization applications

have been developing commercially by advanced control and modeling technology companies.

Some of the advanced control companies and their packages include: Setpoints, Inc.-"OPTCOM",

Treiber Controls, Inc.-"OPS",  Profimatics, Inc.-"On-Opt", and Dynamic Matrix Control (DMC)

Corporation-"CLRTO". Modeling technology companies market capabilities based on their

flowsheeting programs and graphical interface, and some of these are Simulation Science, Inc.-

"ROM", ChemShare, Inc.-"Mirror Model" and Aspen Technology-"RT-Opt".  

On-line optimization is the next growth area for improving the performance of chemical

plants and petroleum refineries.  The advanced control and modeling technology companies are
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forming partnerships that capitalize on their individual capabilities.  Recently, Aspen Technology

has merged with Setpoint, Inc. and DMC Corporation.  Simulation Science, Inc. and Shell

Development Company have entered into a cooperative agreement; and Profimatics has been

acquired by Honeywell (Basta, 1996).  These changes were caused by an industry demanding for

the integration of on-line optimization and advanced control.   These companies’ objectives include

conducting on-line optimization projects for clients and making a profit.  They do not share details

of methodology to maintain a competitive advantage.

The main benefit from on-line optimization is improving the economic performance in terms

of increasing the plant’s profit and reducing pollutant emissions, which is the immediate benefit

called on-line benefit.  A number of other benefits are summarized in Figure 1.1 after Bayles at

Conoco (1996) and Kleinshrodt, et al., (1995).  The detail operation information generated from

on-line optimization provides a better understanding of the processes; and thus, this can be used

to debottleneck the process and to improve operating difficulties.  Also, abnormal measurement

information obtained from gross error detection can help instrument and process engineers to

trouble shoot the plant instrument errors.  The parameter data estimated from parameter estimation

is very useful for process engineers to evaluate the equipment conditions and to identify the

bottlenecks and problem sources.  Furthermore, the detail process simulation from on-line

optimization can be used for process monitoring and serves as a training tool for new operators to

obtain the first hand operating experience.  In Figure 1.1, a number of applications are summarized

for both on-line and off-line uses that employ the same rigorous process model which was

developed for on-line optimization.  Also, this rigorous process model can be used for process
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Figure 1.1 Lifecycle Modeling of a Process for Various Applications after Bayles (1996)

maintenance, advanced process control, process design and facility planning, and process

monitoring.

In Figure 1.2, a general description of the time and plant scales of optimization is given for

processes and plants.  As shown on this diagram, maximizing the corporate profit from multiple

plants requires the allocation of raw materials to meet the demand for products.  This is an optimal

production scheduling and control problem; typically, there are thousand of variables for which the

optimal values need to be determined.  Linear programming is the
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Figure 1.2 Diagram of Plant and Time Scales Encountered in Process Optimization, 
after Koninckx, et al., (1988)
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optimization method usually used for problems at this level.  In general, the frequency for this type

of optimization is weekly or monthly.  The results from the plant scheduling optimization assign the

best production rates for the plants.

On the single plant scale, the task of optimization is to find the optimal operation set points

for the plant that satisfy the assignment from optimal plant scheduling and minimize the production

cost.  This type of optimization usually involves nonlinear plant and economic 

model and has a size about hundreds or thousands of variables and constraints.  It updates the

parameters in plant models to eliminate the plant-model mismatch.  Also, it provides information

for identifying the sources of abnormal operations, such as detecting leaking equipment or

malfunctioning instruments.  

For single loop or individual unit optimization, the task is to optimize decision variables,

such as, reactor temperature and resident time at the existing catalyst activity or reflux ratios on

distillation columns.  This type of optimization involves nonlinear plant model with a size of tens of

variables and constraints.

B. Structure of On-Line Optimization

In Figure 1.3, the structure of on-line optimization is shown along with the components

which work together to maximize the profit from the operation of the plant.  The key components

of on-line optimization include the plant and economic models, gross error detection, data

reconciliation and parameter estimation. Also, an efficient optimization algorithm is used to solve

the three nonlinear optimization problems shown in Figure 1.3. Referring to Figure 1.3, plant data
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is sampled from the distributed control system, and gross errors are removed from the data.  Then

the data is reconciled to be consistent with 
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Figure 1.3 Structure of On-Line Optimization
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material and energy balances of the process.  This data is then used to update the parameters in

the plant model to ensure the plant model predicts the operation of the plant.  The updated plant

model is used with the profit function (economic model) to generate the best operating conditions

for the plant.  Then these are sent to the plant distributed control system as set points for the

controllers.  Also, a coordinator program is used to supervise and control on-line optimization, the

frequency that it is repeated and the interaction with plant operators.

For a steady state plant model, Figure 1.4 describes the implementation procedure of on-

line optimization system modified from Kelly, et al., (1996).  First, the selected key measurements

are examined to test if the process is at steady state.  If not, testing of the process is continuing until

the process reaches steady state.  When the process is at steady state, the plant measurements are

extracted from DCS and are processed through the data validation step to remove or rectify the

gross errors in the measurements.  The measurements include temperatures, pressures, flow rates,

compositions, for example.  Then the validated plant data can be used to estimate the parameters

in the plant model at parameter estimation step.  These parameters are usually unmeasurable and

time-varying constants, such as catalyst activity, heat exchanger fouling factors, and tray efficiencies

of distillation columns.  They reflect the equipment conditions that change with time and are relative

independent of plant operation conditions. Estimating these parameters on-line has the plant

simulation model match the plant operation at the current operating conditions.

The parameters in the economic model include sale prices and demand for products, costs

and availability of raw materials, utility cost, etc., which are determined by conditions that are

separated from process operations and are also subject to change.  These parameters 
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Figure 1.4 Implementation Procedure of On-Line Optimization
                 after Kelly, et al., 1996
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have to be adjusted to have an accurate description of the profit.  Finally, current economic model

incorporated with the updated and precise plant model is used to determine the best operating

conditions (e.g. temperatures, pressures, and flow rates) for distributed control system to operate

the plant.   These optimal operating conditions maximize the profit and satisfy the plant model.

After the optimal set points are obtained from economic optimization, the operating state

must be examined again to ensure the process still remain in the same steady state as the plant data

was taken to update the plant parameters previously.  If not, the optimal set points  is discarded

and the procedure is restarted again.  If the process remain the same, then the optimal operation

set points are sent to the regulatory control system to implement. 

As shown in Figure 1.4, on-line optimization system involves solving three nonlinear

optimization problems represented by three boxes: data validation, parameter estimation, and

economic optimization.  These three nonlinear optimization problems share the same plant model

as constraints and can be solved by the same optimization algorithm.  A precise and robust plant

model is essential for on-line optimization.  It serves as the constraints for data validation,

parameter estimation and economic optimizations.  Therefore, a plant model must be formulated

and validated before the on-line optimization implementation.  The plant model is written based on

the conservation laws, chemical kinetics and thermodynamic relations.

In order to perform on-line optimization for a plant as described above, both computer

hardware and software are required.  First, the plant must have an automated control system to

sample the plant operating conditions.  Also, all of the key components for optimization need to be

programmed in a computer language and run on the plant computer system.  In addition, a
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coordinator program is needed to coordinate the sequence of executions of each step in Figure 1.4.

This program also manipulates the plant sample data from the distributed control system and returns

the optimal set-points to the distributed control system.

C. Execution of On-Line Optimization

The execution frequency of optimization is the time between conducting optimizations of

the process, and it has to be determined for each of the units in the process.  It depends on the

settling time, i.e., the time required for the units in the process to move from one set of steady-state

operating condition to another.  The settling time can be estimated from the time constant

determined by process step testing.  The time period between two on-line optimization execution

must be longer than the settling time to ensure that the units have returned to steady state operations

before the optimization is conducted again.  This is illustrated in Figure 1.5, after Darby and White

(1988).  The figure shows an execution frequency for optimization that was satisfactory for one

process may be too rapid for another process which has a longer settling time.  In Figure 1.5a, the

process has returned to steady-state operations and held that position until the next optimization.

However, in Figure 1.5b, the process did not have enough time to return to steady-state operations

before the optimization altered the operating conditions; the process would not return to steady

state operations if such optimization continued.  The settling time for an ethylene plant is four hours

according to Darby and White (1988), and this time for sulfuric acid contact process is twelve hour

according Hertwig (1997).  
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Figure 1.5 Comparison of Time between Optimization and Process Settling Time,
after Darby and White (1988)
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D. Summary

The rapid development in computer hardware and software as well automation technology

in the last ten years has made it possible to consider on-line optimization of chemical plants.  On-

line optimization improves the economic and environmental performances of chemical plants and

refinery processes without requiring substantial capital investment, and it is a growth area for

modeling technology and advanced control companies.

On-line optimization takes advantage of the fact that chemical plants operate at steady state

with transient periods that are relatively short compared to steady state operations.  Consequently,

steady-state process models are used to describe the plants.  The idea of on-line optimization is

to reconcile data samppled from distributed control system to update parameters in the plant model

to have plant-model matching.  Then the current plant and economic models are used to conduct

economic optimization and to generate a set of optimal set points that achieve the maximum profit.

On-line optimization is repeated as the internal conditions (plant parameters and plant configuration)

and/or external conditions (economic parameters) change.

In the following sections, the current status for the methodology of on-line optimization will

be reviewed.  This will provide the basis for developing the best way to implement on-line

optimization in this research.  In the subsequent section, the detail methodology of on-line

optimization will be investigated and evaluated.  Based on the evaluation results, the best procedure

to implement on-line optimization will be proposed.  Also, an actual sulfuric acid plant from IMC

Agrico Company in Louisiana will be used to evaluate the efficiency and accuracy of the algorithms

and to investigate the best way to implement on-line optimization.
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CHAPTER II  LITERATURE REVIEW

In this chapter, industrial applications of on-line optimization will be summarized first.  The

key elements of on-line optimization will then be outlined, and the current status of the

methodology for on-line optimization will be reviewed.  Based on this information, the procedure

for implementing on-line optimization will be proposed and applied to actual plants.

A. Industrial Applications of On-Line Optimization

Boston, et al., (1993) gave a wide review for computer simulation and optimization as

well as advanced control in chemical process industries (CPI).  He described the new  computing

power for process optimization and control that leads to higher product qualities and better

processes, which are cleaner, safer, more efficient, and less costly.  Also, it results in speedier

response to changes in economics, regulatory, and technological conditions, as well as market

demands.  As Parkinson and Fonhy (1995) reported, the global market for distributed control

system (DCS) is about $6 billion with the U.S. accounting for about $1.5 billion now, and it is

growing by over 20% per year in some Asian countries and by 5% per year in the U.S.  The

wide installation of DCS in chemical plants and refinery processes provides the necessary

measurements of processes for on-line optimization.  The new optimization tools are pushing the

plant performances to a level that was not felt possible before. 

There have been several industrial applications of on-line optimization reported recently

in refineries and chemical plants. They reported improvements in plant operations and economics

in a range of 3% to 20%.  However, details of methodology used is sketchy because proprietary

processes are being used.
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Lauks, et al., (1992) reviewed the industrial applications of on-line optimization reported

in the literature from 1983 to 1991 and cited nine applications for five ethylene plants, a refinery,

a gas plant, a crude unit and a power station.  These results showed a profitability increase of 3%

or $4M/year.  Also, intangible profits from a better understanding of the plant behavior were

significant.  In addition, they gave results for the OMV Deutschland GmbH complex including a

refinery unit, an ethylene plant and downstream treating units in Burghausen, Germany.  An

equation oriented flowsheeting program was used for the process model having more than 5,000

linear and nonlinear equations which led to an optimization problem with 106 constraints and 37

decision variables.  Data reconciliation involved 450 points, and there were about 300 tuning

parameters.  The program was run on a DG-AVIION 4200 Unix system with a total

computation time of 60 minutes.  Optimization results were summarized in a setpoint report and

manually implemented by plant operators on a TDC 2000 system. The improvement in

profitability has been between 1-3% depending on price structure, and it has provided better

insight to operation of the plant.

Scott, et al., (1995 and 1994) reported that Texaco Refining and Marketing Inc. (TRMI)

has implemented ROM from Simulation Sciences Inc. on a four unit complex.  This on-line

optimization package provides integrated modeling of reaction units, optimization across multiple

units, validation of laboratory and plant data, higher quality control, and a large amount of

operating information. It was expected that the benefits from this project would exceed $1 million

annually.  Also, this can be used as a versatile tool for troubleshooting, planning, and training of

the processes.
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Zhang (1993) had conducted a case study of on-line optimization for Monsanto designed

sulfuric acid plant from IMC Agrico Company at Convent, Louisiana.  The economic optimization

achieved 17% increase in plant profit and 25% reduction in sulfur dioxide emission.  The same

sulfuric acid plant will be used in this research to test the methodology of on-line optimization. 

Krist, et al., (1994) described the development and implementation of a generic system

for on-line optimization (SOLO) in a benzene plant of Dow Benelux N.V.  SOLO contains

generic modules and plant specific modules.  The generic modules are used for data-retrieved,

data analysis, data reconciliation and decision mechanism; and the plant specific modules are used

for parameter estimation and final optimization.  This optimization increased the plant’s margin by

an average of 4%.

Fatora, et al., (1992) reported that the use of closed-loop real-time optimization and

dynamic matrix control technology has achieved significant economic benefits in an olefin plant.

The pay-back period for the total project was less than one year.  In addition, benefits of this on-

line optimization system were that it pushed the unit to the most profitable constraints based on

current economics and operating objectives.  This increased the plant capacity, reduced energy

requirement, and improved product qualities.

Van Wijk and Pope (1992) described on-line optimization of the catalytic cracking

complex at Shell's Stanlow refinery in the UK.  The on-line optimization system received process

and economic data from the refinery supervisory control system and performed optimizations on

a three hour cycle providing targets to the process controllers.  The process and economic

models were nonlinear, and a reduced gradient algorithm was used for the optimization.  Data
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reconciliation was performed on several hundred points, and rotating equipment efficiencies and

heat transfer coefficients were two of the parameters updated in the process model.  Benefits of

on-line optimization were a 10% average increase in feed rate, a 9% increase in catalyst

circulation rate which resulted in a 9% increase in gasoline production.

 OEMV, an Austrian company, had successfully installed an on-line control and

optimization system in the fluid catalytic cracking units (FCCU) in 1987 (Rhemann, et al., 1989).

The advanced control and optimization project schedule was included in an overall project

providing a new digital instrument control system (DCS) for FCCU, gas plant and treating units,

consolidated in one common control area.  The new DCS was installed and commissioned

without a plant shutdown during normal plant operations.  The improved control from advanced

control and on-line optimization translated into a large reduction in the  standard deviation of

control variables. The advanced control and on-line optimization gave a 4.3% increase in the

maximum operating feed rate for FCCU.  Also, the controls showed both a high flexibility at

varying unit constraints and a high reliability in daily operating.

Sourander, et al., (1984) described the on-line optimization of an ethylene plant using

refinery heavy feedstocks.  The plant produced 200,000 tpa of ethylene using nine cracking

furnaces which had a computer control system with set point supervisory controls of analog

controllers.  Gas chromatographs using dedicated microcomputers sampled feed and product

streams, and analyses were sent to the main process computer.  Seven different feedstocks and

three different recycle streams were sent to the nine heaters at varying rates to meet production

demand for seven products.  The economic model was based on gross margin, and linear
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programming was used to maximize gross margin subject to market demand, feed availability and

the plant constraints (material and energy balances and process unit capacities).  The on-line

optimization cycle was executed every four hours.  Error detection was very important, especially

for the heater effluent, and a bad analyses not detected and included in the model updating caused

errors to be carried through to the control system.  The results of using on-line optimization were

reported to be increased furnace run times of 30%, efficiencies of 3%, capacities of 4% and

increased ethylene yields of 2%.

Saha, et al., (1990) of Amoco Production Company reported results for the on-line

optimization of a 240 MMscfd gas-processing plant in Evanston, Wyoming using the ChemShare

ProCAM system which has data reconciliation and a proprietary process modeling system using

a simultaneous solution technique.  More than 550 data points were taken from the plant's

distributed control system (DCS) and reconciled for optimization using a plant model with 170

pieces of equipment and detailed economic model.  The optimization analysis determined the best

operating conditions for 40 process variables which were reported to the plant operator for

implementing via the DCS.  Preliminary estimates were approximately $9,000 per day for an

increased pretax profit and 50% higher than this for a high ethane recovery mode.

Moore and Corripio (1991) reported on the on-line optimization of distillation columns

in series which used dynamic programming with steepest descent and a simple model for product

recovery for two and three distillation columns in series.  Applied to a two and three column train

at Dow Chemical Company's Louisiana Division, the control system performed successfully to

reduce operating costs beyond what was anticipated.
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Bailey, et al., (1993) reported on the on-line optimization of a hydrocracker fractionation

plant using MINOS as optimizer.  The full plant model contains 2891 variables with 10 degree

of freedom.  Detailed methodologies including modeling and  numerical techniques were outlined.

They showed that the important factors for implementing the model-based optimizer were scaling,

starting points, sparsity patterns and thermodynamic approximations.  The on-line optimization

system gave an 3% increase in profit.

Gott, Roubidoux and Heersink(1991) described an on-line optimization system for the

Conoco's Billings refinery fluid catalytic cracking (FCC) units using Profimatics Inc. FCC-

SIMOPT package.  The on-line optimizer generates both optimal control targets as well as the

optimal operating strategy for the advanced FCC constraint control.  The on-line optimization

was divided into five phases: 1) process data monitoring, 2) program scheduling, 3) data

reconciliation, 4) model update, 5) optimization. The results are sent to the advanced control

system.  They concluded that this system increased the profit and provided better insight into the

operation of the FCC units.  

Simulation Sciences Inc. uses the flowsheet simulator PRO/II and data reconciliation

package DATACON as the main engines in their On-line Rigorous Model (ROM) (Mullick,

1993).  ROM was applied to a refinery crude unit for on-line planning, scheduling and

optimization.  They concluded that ROM provide a rapid and robust model of the current plant

operations and is a valuable tool to improve profitability and operations through case studies and

optimization. 
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ChemPlant technology has developed a data reconciliation program, RECON, to

reconcile process measurements (Madron, 1997).  RECON is a PC oriented software for mass

and heat balancing.  Problems are defined interactively in the graphical user interface.  Also,

RECON can be used for balancing in the stage of process design.  

Strand (1989) described on-line optimization of a mechanical pulping systems in his

dissertation.  Detailed process modeling of the pulping system and data reconciliation based on

a simple linear models were discussed.  Sequential Linear Programming (SLP) was used to

optimize the pulping system operations by maintaining the pulp quality while minimizing the energy

consumption.  When this system was applied in the pulping system, 6% reduction in energy

consumption and 0.5T/hr production rate increase was achieved.  

Mahalec (1993) of Aspen Technology Inc. examined the on-line, closed loop

optimization of continuously operating plants from a viewpoint of software requirements.  The

open form of model equations was considered to be a basic requirement for a successful long-

term implementation of the closed-loop optimization.  This open form equation-oriented structure

was demonstrated to provide user friendliness and enable the plant engineers to maintain the on-

line optimizer more easily.

Leung and Pang (1990) of Simulation Sciences Inc. described their company’s codes for

data reconciliation and gross error detection.  The package DATACON uses the measurement

test (MT) and provides a friendly user interface (Simsci, Inc., 1991).  It accesses PROII's

component library for thermodynamic data and reconciles the raw data with both process
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material and energy balances.  This DATACON package is widely used in their company's on-

line monitoring and optimization system.  

Canfield and Nair (1992) of ChemShare, Inc. described their company’s codes for data

reconciliation and gross error detection using complete and rigorous process models with least

square methods.  The ChemShare's package was implemented on-line at Amoco Production

Company's Painter Complex NGL Recovery/Nitrogen Rejection Unit which had a total of 170

pieces of equipment including distillation columns, multi-stream plate fin heat exchangers, a heat

pump and a propane refrigeration system.  Initially, ten percent of a total of 550 measurements

were found to have gross errors by the program.  The subsequent analysis of the instruments in

the plant verified that all of the flagged instruments were indeed faulty.  In most cases the

instruments require recalibration.  In one case, an incorrect flow rate was caused by the orifice

plates being installed backwards.  Also, they showed that reconciliation with a complete and

rigorous process model was superior to reconciliation with only material and energy balances.

May and Payne (1992) of Monsanto described automating plant-tested techniques

derived directly from the operator experience.  All of the techniques outlined in their paper are

engineering common sense, have been already field-tested and proven manually by years of

experience among operators, engineers and mechanics.  They point out that this kind of operator-

interactive computer program is more valuable when provision is made for updates and

modifications as experience with the system grows. 

  Hardin, et al., (1995) of Conoco and AspenTech reported that a rigorous crude unit

optimizer has been implemented at Conoco’s Lake Charles, Louisiana refinery.  The benefits
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were a profit increase in $0.03 when a BBL crude was processed and better understanding of

the plants.

Kelly at DMCC and Fatora and Davenport at Lyondell Petrochemical Co. has applied

a closed loop real-time optimization system to a large scale ethylene plant (Kelly, et al., 1996).

Their results indicated a project payback period of less than 9 months.  In addition to the

economic improvement, the optimization system improved the understanding of process

operations and the analysis of the equipment performance.   Also, Edwards and Masaki of

Setpoint (1994) reported that an average project payback ratio over ten years period can exceed

ten to one from on-line optimization for a typical refinery with 130 MBPD capacity.

There have been a number of papers and presentations that proposed various ways to

conduct on-line optimization (Darby and White, 1988; Macchietto and Stuart, 1989; Lojek and

Whitehead, 1989; Chen and Joseph, 1987; Fisher, et al., 1990; Pierucci and Rovaglio, 1991;

and Koninckx, et al., 1988).  Many of the authors are with companies that provide process

control and flowsheeting services to the chemical and refining industry.

In summary, on-line optimization significantly improved profitability, plant operation, and

emission reduction; and it provided better understanding of processes.  Typically, profitability was

increased by 5 to 10% with comparable improvements in plant operations.  Also, it was reported

that a more thorough understanding of the plant performance was very valuable but is difficult to

quantify economically.

B. Key Elements of On-Line Optimization
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The objective of on-line optimization is to determine optimal process setpoints  based on

plant’s current operating and economic conditions.  As shown in Figure 1.3, the key elements of

on-line optimization are:

-  Gross Error Detection 

-  Data Reconciliation

-  Parameter Estimation

-  Economic Model (Profit Function)

-  Plant Model (Process Simulation)

-  Optimization Algorithm

A procedure for implementing on-line optimization is illustrated in Figure 1.4.  It involves the

detection of steady state, data validation, parameter estimation, and economic optimization

sequential as discussed previously. 

The relationship between these key elements is outlined in Figure 2.1.  From Figure 2.1,

both plant model and optimization algorithms are required in the three steps of on-line

optimization.  On-line optimization involves solving three nonlinear optimization problems:

economic optimization, parameter estimation, and data validation.  The plant model serves as the

constraint equations in these three nonlinear optimization problems and the optimization algorithm

is used to solve the nonlinear optimization problems.  For economic optimization, the plant model

is used with economic model to maximize the plant profit and provide the optimal setpoints for

the distributed control system to operate.  For parameter estimation, parameters in the plant

model are estimated by optimizing an objective function,



Figure 2.1 Relationship between Key Elements of On-Line Optimization
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such as minimizing the sum of squares of measurement errors, subject to the constraints in the

plant model.  For data validation, the errors in plant measurements are rectified by optimizing a

joint probability distribution function subject to plant model, and a test statistic is used to detect

the gross errors in the measurements.

Data reconciliation is conducted in combined gross error detection and data reconciliation

and simultaneous data reconciliation and parameter estimation.  In combined gross error detection

and data reconciliation, data reconciliation is required to reconciled process data and to estimate

the measurement errors for gross error identification.  In simultaneous data reconciliation and

parameter estimation, data reconciliation is required to estimate process parameters and process

variables.  These two data reconciliation optimization problems use the same plant model, and

the only difference is that the process parameters are constants in combined gross error detection

and data reconciliation and are variables in simultaneous data reconciliation and parameter

estimation.  Data reconciliation in combined gross error detection and data reconciliation step

should use current values of the process parameters for the plant model, but current parameters

come from the subsequent parameter estimation step.  Consequently, it is necessary to use

previous values of process parameters for combined gross error detection and data reconciliation.

Hence, updated values of the parameters strongly dependent on previous (old) values of the

parameters if all reconciled measurements are used for estimating the parameters.  

Some authors (Almasy and Sztano, 1975; Mah, et al., 1976) suggested separated

procedure for gross error identification (such as global or nodal test), data reconciliation, and

parameter estimate.  The others proposed combined gross error detection with data reconciliation
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(such as measurement test) or combined parameter estimation with data reconciliation.  Seber

and Wild (1989) described a robust method that has an ability of automatically rejecting the

extreme observations ( with gross errors).  This method improves the performance of data

validation and will be a potentially powerful method for combining parameter estimate with data

validation.

The following paragraphs present a review of the literature giving the status of these key

elements.  First, the methodology for data reconciliation, gross error detection, combined gross

error detection and data reconciliation, parameter estimation, and simultaneous data reconciliation

and parameter estimation will be reviewed sequentially.  Then the status of economic optimization,

plant model formulation, and optimization algorithms will be described.

B-1. Data Reconciliation  

Results of research on data reconciliation have been reported for both steady state and

dynamic process.  They were reviewed and evaluated in detail through 1988 by Mah (1990) for

steady state processes.  Generally, raw process data is subject to two types of errors, random

and gross errors.  Random errors come from the randomness of measurements and are

commonly assumed to be independently and normally distributed with zero mean.  Gross errors

are caused by non-random event such as process leaks, biases in instrument measuring or

malfunction of instrument measuring, and so on.  Data reconciliation is a procedure to adjust or

reconcile process data and to obtain more accurate values for the sampled data by requiring the

reconciled data consistent with material and energy balances, for example.  The data
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(2-2)

(2-3)

reconciliation problem can be formulated as a constrained optimization problem, e.g., least

squares estimation problem if the measurements contains only random errors.  

The vector of measurement errors e is defined as:

e = y - x (2-1)

where vector y represents measured process variables with sampled values and vector x denotes

the true values of the measured variables.  The basic idea to reconcile the process data using a

statistical method is to find a set of reconciled data ~x = y + a that maximizes the joint distribution

function (objective function) and satisfies the constraints.

If all measurements are subject to only random errors with known normal distributions,

the normal distribution function for the individual measurement error is:

where Fi is the standard deviation of a measurement error, ei.  The measurement error ei has the

same meaning as in Eq. 2-1.  If the measurement errors are independent of each other, then the

joint distribution for all measurement errors (or likelihood function) is the product of distributions

for individual measurement error, i.e.,

where EE is the known variance matrix of measurement errors e, EE = {F2
ij}.  
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The measurement errors are estimated by maximizing the joint probability density function

in Eq. 2-3 or minimizing sum squares of standardized measurement errors, eTEE-1e, subject to a

set of constraints that describe the relationship among the variables, i.e., the process model.  This

is the well known least squares method, and it is expressed as:

Minimize: eTEE-1e = (y - x)TEE-1(y - x) (2-4)
     x

 Subject to: f(x) = 0.

Eq. 2-4 is a nonlinear optimization problem of data reconciliation.  Solving Eq. 2-4 gives the

reconciled values of process variables and the estimated measurement errors.

If the constraints are linear, and they can be written as: 

Ax = 0 (2-5)

then, the optimization problem of Eq. 2-4 has an analytical solution (Mah and Tamhane, 1982),

which is:

~x = y - EEAT(AEEAT)-1Ay (2-6)

and the vector of measurement adjustments is:

a = ~x - y = -EEAT(AEEAT)-1Ay (2-7)

This linear data reconciliation problem can be extended to include component material

balances, energy flow treated as additional components, stoichiometric constraints and elemental

balances (Mah, 1990).  In component material balances, there are products of composition and

total flow rate in the constraint equations, and these balance equations are bilinear.  In the energy

equation, species enthalpies are not measurable and are usually expressed as a nonlinear function

of the measured variables (temperature and species mass flow rate).  Hence, the energy balance
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equations are nonlinear.  When constraints are nonlinear, the optimization problem must be solved

by nonlinear programming techniques.

The solution of data reconciliation given in Eq. 2-6 is for the case that constraints are

linear and all variables in the constraints are measured.  Crowe, et al., (1983) proposed a

projection matrix technique to decompose the data reconciliation problem that has linear

constraints and unmeasured variables into the solution of two subproblems.  First, the unmeasured

variables in constraints are removed by multiplying a matrix (projection matrix) and the variables

in constraints are all measured, then the solution of this subproblem is obtained by Eq. 2-6.  Then

the solution of the unmeasured variables can be determined through the original constraints

(before multiplying the projection matrix) and the reconciled values of the measured variables. 

Crowe (1986) extended the projection matrix technique to the case of  nonlinear

constraints using an iterative algorithm.  First, the initial values are assigned to measured variables

with the measurements and to unmeasured variables with guessed values, and the nonlinear

constraints are linearized at the initialized point.  Then, the data reconciliation problem with

linearized constraints can be solved by projection matrix technique discussed Crowe, et al.,

(1983).  The solution of this data reconciliation is used as the initial point to linearize the nonlinear

constraints.  This procedure iteratively updated the values of variables until convergence is

achieved.

Pai and Fisher (1988) surveyed Crowe's iterative methods (Crowe, 1986) and proposed

an application of Broyden's method to update derivatives from the matrix of last iteration.  This
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modified scheme has the simplicity of the constant-direction approach and retains the efficiency

of the repeated computation of the Jacobian matrix.  The method solved the nonlinear least

squares objective function subject to nonlinear material and energy balance constraints and had

rapid convergence to a solution.  

Ramamurthi and Bequette (1990) recommended the nonlinear program techniques,

successive quadratic programming and the generalized reduced gradient method, to solve the

nonlinear data reconciliation problem.  Based on the results from several test problems including

the one from Pai and Fisher (1988).  They showed that the iterative linearization can not handle

the nonlinear constraints well and resulted in significant bias, when measurement errors are large

and constraints are highly nonlinear.  The reason is the approximation from Taylor expansion

results in larger errors when constraints are highly nonlinear or measured variables have

measurements far from the true values (larger errors).  Also, the nonlinear program techniques

can explicitly include the bounds of variables and allow the unmeasured variables in constraints.

Sanchez, et al., (1992) described the successful application of a plant data reconciliation

program PLADAT which first classified the measured and unmeasured variables to reduce the

problem size and then used successive quadratic programming for the constrained nonlinear least

squares problem. This program was applied to an ethylene plant with 150 process streams and

45 units with an unspecified gross error detection procedure prior to data reconciliation.  They

showed that the norms of the residuals errors of the balance equations have been reduced by two

order of magnitude.
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Meyer, et al., (1993) presented data reconciliation on multicomponent network process,

with or without chemical reactions.  The basic rules to classify the measured variables into

redundant and non-redundant and the unmeasured variables into observable and unobservable

were proposed for formulating the linear process model.  Special numerical methods were

designed to obtain a matrix structure enabling the solution of large-scale systems.  The proposed

algorithms were tested in three industrial examples and successfully reconciled a set of data

representing 34 streams and 11 components of a distillation process.

In summary, the constrained least squares method was widely used to reconcile the

process data by assuming that the measurement errors are normally distributed.  Data

reconciliation is a nonlinear optimization problem that can be solved by the successive linear

programming (successive linearization of nonlinear equations) or nonlinear programming

techniques, such as successive quadratic programming or the generalized reduced gradient

method.  The nonlinear program techniques have been reported to successfully solve this

nonlinear programming problem, and they are more robust than successive linearization as

reported by Ramamurthi and Bequette (1990).  For the applications of on-line optimization, data

reconciliation usually is conducted with gross error detection and/or parameter estimation.  The

nonlinear program techniques will be used to solve the nonlinear optimization problems in our

research work.

B-2. Gross Error Detection

The results for gross error detection have been reviewed and evaluated in detail through

1988 by Mah (1990) and through 1993 by Crowe (1994).  As mentioned previously, raw
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process data is subject to two types of errors, random errors and gross errors.  Gross errors are

caused by non-random event such as process leaks, biases in instrument measurements,

malfunction of instruments, inadequate accounting of departures from steady state operations

and/or inaccurate process models.  The random errors come from the randomness of

measurements, and they are normally distributed. 

Significant reduction in product variability can be made through advanced control.

However, there is a limitation of understanding instrumentation errors.  Sanders (1995) reported

that nearly two-thirds of the process upsets, which were severe enough to result in the restriction

and downgrading of the product, could be traced to instrument faults.  On-line gross error

detection is the method for identifying instruments that produce abnormal  information.

Several approaches, such as time series screening, statistical methods, or neural network

method, have been practiced or proposed for gross error detection.  Time series  screening has

been practiced in industrial applications.  People use so called horizontal time screening to check

for the steady state data and use the vertical screening to filter out the outliers (gross errors) in

sampled data.  This method is simple and easy to conduct.  However, it can not detect persistent

gross errors which are typical in the sampled data of chemical processes.  Instrument errors and

process leaks usually results in persistent gross errors, and they can not be detected or eliminated

by time series screening methods. 

Hoskins, Kaliyur and Himmelblau (1991) and others (Venkatasubraamanian, et al., 1990;

Ferrada, et al., 1989; Leonard and Kramer, 1990; Karuri, et al., 1992; Chen and Modarres,

1992; Martin, 1997; Keeler and Boe, 1997; Himmelblau and Karjala, 1996) showed that trained
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artificial neural networks were effective for fault detection and diagnosis for a complex chemical

plant.  Neural networks consist of a number of simple, highly interconnected processing elements,

and they process information obtained from dynamic responses to external inputs.  These

networks can be trained to learn associations between system faults and the vector of sensor

measurements.  They accommodated noise in process measurements; and therefore, effectively

detect and identify system faults.  However, it is computationally expensive, if thousands of

sensors are to be used in training these networks.  Also, the models used in neural networks are

empirical and they do not use the fundamental laws of chemical engineering.  There is no physical

meaning for the model in neural networks and the parameters in this model.

The statistical approach has been proposed in the literature for gross error detection.  It

requires a detail plant model to relate the individual measurement and provides the resolution for

adjusting the measurement values and detecting the gross errors.  Also, the knowledge about the

measurement error structure is required for adjusting the measurements, and it is the basis to

verify the measurements.  The statistical approach usually requires solving a complicated nonlinear

optimization problem to estimate the measurement errors and reconcile measurement values.  It

is effective in detecting the persistent gross errors.

The statistical approach has been found to be the most effective method for detecting

gross errors in measurements.  Also, theoretical background using in statistical approach for gross

error detection is consistent with one for parameter estimation.  Gross error detection, parameter

estimation, and economic optimization uses the same plant model, which is established based on

the fundamental laws and knowledge of chemical engineering.  The following gives the review on



35

gross error detection with statistical methods, and the combined gross error detection and data

reconciliation methods will be reviewed in the following section.

The most commonly used method for detecting gross errors is statistical hypothesis testing

which requires selecting a statistic for the test with a known distribution and performance

characteristics.  A gross error is declared if the computed test statistic exceeds a critical value

which is selected from the table of distribution.  If the value of the test statistic does not exceed

the critical value, then the null hypothesis H0 is accepted, and this means the measurement does

not contain a gross error.   If the value of the test statistic exceeds the critical value, then the

alternative hypothesis H1 is accepted and this means that the measurement contains a gross error.

The test statistic may cause faulty decisions in classifying the measurements as normal

measurements (no gross errors) or abnormal measurements (with gross errors).  These are called

type I or type II errors.  If the null hypothesis is true for a measurement (i.e., a measurement does

not contain gross error) and the test rejects the null hypothesis (i.e., the test misidentifies the

measurement with gross error), then this is called a type I error.  The number of type I errors

indicates qualitatively the degree of the misrectification from data reconciliation of a algorithm.

If the null hypothesis is not true for a measurement (i.e., a measurement contain gross error) and

the test accepts the null hypothesis (i.e., the test misidentifies the measurement without gross

error), then this is called a type II error.  The number of type II error represents the number of

gross errors that are not detected.     

The statistical hypothesis tests include global test, nodal or constraint test, measurement

test, generalized likelihood ratio (GLR) method, Akaike’s Information criterion (AIC) method,
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and unbiased estimation technique (UBET), and they have been described by a number of

authors (Almasy and Sztano, 1975; Mah, et al., 1976; Willsky and Jones, 1974; Narasimhan and

Mah, 1987 and 1988; Yamamura and coworkers, 1988; Rollins and Davis, 1992; Mah and

Tamhane, 1982).  If the covariance matrices of constraint residuals or measurement adjustments

are not diagonal, the assumption that measurement errors are independent of each other is not

satisfied, and this affects the power of the statistical tests.  The methods of maximum power (MP)

test (Tamhane, 1982) and principal component analysis (PCA) (Tong and Crowe, 1994 and

1995) were developed to overcome this weakness. 

There are two typical approaches for detecting gross error using statistical methods.  One

is based on the distribution of constraint residuals; the other is based on the distribution of

measurement adjustments.  The constraint residual r is given by (Mah, 1990)

r = Ay - c (2-8)

where A is the coefficient matrix of constraint equations in Eq. 2-5 and c is a constant vector in

the constraints.  The vector of measurement adjustments a is given by

a = ~x - y (2-9)

Methods based on the constraint residual are represented by global test, nodal test, and

GLR.  These gross error detection methods do not require simultaneous data reconciliation.

However, these methods require that the constraints are linear and that all variables must be

measured (or the unmeasured variables must be removed from constraints by the projection

matrix method before gross error detection).  They are not applicable to on-line optimization for

complicated and highly nonlinear chemical processes.  Methods based on the vector of
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(2-10)

(2-11)

measurement adjustments include measurement test method, Tjoa and Biegler’s contaminated

Gaussian distribution method and robust function method.  These methods reconcile the process

data first, and then they use the reconciled data to examine if a measurement contains a gross

error.  They are classified as combined gross error detection and data reconciliation methods.

These methods can be applied to nonlinear constraints.  Also, they allows unmeasured variables

in the plant model, if nonlinear programming techniques are used to solve the data reconciliation

problem.  They have great flexibility in plant model formulation.  The combined gross error

detection and data reconciliation method will be reviewed later.  

Global Test (GT): This method was developed by Almasy and Sztano (1975).  Global

test uses a chi-square distribution to detect the presence of gross errors.  For a quantity P2 that

is the sum of the squared differences between the observed values and their theoretical

predictions, suitably weighted by the errors of measurements, i.e., 

This quantity P2 will follow the chi-square distribution, if the sampled data is independent and if

(yi - xi)/Fi follows standard normal distribution (Barlow, 1989; Larsen and Marx, 1986).  The

chi-square distribution is given by (Barlow, 1989)

The distribution depends on the number of points in the sum, n.  This number is called the number

of degrees of freedom.  The global test uses a test statistic that satisfies the requirement of chi-



38

square distribution, i.e. to find a random variable that follow a standard normal distributed and

whose sample data is independent of each other under null hypothesis.  If the null hypothesis is

true (no gross errors in measurements), then the summation in Eq. 2-10 should follow a chi-

squares distribution, and P2 will be smaller than the threshold (critical) value determined by chi-

square distribution at the selected significant level.  If null hypothesis is not

true (measurements contain gross errors), then the

summation in Eq. 2-10 will not follow a chi-squares

distribution, and P2 will exceed the threshold (critical) value.

It is assumed that all measurements are subject to only random errors with known

normal distributions under null hypothesis and that measurement errors are independent of each

other.  The constraint residuals defined in Eq. 2-8 are rewritten as:

r = Ay - c = A (e + x) - c = Ae + (Ax - c) = Ae (2-12)

Under null hypothesis, the expected values of r can be determined by the expected values of e

and the coefficient matrix of constraints, i.e.,

E(r) = E(Ae) = AE(e) = 0 (2-13)

and the covariance matrix of r is the expected values of the squared differences between the

individual constraint residual and its mean, i.e.,

Cov(r) = E[{r-E(r)}{r - E(r)}T] = E[{Ae}{Ae}T] (2-14)
= E[A (e eT)AT] = A E[e eT] AT = AEEAT =H 

where H is the covariance matrix of constraint residuals.  The constraint residuals r follow a

normal distribution with zero mean and covariance matrix H under null hypothesis (no gross
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errors in measurements).  Hence, the sum of squared ri weighted by the variance will follow the

chi-square distribution, if no gross errors are present in measurements. 

The test statistic of global test is (Almasy and Sztano, 1975; Mah, 1990):

rTH-1r ~ Pm
2 , if H0 is true. (2-15)

Eq. 2-15 means that rTH-1r follows a chi-square distribution Pm
2 with m degrees of freedom

under null hypothesis, where m is  the rank of A.  

If the value of test statistic exceeds the critical value C, then at least one gross error exists

in the constraint residuals.  C is determined from chi-square distribution at selected  " significant

level.  Significant level " is equal to 1 - selected confidential level, and it  represents the

probability of type I errors that are possibly committed by the test statistic, i.e., 

" = P(Type I error) = P(reject H0 * H0 is true) (2-16)

If a gross errors is detected, then it can be identified by trial deletion of one or more

constraint residuals until the test statistic rTH-1r does not exceed the critical value C.  The

procedure is deleting one or more of the constraint residuals and recalculating the test statistic

value until the test statistic does not exceed the critical value.  Then the deleted residuals are

suspected containing gross errors.

The merit of this method is that it does not require the data reconciliation, and r is easy

to calculate.  However, the global test only indicates the presence of gross errors, and it can not

directly identify the source of gross errors.  This method requires trial deletion of constraint

residuals to detect gross errors.  Also, it is restricted to the cases of linear constraints.  The

reason is that the distribution of the constraint residuals used in global test is derived from the



40

linear combination of measurement errors.  If the constraints are not linear, the means and

covariances of the constraint residuals can not be obtained as Eq. 2-13 and 2-14, and the

constraint residuals may not follow the normal distributions. 

Nodal/Constraint Test: This test has the same assumption as global test and the test is

based on the constraint residuals r.  As discussed in global test, the constraint residuals follow a

normal distribution, if the measurement errors are normally distributed.  Therefore, Mah, et al.,

(1976) proposed the constraint test method to detect gross errors.  The test statistic of constraint

test is:

*rj*/%Hjj ~ N(0, 1), if H0 is true. (2-17)

Eq. 2-17 means that the standardized constraint residual, *rj*/%Hjj, follows a standard normal

distribution N(0, 1) under null hypothesis, where Hjj is the variance of constraint residual j.

If the value of test statistic for constraint residual j exceeds the critical value C, then this

constraint contains gross error.  The critical value C is selected from the table of standard normal

distribution function at the significant level $  for individual constraint residual.  The overall

significant level for all constraint residuals (the overall probability of type I error) can be

determined by the significant level for individual constraint residual $ (the probability of type I

error for individual constraint residual), if the constraint residuals are independent of each other.

Let 7 be the probability that the test statistic accepts the null hypothesis when null

hypothesis is true for all constraint residuals, i.e., 

7 = P(accept H0 * H0 is true; r) = 1 - P(reject H0 * H0 is true; r) = 1-" (2-18)
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and 8j be the probability that the test statistic accepts the null hypothesis when null hypothesis is

true for constraint residual j, i.e.,

8j = P(accept H0 * H0 is true; rj) = 1 - P(reject H0 * H0 is true; rj) = 1- $j (2-19)

If the constraint residuals are independent of each other, the joint probability 7 for all constraint

residuals is equal to the product of the probability 8j for individual constraint residual, i.e.,

7 = 81 82 @@@ 8j (2-20)

or (1-") = (1-$1)((1-$2) @@@ (1-$m) (2-21)

If the individual significant levels are set to the same as $, then Eq.2-21 becomes:

 (1-") = (1-$)m (2-22)

Eq. 2-22 can be rewritten as:

$ = 1 -  (1-")1/m (2-23)

Eq. 2-23 is used to determined the significant level for individual constraint residual $.  It is

determined by overall significant level " and the dimension of constraint residuals m.  It must be

noted that Eq. 2-23 is true only when the constraint residuals are independent of each other,

otherwise the individual significant level $ can not be determined by Eq 2-23.

Although the constraint test can identify the constraint associated with gross errors, the

same drawback as global test still remains.  It can not locate the source that creates the nodal

gross error, i.e., it can not indicate which measurement contains a gross error.  Because the

constraint that is identified having gross error is associated with a number of the measurements

that are present in this constraint and with possible process leak in the unit for which this

constraint equation describes.  Also, multiple gross errors present in the same constraint may be
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canceled each other, and they may not be detected.  In addition, the applications of this method

are limited to linear constraints.

Generalized Likelihood Ratio Test: This test was originally developed by Willsky and

Jones (1974) to identify abrupt failures in dynamic system.  Narasimhan and Mah (1987 and

1988) proposed a general framework for identifying different types of gross errors, caused by

either measurement biases and/or process leaks, with the generalized likelihood ratio (GLR) test.

This test requires a model that describes the effect of each type of gross errors.  The

measurement model with instrument bias is defined as:

y = x + e + a**i (2-24)

where y and x have the same meaning as in Eq 2-1, and e represents random errors.  In Eq. 2-

24, **i is a unit vector with one in position i and zero elsewhere, and a is the unknown magnitude

of a bias (gross error).  

A leak occurring in a process unit will not affect the measurement model in Eq. 2-24, but

it affects the constraint equations associated with the leak.  The linear process model, Ax = 0,

can be rewritten as following equations with a leak.

Ax - amj = 0 (2-25)

where mj is a vector representing different constraints, and a in Eq. 2-25 is the unknown

magnitude of leak in a constraint.  With either measurement bias or a process leak, the constraint

residual is defined as:

r = A ( x +e +a**i) (2-26)

or r = A ( x +e) - amj (2-27)
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(2-28)

(2-29)

(2-30)

If no gross errors are present, then the mean and variances of constraint residuals will be

the same as given in Eq. 2-13 and 2-14 discussed in global test section.  Narasimhan and Mah

proposed to test the null hypothesis H0, E(r) = 0 that assumes no gross errors are present, against

the alternative hypothesis H1, E(r) = aA**i or amj that assumes one gross error is present in either

measurement bias or process leak,  by the likelihood ratio test.  This test also estimates the

unknown magnitude of gross error if a gross error is indicated,.  The likelihood ratio test is given

by (Mah, 1990):

where P(r *H1) and P(r *H0) are the probability of constraint residuals under alternative and null

hypothesis respectively.  The supremum in Eq. 2-28 is computed over all possible values of the

parameters (*i, mj and a) present in the hypotheses.  

If constraint residuals r are normally distributed, then the distribution function of P(r *H0)

and P(r *H1) are written as:

and

Substituting Eq. 2-29 and 2-30 into Eq. 2-28 and taking a logarithm of Eq. 2-28 gives:  
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(2-31)

where 

fi 0 (A**i, i = 1, 2, .., n; mj, j = 1, 2, .., m) (2-32)

In Eq. 2-31, the possible outcome from either measurement error A**i or process leak mj is

combined and represented by fi as shown in Eq. 2-32.

The computation of T proceeds as follows.  For any given vector fi, the estimated gross

error magnitude a is determined by maximizing Eq. 2-31.  The solution of the maximization of Eq.

2-31 for given vector fi is:

a = ( fi H-1 fi)-1 ( fi H-1 r) (2-33)

Substituting Eq. 2-33 into Eq. 2-31 gives test statistic Ti for each case fi as: 

Ti = ( fi H-1 r)2/ ( fi H-1 fi) (2-34)

This calculation is performed for every possible vector fi and the test statistic is therefore obtained

as:

T = supremum Ti (2-35)

Let f* be the vector that leads to the supremum in Eq. 2-35.  The test statistic T is compared with

a pre-specified threshold (critical values) C determined by the distribution function of T at the

selected significant level ".  If T exceeds C, then the measurement or constraint  that

corresponding to f* is identified as having a gross error or a leak, and its magnitude is estimated
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by Eq. 2-33 using f* for fi.  For each case of f  i , T  i has a central chi-square distribution with

one degree of freedom under null hypothesis H0.

Generalized Likelihood Ratio Test for Multiple Gross Errors:  It is assumed that only one

gross error exists in either measurement model or constraint model for each application of

generalized likelihood ratio test.  For multiple gross error cases, the compensation strategy has

been proposed to adjust the measurement or constraint that is declared containing gross error

(Narasimhan and Mah, 1987).  If a gross error is identified, the estimated magnitude of the error

is used to compensate (adjust) the measurement or constraint associated with the detected gross

error.  And then the GLR test is repeated again until no gross error is detected.   

The advantage of GLR test is that it can identify the gross error source as instrument error

or process leak.  However, its applications are still restrict to linear process constraint or

approximate linear ones.  The linearization of nonlinear constraints brings in great errors in

approximation of nonlinear constraints and distribution when the process is highly nonlinear and

gross errors are large.  Also, the implementation of GLR for searching gross errors is not

efficiency.  It is not applicable for complicated and highly nonlinear process of on-line

optimization. 

Other Gross Error Detection Methods: Rollins and Davis (1992) proposed an unbiased

estimation technique (UBET) for gross error detection which considers both bias measurement

and process leaks.  The conditions for this technique are restricted to normally distributed errors,

steady state, and linear constraints.  First, a global test is conducted to test for the presence of

gross errors.  Then, UBET is used to detect the number and location of gross errors by trial and
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error search for the unbiased estimators, where two test statistics, F test and Bonferroni test, are

used as the criteria for the identification of gross errors.  Also, Rollins and Roelfs (1992)

extended this approach to the case where constraints are bilinear.

Yamamura and coworkers (1988) presented a method for the detection of multiple gross

errors in process data based on Akaike's information criterion (AIC).  The AIC is defined as:

AIC = - 2L + 2p (2-36)

where L is the logarithm of a likelihood function and p is the number of parameters (or the number

of system errors) in the model.  This criterion divides the measured variables into two types.  One

is only subject to the random error that is normally distributed with zero mean, i.e., N(0, F2). The

other is subject to random error plus gross error that is normally distributed with non-zero mean,

i.e., N(:, F2).  The gross errors are identified by comparing the values of AIC function for all

possible combination states.  The combination state with minimum value of AIC is declared as

the most probably faulty state; the gross errors presumed in this combination state will be

identified as the gross errors.  Each measurement has two possible outcomes, either no bias or

with bias.  For the system with n measurements, the number of possible faulty states is 2n.  Hence,

this method will be computation expensive if n is large and constraints are nonlinear.  To

overcome this problem, the authors provided a branch-and-bound strategy for their algorithm and

demonstrated its effectiveness in a hypothetical petroleum refinery system with 22 measurements

and 13 linear constraints.

To improve the power of the statistical tests, Tamhane

(1982) proposed the maximum power (MP) measurement test method.  This method has the



47

greatest probability of correctly detecting a single gross error in measurements when only one

gross error is present.  The maximum power of the detection is achieved by using a linear

transformation, i.e., the measurement error vector is transformed by multiplying a non-singular

matrix, the inverse of the variance-covariance matrix of measurement errors, 

d = EE-1 e (2-37) 

then this transformed measurement errors d will have the maximum power in detecting gross error

with measurement test method.  Mah and Tamhane (1982) have given an extensive discussion

of the power of this test.  

Crowe (1989) extended the concept of maximum power for gross error detection to the

constraint test.  In addition, Crowe (1992) extended MP test for gross errors to bilinear

constraint cases.  Crowe concluded that MP statistic for the original constraints is precisely the

square root of the corresponding generalized likelihood ratio test of Narasimhan, Eq. 2-28.

Similar to the MP test, Tong and Crowe (1994 and 1995) introduced the principal

component technique into the gross error detection based on the idea of Pearson and Hotelling

on the principal component analysis (PCA).  PCA is an effective tool in multivariate data analysis.

In this technique, a set of correlated variables is transformed into a new set of uncorrelated

variables, known as principal component (PC), through a orthonormal matrix constructed by the

eigenvectors of the covariance matrix H for the projected constraint residuals, i.e.,

d = WT r (2-38)

where W is constructed from the eigenvector of covariance matrix H of constraint residuals and

satisfies
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W = U77 -1/2 (2-39)

where matrix 77 is diagonal, consisting of the eigenvalues of H on its diagonal and satisfies

77 = UTH U. (2-40)

The matrix U consists of the orthonomalized eigenvectors of H so that

UUT = I (2-41)

Through this transformation, the new vector d becomes a new set of uncorrelated variables and

is normally distributed, i.e., d - N(0, 1).  Then the gross errors are detected by the nodal test

method as discussed previously.  This new test has been implemented in two examples and

compared with univariate, maximum power, and chi-square tests.  The authors concluded that

PC test is sharper and has shown a capability of detecting gross errors of small magnitudes when

the other tests fail.

The principal component method improves the power in detecting gross errors.

However, the drawback on nodal test method still remains in principal component test method,

i.e., the constraints must be linear and additional identification for the sources of constraint

residual gross errors is required.  Also, the errors in plant sampled data are  related to the

respective instruments and the measuring of different instruments is independent of each other.

Therefore, the assumption that measurement errors for different measured variables are

independent of each other is true for the sampled data from distributed control system.  Then the

variance-covariance matrix of errors should be diagonal, and the maximum power and principal

component techniques are not necessary for improving the power of gross error detection

algorithms for the process sampled data of on-line optimization. 
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Narasimhan and Mah (1989) described four statistical tests for gross error detection:

global test, constraint test, measurement test and generalized likelihood ratio test.  They also

presented a procedure for transforming a general steady-state model into a form required by

these tests.  

Almasy and Uhrin (1993) proposed a new theoretical base for the identification of gross

errors subject to linear constraints.  Traditionally, gross errors are considered as non-random

quantities caused by non-random events.  Almasy and Uhrin presented a different opinion for the

concept of gross errors.  They viewed the gross errors as random variables for a broader time

horizon.  Based on this concept, they identified the measurement biases and process leaks as

gross errors because of the random nature of these errors.  However, both model mismatches

and departure from steady state are not considered as gross errors because they are not random

events.  Model mismatches cause deterministic errors, and the

departure from steady state can be counted in a dynamic model.  They

proposed two families of probability distributions, Gamma distribution and non-zero mean

Gaussian distribution, for the residuals with gross errors.  Also, the maximum likelihood estimation

was suggested as a better approach for gross error detections.

In summary, the time series screening method has been practiced in industrial

applications.  It is simple and easy to conduct.  However, it can not detect the persistent gross

errors.  The statistical approach is effective in detecting persistent gross errors in sampled data

through other normal measurements.  This approach identifies the gross error of a measurement

by other normal measurements through the process constraints.  It requires a detail and precise
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plant model as constraints to integrate individual measurement together and the knowledge of the

distribution pattern of errors as basis for adjusting the measurements.  The gross error detection

using statistical methods has been studied by university researchers with simple and small

hypothesis plant models (Crowe, 1989 and 1992; Tamhane, 1982; Mah and Tamhane, 1982;

and Narasimhan and Mah, 1987 and 1988)

The test statistic of the gross error detection methods reviewed above are constructed

based on the assumption that the constraint residuals are normally distributed with known

variance matrix.  These methods are easy to implement and the gross error can be detected

without reconciling the process data.  However, the applications of these methods are limited to

linear constraint cases and requires that all variables in the model must be measured.  These

methods are not applicable for an actual plant that is highly nonlinear and in which large portion

of process variables are unmeasured.  Also, gross errors are identified by the trial deletion of the

suspected residuals and this is inefficient.

B-3. Combined Gross Error Detection and Data Reconciliation

There are several efficient methods to conduct combined gross error detection and data

reconciliation.  All these methods are based on the distribution function of measurement errors.

The procedure of these methods is first reconciling all process data by maximizing the joint

distribution function subject to process constraints.  Then the gross errors are identified according

to the estimated errors and a test statistic.  These methods have less restrictions on the

applications than the methods based on constraint residuals discussed above.  They can be

applied to a nonlinear plant model and allow unmeasured variables in the constraints of the plant
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(2-3)

model.  Also, gross errors can be directly identified by the test statistic without a trial deletion

strategy.  The following describes  several combined gross error detection and data reconciliation

methods and gives a review of their application.

Measurement Test Method: This method was first proposed by Mah and Tamhane

(1982) to directly detect the sensor biases.  It assumes that the measurement errors are

independent of each other, and all measurements are normally distributed when no gross error

is present. Then the joint distribution for all measurement errors (or likelihood function) is the

product of the normal distributions for individual measurement error as given in Eq. 2-3, i.e.,

where EE is the known variance matrix of measurement errors e.  

The measurement errors are estimated by maximizing the joint probability density function

or minimizing the sum squares of standardized measurement errors, eTEE-1e, subject to a set of

constraints that describe the relationship among the variables, i.e., the process model.  This is the

well known least squares method and it is expressed as:

Minimize: eTEE-1e = (y - x)TEE-1(y - x) (2-42)
     x

 Subject to: f(x) = 0.

Eq 2-42 is a nonlinear optimization problem of data reconciliation that is the same as Eq. 2-4 for

data reconciliation.  Solving Eq. 2-42 gives the reconciled values of process variables and the

estimated measurement errors.  These estimated measurement errors are used to determine if the

measurements contain gross errors.  If the constraints are linear, the optimization problem in Eq.
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2-42 has an analytical solution as shown in Eq. 2-6 and 2-7 for the reconciled values and

estimated measurement adjustments.

The test statistic of measurement test method is:

,i = *ei/Fi * ~ N(0,1), if H0 is true. (2-43)

Eq. 2-43 means that the standardized measurement error, ,i, follows a standard normal

distribution N(0,1) under null hypothesis.

If the estimated standardized error i (,i = *ei/Fi *) does not exceed the critical value C,

then measurement i does not contain a gross error.  Otherwise, the measurement contains a gross

error. The critical value C is selected from the table of standard normal distribution function based

on the selected significant level $ for individual measurement.  The significant level for individual

measurement $ is calculated by Eq. 2-23 from a given overall significant level ".  The m in Eq 2-

23 is the number of distinct values of *ei*/Fi for all measurement errors. 

Measurement test method is able to identify the sources of gross errors, but it requires

data reconciliation first to determine the measurement errors.  These estimated measurement

errors are the basis for the gross error identification.  Compared with the global test and nodal

test, measurement test not only has the advantage in directly identifying the sources of gross

errors, but also it is not restricted to the linear constraint case.  It allows unmeasured process

variables in the model if a nonlinear programming technique (optimization algorithm) is used to

solve the data reconciliation problem of measurement test method.  However, the measurement

test method still can not overcome the main deficit of traditional methods for gross error

detection, which assumes that the errors are normally distributed.  This distribution function can
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(2-44)

not describe the distribution behavior of gross errors, and bias estimations are obtained when

gross errors exist, especially for very large gross errors.

For independent measurements, the variance-covariance matrix of measurement errors

is diagonal, and the least squares function in Eq. 2-42 can be rewritten as following linear function

using a first order Taylor expansion:

where                     is the weight coefficient of a measurement error ei in the objective function

of Eq. 2-42 evaluated at the last feasible point ei
0.  As shown in Eq. 2-44, the least squares

function is approximated as the sum of the products of weight coefficient wi and )ei, )e i = e i-

e0
 i, for all measurements.  Eq. 2-42 for measurement test method is a minimization optimization

problem.  When the optimization algorithm search for a optimal solution of Eq. 2-42, it looks for

a set of ei’s values that satisfy the constraints in Eq. 2-42 and have smaller weight coefficients for

each measurement error ei.  This means a measurement having a larger coefficient will have more

significant effect on the minimization than one having a smaller weight coefficient.  The weight

coefficient of a measurement in least squares function is proportional to the measurement error

size of the measurement as shown in Eq. 2-44, i.e., a measurement with a larger error has a larger

weight coefficient in the least squares function.  This means that a measurement with a larger error

has more significant effect on the minimization of measurement test method than one with a smaller
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error, and this results in biased estimation when measurements with gross errors are used in data

reconciliation. This biased estimation from measurement test method has been pointed out by

Mah (1990) and Crowe (1994).  When a set of process data

is subject to constrained least-squares reconciliation,

a high penalty that is the weight coefficient in Eq. 2-44

is imposed on making any single large correction to

the measurement with a larger gross error. 

The presence of gross errors invalidates the statistical basis of reconciliation procedures.

Therefore, they must be detected or corrected.  This weakness of measurement test method

motivated a number of researchers to develop the strategies to overcome the bias estimation and

improve the performance of measurement test method. 

The strategies to improve the misrectification of measurement test method are represented

by iterative elimination methods (Ripps, 1965; Nogita, 1972; Serth and Heenan, 1986), series

compensation method (Narasimhan and Mah, 1987), and modified iterative elimination methods

(Serth and Heenan, 1986 and 1987; Rosenberg, et al., 1987).  These strategies improve the

detection of multiple gross errors, and they avoid the misrectification caused by the presence of

large gross errors.  However, the methods are inefficient.  They require the reconstruction of

constraints in plant model, and this results in frequent modification of the optimization programs

during search for the gross errors.  This brings in difficulties for their use in the automatic

implementation of on-line optimization.
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Serth and Heenan (1986) performed a detailed

comparison of seven algorithms for combined gross

error detection and data reconciliation in a steam-

metering system.  They found that the modified

iterative measurement test (MIMT) method was superior

to the others in terms of power to detect gross errors,

power to reduce random errors and computational

efficiency.  The MIMT algorithm detected 80% of the

gross errors and achieved a total error reduction

over 60% for a steam-metering process in a methanol

synthesis unit.  Iterative elimination and bounds on

the variables are the strategies used in this MIMT

method.  This MIMT algorithm represents probably the

best data screening algorithm for linear equality

process models among the traditional gross error

detection methods.  However, the implementation is

still inefficient compared with Tjoa-Biegler’s

contaminated Gaussian distribution method and

robust function methods which will be reviewed later.
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 The following will illustrate the algorithms of measurement test (MT), iterative

measurement test (IMT), and modified iterative measurement test (MIMT) described in Serth and

Heenan’s paper (Serth and Heenan, 1986).

The implement procedure of measurement test (MT) method is:

Step 1 Compute reconciled values ~x and measurement adjustments a for the full system  using

Eq. 2-6 and Eq. 2-7.

Step 2 Compute standardized measurement adjustments for each measurement, ,i  = ai /Fi.

Step 3 Compare each ,i with the critical value of test statistic, C, selected from the table of

standard normal distribution at the selected significant level $.  If *,i*> C, then denote

measurement i as a suspected measurement containing systematic errors and add the

suspected measurements to set S.  If *,i* < C for all measurements, then go to Step 7.

Step 4 If the set S is empty, proceed to step 7.  Otherwise, remove measurements contained in

S from the system by nodal aggregation.  This process eliminates some of the constraints

and variables and yields a new system with reduced number of constraints and variables,

and the original constraints (Ax = 0) are reduced as Bd =0.  In the reduced constraints,

d represents the variable vector as x excluding the variables that are eliminated by the

nodal aggregation, and B represents the constraint coefficient matrix as A excluding the

rows and columns that are corresponding to the eliminated constraints and variables from

the nodal aggregation.  Also, the measurement vector y is reduced to vector w that

excludes the eliminated measurements from nodal aggregation, and let T denote the set

of measurements contained in w.  In addition, the variance  and covariance matrix of
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measurement errors EE is reduced to matrix P that excludes the variances and covariances

of the eliminated measurements. 

 Step 5 Repeat Step 1 to compute the estimated values of process variables and measurement

adjustments by Eq. 2-6 and 2-7 with A, y, and EE replaced by B, w, and P, respectively.

Step 6 Compute corrected values of variables in S by solving Ax = 0 with the variables in set

T specified with the estimated values from step 5 and the variables in set R specified with

the original measured values.  R is a set of variables that were eliminated during the nodal

aggregation and whose measured data does not contain gross error, i.e., R = U - (ScT),

where U is the set of all variables in the system.  Then go back to Step 2.

Step 7 If the set S is empty, then all measurements do not contain gross error, and the estimated

values of process variables in step 1 by Eq. 2-6 are the reconciled values of all process

variables.  Otherwise, the set of reconciled values is obtained from the values computed

in step 6 for the variables containing gross errors in set S, the reconciled values computed

in step 5 for the variables in set T, and the original measured values for the variables in

set R. 

As noted by Mah and Tamhane (1982), Serth and Heenan (1986), and Chen and Pike

(1996), Eq. 2-23 that is used to determine the individual significant level $ proposed by Mah and

Tamhane (1982) is too conservative.   The critical value for the test statistic in Eq. 2-43 is

determined by the individual significant level $ and the normal distribution function.  For example,

if 0.05 overall significant level (95% confidential level) is used and the number of measurements

is 43, then  the significant level for individual measurement $ is
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$ = 1 -  (1-")1/m = 1-(1-0.05)1/43 = 0.0012.

At the $/2=0.006 point, the critical value C is determined from the standard normal distribution

with accumulated probability at 0.994, and the value is 3.2.  This means that only the

standardized measurement adjustment larger than 3.2 will be identified as having gross error.  This

is very easy to commit type II error when the magnitude of gross errors are less than 5 times the

standard deviation.  Also, the measurement test method tends to spread the gross errors over all

measurements, thereby creating large residuals corresponding to good measurements.  When

these residuals fail the test for gross errors, the corresponding measurements are erroneously

identified as containing gross errors, which results in a large number of type I errors.  Therefore,

an iterative elimination strategy was proposed to improve this problem by  Ripps (1965), Nogita

(1972), and Serth and Heenan (1986 and 1987) and is incorporated with measurement test

method.  It is called iterative or series measurement test (IMT).

The procedure of iterative measurement test (IMT) is:

Step 1 Compute reconciled vector ~x and measurement adjustments vector a as in MT.

Step 2 Calculate the standardized measurement adjustments ,, as MT.

Step 3 Compare each ,i with the critical value C of test statistic as in MT.  If *,i* # C for all

measurement, go to step 6.  Otherwise, select the measurement corresponding to the

largest value of *,i * and add it to set S as suspected measurement that contains a gross

error.  If two or more measurements have the same maximum values of *,i *, select the

one with lower index.
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Step 4 If set S is empty, proceed to Step 6.  Otherwise, remove the measurements contained

in S from system by nodal aggregation to obtain a lower dimension of system with

constraint coefficient matrix B, measurement vector w, and covariance matrix P as MT

(B, w, and P have the same meaning as given in MT).  Let T denote the measurements

contained in w.  Repeat Step 1 to compute ~x and a with A, y, and  EE replaced by B, w,

and P, respectively.  

Step 5 Compute corrected values for measurements in set S by solving equations Ax = 0 with

the variables in set T specified with the reconciled values from step 4 and the variables

in set R specified with the original measured values.  R is a set of variables that were

eliminated during the nodal aggregation and whose measured data does not contain gross

error, i.e., R = U - (ScT), where U is the set of all variables in the system.  Then, go

back to Step 2.

Step 6 If the set S is empty, then all measurements do not contain gross error, and the estimated

values of process variables in step 1 by Eq. 2-6 are the reconciled values of all process

variables.  Otherwise, the set of reconciled values is obtained from the computed values

in step 5 for the variables containing gross errors

in set S, the reconciled values computed in step 4

for the variables in set T, and the original

measured values for the variables in set R. 

The IMT described here is slightly different from series elimination strategy proposed by

Ripps (1965).  In IMT method, only the measurement corresponding to the largest standardized
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measurement error is deleted at each application of MT, and it is automatically identified as

containing a gross error.  The least squares calculation is thus made only once at each application

of MT.  In Ripps’ series elimination strategy, each suspect measurement is deleted and least

squares calculation is repeated each time.  If more than one gross error is present, the entire

procedure must be repeated with combination of two, three, etc., measurements until a

combination is found that results in the remaining data satisfying the test statistic of MT.

IMT significantly reduces the type I errors committed by measurement test.  However,

the drawback that the set of reconciled flow rates may contain negative values or absurdly large

values remains.  This situation generally indicates the failure of the algorithm to correctly identify

the gross errors in the data.  To avoid this problem, a modified iterative strategy was proposed

and incorporated in measurement test.  It is so called modified iterative measurement test

(MIMT).  

The MIMT is essential the same as IMT.  The only different is that it adds one more step

to check if all reconciled data satisfies the pre-specified bounds after IMT implementation.  If one

or more of reconciled data does not satisfy the bounds, it returns to step 3 of IMT and delete the

last entry in set S and replaces it with the measurement corresponding to next largest value of *,i

*.  Then the procedure continues as in IMT.  The bounds checking is a safeguard to ensure that

the reconciliation from least squares does not conflict with the process simulation rules. 

The procedure of modified iterative measurement test (MIMT) is:

Step 1 Compute reconciled vector ~x and measurement adjustment vector a as in MT.

Step 2 Calculate the standardized measurement errors ,, as MT.
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Step 3 Compare each ,i with the critical value C of test statistic as in MT.  If *,i* # C for all

measurement, go to step 7.  Otherwise, select the measurement corresponding to the

largest value of *,i * and add it to set S as suspected measurement that contains a gross

error.  If two or more measurements have the same maximum values of *,i *, select the

one with lower index.

Step 4 If set S is empty, proceed to Step 7.  Otherwise, remove the measurements contained

in S from system by nodal aggregation to obtain a lower dimension of system with

constraint coefficient matrix B, measurement vector w, and covariance matrix P as MT

(B, w, and P have the same meaning as given in MT).  Let T denote the measurements

contained in w.  Repeat Step 1 to compute ~x and a with A, y, and  EE replaced by B, w,

and P, respectively.  

Step 5 Compute corrected values for measurements in set S by solving equations Ax = 0 with

the variables in set T specified with the reconciled values from step 4 and the variables

in set R specified with the original measured values.  R is a set of variables that were

eliminated during the nodal aggregation and whose measured data does not contain gross

error, i.e., R = U - (ScT), where U is the set of all variables in the system.

Step 6 Check the reconciled values of process variables with the pre-specified bounds.  If one

or more of reconciled data does not satisfy the bounds, then discard the reconciled data

and return to step 3, delete the last entry in set S, and replace it with the measurement

corresponding to next largest value of *,i *.  If no bound violation is found, go back to

Step 2.
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Step 7 If the set S is empty, then all measurements do not contain gross error, and the estimated

values of process variables in step 1 by Eq. 2-6 are the reconciled values of all process

variables.  Otherwise, the set of reconciled values is obtained from the computed values

in step 5 for the variables containing gross errors

in set S, the reconciled values computed in step 4

for the variables in set T, and the original

measured values for the variables in set R. 

In a subsequent study, Serth and Heenan (1987) extended their linear data screening

techniques to the nonlinear case.  They linearized the nonlinear constraints and used similar

strategies as the linear MIMT algorithm to reconcile the linearized constrained data.  However,

the successive linearization of the nonlinear constraint equations had to be used to determine the

reconciled data and estimated measurement errors by Eq. 2-6 and 2-7.  They tested the

algorithm in a metallurgical grinding circuit problem and concluded that the overall performance

of this algorithm on the nonlinear system was comparable to that exhibited on a linear system of

approximately the same size.  The algorithm correctly detected about 80% of all systematic errors

in the data and achieved an average reduction in total error of more than 60%.  However, this

algorithm for nonlinear problems is computational inefficient.  It requires numerous linearization

of the nonlinear equations for each deletion of suspected measurement to search for the gross

errors. 

Kim, et al., (1997) have conducted the MIMT (modified iterative measurement test) with

a simple CSTR example and compared the result using the nonlinear program techniques with one
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using a successive linearization method applied by original MIMT’s author, Serth and Heenan

(1986).  They found the nonlinear programming techniques has more advantage in explicitly

handling the nonlinear constraints and bounds.  These techniques gave a more accurate result than

successive linearization did when the constraints are highly nonlinear and the measurement errors

are larger.  Also, the nonlinear programming techniques allow unmeasured variables in constraints

equations, but the successive linearization method used by Serth and Heenan was not able to

incorporate the unmeasured variables explicitly.  The unmeasured variables must be removed

before data reconciliation. 

Kao, Tamhane, and Mah (1990) evaluated the effect of serially or chronologically

correlated measurements on the gross error detection.  Their simulation results indicated that the

measurement test (MT) based on the independence assumption was extreme sensitive to the

presence of correlation among measurements.  Two algorithms have been outlined in their paper.

The first involves suitably adjusting the variance of the test statistics, and the second involves

filtering out the correlations and then applying the desired test based on the independence

assumption.  They concluded that both of these two methods were robust, effective and simple

to use.  If the sample data is correlated each other, the

independence assumption used in the gross error

detection techniques is improper.  However, each

measurement error is associated with the individual

instrument, and the measuring of different

instruments is independent of each other.  Therefore,
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the independence assumption is true for the

measurements from distributed control system.

In summary, the measurement test method requires data reconciliation to estimate the

measurement errors.  This method can directly locate the sources of gross errors and explicitly

handle nonlinear constraints and unmeasured variables of the plant model if an nonlinear

programming technique is used to solve the data reconciliation optimization problem.  However,

the normal distribution used in measurement test method can not describe the distribution

behavior of gross errors, and the presence of gross errors invalidates the statistical basis for data

reconciliation.  Thus, this results in bias estimation and a large number of type I errors.  To avoid

this problem, series elimination, iterative elimination, modified iterative elimination strategies have

been proposed to improve the performance of measurement test method.  These strategies

significantly reduce the number of type I errors committed by measurement test method.

However, they require the reconstruction of constraints and the reclassification of measured and

unmeasured variables during searching for gross errors.  This is difficult to incorporate in a general

computer program.  Also, the method of solution used in MT, MIT, and MIMT can not explicitly

deal with the unmeasured variables and bounds, and the successive linearization of nonlinear

equation results in lower solution accuracy when the plant model is highly nonlinear and errors are

larger.  The nonlinear program techniques, such as generalized reduced gradient and successive

quadratic programming should be used to solve this nonlinear data reconciliation problem

(Ramamurthi and Bequette, 1990).  In addition, the test statistic of measurement test proposed
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(2-46)

(2-47)

by Mah and Tamhane (1982) is too conservative.  It is very easy to commit type II error when

the magnitude of gross errors is small.

Contaminated Gaussian Distribution Method: This method was developed by Tjoa and

Biegler (1991) for combined gross error detection and data reconciliation.  They proposed using

a two modes (random and gross errors) Gaussian distribution.  A measurement can have either

a random or a gross error.  The two possible outcomes are: G = {Gross error occurred} with

prior probability 0 and R = {Random error occurred} with prior probability 1-0.  Therefore, the

distribution function of measurement error i is:

P(yi * xi) = (1-0)P(yi * xi, R) + 0 P(yi * xi, G) (2-45)

where  P(yi * xi, R) is the probability distribution function for the random error and P(yi * xi, G)

is the probability distribution function for the gross error.

It is assumed that the random error is normally distributed with a zero mean and known

variance F2, then the distribution of a random error is:

Also, it is assumed that the gross error is subject to a normal distribution which has a zero mean

and a larger variance  (bF)2, (b >> 1).  Therefore, the distribution function for a gross error can

be expressed as:
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(2-49)

(2-51)

If the measurement errors are independent of each other, then the likelihood function for

all measurements is the product of the distribution functions for individual measurements, i.e.,

P(y*x) = J P(yi * xi) = J { (1-0)P(yi * xi, R) + 0 P(yi * xi, G)} (2-48)
    i                    i

Tjoa-Biegler called Eq. 2-48 a contaminated Gaussian distribution, and it was used to

reconcile the values of process variables by maximizing the likelihood function (joint distribution

function of measurement errors) in Eq. 2-48 or minimizing the negative logarithm of the likelihood

function subject to the constraints in plant model, i.e.,

Minimize:
    x

Subject to: f(x) = 0
xL # x # xU 

 
where f(x) = 0 is the process equality constraints of plant model.  xL # x # xU  is the bounds for

the process variables.  Eq. 2-49 is a nonlinear data reconciliation optimization problem and it can

be solved by nonlinear programming techniques.  Solving Eq. 2-49 gives the reconciled data for

all process variables, which maximizes the joint probability P(y * x) and satisfies the process

constraints.

After data reconciliation, each measurement is examined with a test statistic to see if it

contains a gross error.  The test statistic for gross error detection is:

If 0P(yi*xi, G) $ (1-0)P(yi*xi, R) (2-50)

or if
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then measurement i contains gross error.  Otherwise, no gross error is present in this

measurement.

The procedure to conduct contaminated Gaussian distribution method is:

1. Solve Eq. 2-49 to determined the reconciled values for measured variables and

unmeasured variables, and then the measurement adjustments, a = ~x - y, are determined

by the measurements y and reconciled data ~x.

2. Examine the standardized measurement adjustment ,i, ,i = ai / Fi, using the criterion

given Eq. 2-51 to determine if a measurement contains a gross error.  If a measurement

contains a gross error, then its value is replaced with the reconciled data.  A new set of

measurements is constructed using the reconciled data to replace the measurements

containing gross errors along with the original measurements that contain only random

errors.  This new set of measurements contains only random errors, and it is used in

simultaneous data reconciliation and parameter estimation  to update plant parameters

for on-line optimization.

The authors applied this algorithm to two simple examples.  One was a simple model

having eight variables and six constraints given by Pai and Fisher (1988).  The other one was a

simple hypothesis heat exchanger process model having 16 measured variables, 14 unmeasured

variables, and 17 constraints. The results showed that the method gave unbiased estimates and

it is effective in identifying gross errors.  Also, the authors exploited the properties of this function

and designed a better approximation of the Hessian matrix rather than using a general BFGS
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update formula to yield a better convergence of successive quadratic programming (SQP) for

solving this optimization problem.   

The contaminated Gaussian distribution describes the distribution pattern of both random

and gross errors.  The logarithm of joint distribution (objective function in Eq. 2-49) is the sum

of the logarithm of the contaminated Gaussian distribution for each measurement.  This means that

the individual contaminated Gaussian distribution function for each measurement has a

contribution on the joint distribution function (objective function).  Due to the characteristic of

contaminated Gaussian distribution, the individual contaminated Gaussian distribution for a

measurement with a larger error has a smaller contribution on the joint distribution than one for

a measurement with a smaller error.  This can be seen by weight coefficients of measurements in

the linearized joint distribution, which is described in the following.

The objective function in Eq. 2-49 can be approximated as a linear function using a first

order Taylor expansion, i.e., P = 3wi [(yi - xi)-(yi - xi)0] = 3wi (,i - ,i
0), where wi is the weight

coefficient of measurement yi on the joint distribution function (objective function in Eq. 2-49)

evaluated at the last feasible point xi
0 or ,i

0.  This coefficient is the derivative of the joint

contaminated Gaussian distribution function with respect to the variable xi as shown as in

following,
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(2-52)

(2-54)

where the weight coefficient is a function of the standardized measurement error, ,i = (yi-xi)/Fi.

For smaller error, e.g., ,i < 2, the exponential term in the Eq. 2-52 is much larger than the second

term 0/b3 (or 0/b),  The weight function can be simplified as:

wi % (yi-xi)/Fi
2 = ,i/Fi (2-53a)

For larger error, e.g., ,i > 4, the exponential term in the equation is much smaller than the second

term 0/b3 (or 0/b).  The weight function can be simplified as:    

wi % (yi-xi)/(bFi)2 = ,i/(Fi b2) (2-53b)

Therefore, the weight coefficient wi in Eq. 5-52 can be approximated as:
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Comparison of weight coefficient functions for small (random) errors in Eq. 2-53a and

for large (gross) errors in Eq. 2-53b shows that the weight coefficient for measurements with

gross errors is reduced b2 times compared with those with random errors.  The shows that the

measurement with a smaller error has a larger contribution on the linearized objective function

(joint distribution function) than one with a larger error, and it has more significant effect on the

minimization of Eq. 2-49 than a measurement with a larger error.

Since the measurements with larger errors has a very weak effect on the minimization, the

reconciled data will depend on the measurements without gross errors.  Therefore, it is said that

contaminated Gaussian distribution method has an ability to reduce the effect of measurements

with gross errors on the reconciled data and give an unbiased estimation for reconciled data.

In contaminated Gaussian distribution, b is a tuning parameter to shape the distribution.

Increasing b will reduce the effect of a gross error on the estimation and increase the robustness

of this approach.  However, it will decrease the asymptotic efficiency to the normality.  In the

practical applications, b is usually chosen as 10-20, and the weight coefficient for a measurement

with a gross error is 100-400 times smaller than one with a random error.  The prior probability

of a gross error, 0, is another parameter in contaminated Gaussian distribution.  If no prior

information about the errors available, then the equal prior probability, i.e., 0 = 0.5, is

recommended.

The contaminated Gaussian distribution method is more effective than measurement test

method.  It incorporates the distribution pattern for both random and gross errors, and it is able

to rectify both random and gross errors in measruements.  This method can directly locate the
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gross errors and gives an unbiased estimation for all reconciled data.  It can be used for the

combined gross detection and data reconciliation, and it will be extended to simultaneous gross

error detection, data reconciliation, and parameter estimation of on-line optimization in this

research. 

Bayesian Method:  Albuquerque and Biegler (1995) and Johnston and Kramer (1995)

extended the contaminated Gaussian distribution method using Bayesian theorem and

incorporated the contaminated distribution in the posterior density function.  Bayesian theorem

gives (Bretthorst, 1989 and Barlow, 1989):

P(x * y) = P(y * x) P(x)/P(y) (2-55)

where P(x * y) is the probability that variables have the true values under given measurements,

and it is called a posterior density function.  In Eq. 2-55, P(y*x) is the probability of the

measurements y under condition that variables have true values x, and it is often referred as a

likelihood function.  P(x) is the prior probability of x, and P(y) is the prior probability of

measurements y.

The prior probability of measurements P(y) is a uniform distribution function dependent

on the measure range of instruments.  It is the normalized constant and independent of x.  It does

not affect the optimization.  Therefore, it can be excluded from the optimization (Johnston and

Kramer, 1995).

The prior probability of true values of variables x, P(x), can be constructed by the

principle of maximum entropy based on the prior qualitative knowledge about the process

variables.  Detail methodology about maximum entropy was given by Shannon (1948).  Also,
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Johnston and Kramer (1995) have proposed a probability bootstrapping technique to estimate

the parameters in the prior probability function P(x) using the historical plant data.  However, the

accuracy of the P(x) obtained by this method depends on the accuracy of the information and

data used.  A blunder in the information or data would mislead the construction of P(x); and

therefore, it results in inaccurate estimation of data reconciliation.

On-line optimization will move the set points from time to time based on the production

schedule and market demand.  The operating behavior from previous knowledge or historical

plant data may not agree with the current plant operations.  If the historical data about the plant

operation is used to construct the prior probability P(x), it will possibly mislead the construction

of P(x) and will affect the accuracy of the estimation of data reconciliation.  It is believed that an

equal prior probability for P(x) will give an more accurate estimation for data reconciliation, if the

character of the process operation is not accurately known.  

If an uniform distribution (equal prior probability) is used for P(x), then the posterior

function is proportional to likelihood function, and the Bayesian method reduces to maximum

likelihood method.  Maximizing posterior density function is equivalent to maximizing the

likelihood function.  If information about the true values of process variables is known and if it is

incorporated in the posterior density function, then Bayesian method can not only predict the true

values of the variables, but also it can predict the range of their variations.

The likelihood function can be constructed by the normal distribution, contaminated

Gaussian distribution or another that describes the distribution behavior of measurement errors.

To describe the error structure of measurements more precisely, Johnston and Kramer (1995)
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proposed a multiple mode distribution for measurement errors.  For individual measurement i, the

distribution function is the linear combination of probability functions of all possible error modes

weighted by the respective prior probabilities, i.e.,

P(yi * xi)  = 3P(yi * xi, mk)P(mk) (2-56)
       k

where P(mk) represents the prior probability of error mode mk.  The error modes mk can be

normal, biased, and/or failed.  The most common used distribution function for random errors is

a normal distribution with zero mean.  However, the distribution function for gross errors will be

different dependent on the nature of the errors.  For the instrument biased error, the distribution

function will be a normal distribution with a unknown mean representing the bias.  The failed

modes can be characterized as the failure to a fixed value (modeled as a delta function) and as

a failure to a random value (modeled as an uniform distribution).  Also, the leaking mode can be

modeled as a uniform function determined by the possible range of the leak.  

Including all possible error modes in the distribution function would provide the complete

information about the measurement errors.  However, adding all possible measurement error

modes to the distribution function will significantly increase the difficulty of solving the optimization

problems.  Also, the prior probabilities for different types of errors are usually not available.  It

is better to construct a general distribution function which combines all the information about the

possible gross error modes, such as, the two mode contaminated Gaussian distribution function

proposed by Tjoa and Biegler (1991) to describe the distribution for both random and gross

errors.
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Johnston and Kramer (1995) applied the Bayesian method to two examples.  One is a

flow system from Mah (1987) that had three nodes and five streams and the other one was a

simple hypothetical heat exchanger network from Tjoa and Biegler (1991).  The simulation results

from these two examples showed that the performance of the contaminated Gaussian distribution

was better than traditional least squares method.  The contaminated Gaussian distribution method

can automatically reject the contribution of measurements containing gross errors to the data

reconciliation and give unbiased estimation.  Also, the authors briefly described the influence

function and showed the influence functions for least square, contaminated Gaussian distribution,

and Lorentzian distribution that is a robust function from Huber (1981).  However, no application

with  Lorentzian function was conducted in their work.

The advantage of this Bayesian method over the likelihood function method is that it also

includes the distribution function of the true values of variables in the objective function (posterior

density function).  Therefore, Bayesian method not only can predict the true values of process

variables, and it also can predict their variations.  However, the accuracy of the estimation of data

reconciliation is strongly depends on the accuracy of the prior distribution P(x) if it is

incorporated.  It is very difficult to construct prior probability P(x) because the distribution

function depends on many aspects of information about the process.  It is suggested to use an

equal prior probability for P(x), if this probability is not known.

Robust Function Methods: These methods were developed originally to find a robust

estimate of location (mean) and scale (variance) for univariate data (one variable with n repeated

sample data) (Huber, 1972 and 1981; Seber, 1984; and Hampel 1973).  When analyzing
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experimental data, one usually faces two difficulties (Seber, 1984).  First, various studies

suggested that likely 0.1-10% of observations (or even more) would be “dubious” (containing

gross errors) from wrong measurements or any other sources of blunders.  Second, sampled data

is rarely normally distributed and tend to have distributions that are normal in the middle, but have

longer tails than the normal distribution on the two sides.  Robust estimation was developed to

overcome these two difficulties, i.e., gross errors (outliers) in the data and the distribution function

for the data deviating from the normal distribution.

The basic idea of robust estimation is to build a robust distribution function D.  This robust

distribution is asymptotic to a normal distribution or a pre-defined distribution function that

describes the distribution pattern of measurement errors under some ideal assumptions.  The

robust function is to be insensitive to the presence of gross errors in sampled data when this

function is used to conduct data reconciliation, and it still maintains a high efficiency (lower

dispersion) that indicates the accuracy of estimation (Huber, 1972; Seber, 1984). 

Several useful classes of robust estimators have been developed, and these are the

adaptive estimator, L-estimator (linear function of order statistics), M-estimator (analogues of

maximum likelihood estimator), R-estimator (rank test estimator), and others.  The most

important class applicable to on-line optimization is M-estimator.

The well known maximum likelihood estimator (MLE) or M-estimator finds the values

of x (estimated values) by maximizing Ji P(yi, xi), or minimizing - ln [Ji P(yi, xi)] =  -3 [ D(yi,

xi) ] equivalently, where D = ln P(yi, xi),
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(2-58)

Minimize: -3 [ D(yi, xi) ] (2-57)
   x    i
Subject to: f(x) = 0

xL # x # xU  

The distribution function D is called the distribution of observations (measurements) or robust

function which will be given in the following.  Usually, a robust function is expressed as a

logarithm of probability function, then the joint distribution function in the objective function

becomes the summation format that is mathematically simpler than the product format.  

The basic concept for M-estimator is the same as the traditional likelihood estimation

using the contaminated Gaussian distribution or normal distribution.  The only difference is that

the distribution function used in robust estimation is the asymptotic function of  likelihood

probability function.  For the case that the data will most likely follows a normal distribution with

a small percentage of extreme points (or gross errors), it is suggested that the distribution function

D(yi , xi) should be asymptotic to the ideal normal distribution.  The shape of the distribution

should be normal in the middle, but have longer and flatter tails on its two sides.

Two robust functions have been proposed in literature (Johnston and Kramer, 1995;

Huber, 1981; and Albuquerque and Biegler, 1995) for mean estimation, and they are applicable

for rectifying gross errors in process sampled data.  Johnston and Kramer (1995) proposed the

Lorentzian distribution, which was originally presented by Huber (1981), for reconciling process

variables.  The Lorentzian distribution is:
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(2-59)

where ,i is the standardized measurement error including both random and gross errors, i.e., ,i

= (yi - xi )/Fi.  This robust function was briefly mentioned in Johnston and Kramer’s paper (1995)

for data regression, but the authors did not give any applications of gross error detection and data

reconciliation.

Albuquerque and Biegler (1995 and 1996) proposed Fair function for estimating the

process variables as following:

where ,i is the standardized measurement error and c is a tuning parameter.  The change in

parameter c change the shape of distribution, and the efficiency (or estimation accuracy) of this

distribution is determined by this parameter.  It was pointed out that Fair function is convex and

has continuous first and second derivatives (Albuquerque and Biegler, 1995).

Also, the authors described the exploratory statistics method for identifying the gross

errors based on the estimated measurement residuals (errors).  They proposed a technique,

boxplot where the center of the box is the median and the sides are the quartiles, to identify the

gross errors based on the order statistics.  The outliers are spotted by computing the order

statistics (median and quartiles) and their distances from these.  The interquartile-range dF is

defined as:

dF  = Fu  - Fl  (2-60) 

where Fu and Fl are the third and first quartiles, respectively.  The outlier cutoffs were defined as

Fl  - (dF and Fu + (dF, where ( was usually set to 1/3.  The measurements outside the cutoffs
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were considered outliers.  The gross errors can be identified by boxplot method with packages

like MINITAB (Ryan, et al., 1985) or xlispstat (Tierney, 1990).  However, the criterion set by

Albuquerque and Biegler seems to cause more type I errors (i.e., a measurement does not

contain gross error, but the test misidentifies the measurement with gross error).  Qualitatively,

approximate one sixth of data is found containing gross errors using the test proposed for boxplot

method, no matter how good or how bad the data set is.

In addition, Albuquerque and Biegler (1996) introduced the concept of an influence

function for the distribution.  They compared influence functions for contaminated Gaussian

distribution and Fair function.  Also, they discussed the variable classification for the dynamic

process model.

The Fair function was applied to a dynamic process of two connected tanks that has five

measured variables and two parameters and compared with the algorithm of contaminated

Gaussian distribution (Albuquerque and Biegler, 1995 and 1996).  They concluded that Fair

function not only is less sensitive to the presence of gross error, but it is mathematically simple and

easy to use. 

Albuquerque and Biegler (1996) used a simple heat exchanger network (Tjoa and

Biegler, 1991; and Swartz, 1989) to demonstrate the effectiveness of the simultaneous gross

error detection approach by comparing the results of both the contaminated Gaussian distribution

and Fair function with the serial gross error detection test (measurement test).  They showed that

there were no significant difference between contaminated Gaussian distribution and iterative

measurement test (IMT) method.  They concluded that robust approach had a number of
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advantages, including better numeric characteristics and less biased estimates.  Also, this

approach had the interesting property (because Fair function is convex) of yielding global solution

for nonlinear programs with lower constraint curvature. 

In the steady-state heat exchanger example problem, Albuquerque and Biegler (1996)

compared the results of the least squares method, the contaminated Gaussian distribution method,

and a robust function method (Fair function).  The tabulated results showed the reconciled data

of variables from the least squares method with run 1 and run 2, the contaminated Gaussian

distribution method, and Fair function method.  In the least squares method, run 1 showed the

data reconciliation result which did not exclude a measurement with a gross error, and run 2

showed the data reconciliation result which excluded a measurement with a gross error.  The

result from the contaminated Gaussian distribution was closer to one of run 2, which were the

reconciled results using least squares method after the gross error was removed, than Fair

function did.  This indicated that the estimation from contaminated Gaussian distribution was more

accurate than one from Fair function.  The least squares method gives the highest estimation

accuracy if gross errors in measurements were correctly removed before the data reconciliation.

The true values of process variables was not available for comparison, and therefore, the results

of run 2 for least squares method should be used as comparison, but not the reconciled residuals

(the difference between reconciled data and measurements) as the authors did.  

When comparing the performance of algorithms, both the influence function and efficiency

of a distribution are important criteria to evaluate the algorithms.  The influence function
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(IF)represents how sensitive an algorithms is to the presence of gross errors, and it is proportional

to the derivative of the distribution, i.e.,

IF %  MD/Mx (2-61)

The efficiency of a distribution function indicates the estimation accuracy from data reconciliation

and it is given by the shape of the distribution, i.e., a sharper distribution has higher efficiency and

higher estimation accuracy, and a flatter distribution has lower efficiency and lower estimation

accuracy.  It is favorable to have a algorithm that has the combination of smaller or even zero

influence function for larger errors and high efficiency.  It will be shown that the contaminated

Gaussian distribution has a better combination of influence function and efficiency than Fair

function and normal distribution (measurement test) next chapter. 

In summary, robust statistical methods were developed to overcome difficulties with the

data that contains gross errors and that does not follow the ideal normal distribution.  Robust

approach uses an objective function that is insensitive to the deviation of the data from the ideal

normal distribution due to its mathematical structure (Albuquerque and Biegler, 1996; and Huber,

1980).  These methods tend to look at the bulk of the data and ignore atypical values.  Robust

methods have the advantages of having a very simple mathematical form and of having very

convenient properties for optimization.  However, the efficiency (accuracy) of robust functions

will be slightly lost because they have a flatter shape that gives larger variation in estimation.  In

addition, the boxplot and dotplot methods from exploratory statistics (Albuquerque and Biegler,

1996) can be used to identify the gross errors in sampled data.  However, the criterion set by

Albuquerque and Biegler seems to cause more type I errors (i.e., a measurement does not
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contain gross error, but the test misidentifies the measurement with gross error).  Qualitatively,

approximate one sixth of data is identified containing gross errors no matter how good or how

bad the data set was, according to the test they proposed for boxplot method.  Also, caution is

needed in that these methods were original proposed for the same type of data.  However, the

data sampled from DCS includes different types of data, such as temperature, flow rate, pressure,

and composition, which have very different numerical values.  This may cause a problem in using

order statistics method which is the basis of boxplot and dotplot method, although using

standardized measurement errors in these methods gives a better scale of the errors.

Summary of Methods for Gross Error Detection: Only combined gross error detection

and data reconciliation methods are practical to detect and rectify gross errors in on-line

optimization applications.  These methods apply to models that are highly nonlinear and in which

a large portion of process variables are unmeasured or unmeasurable. Measurement test (MT,

IMT, MIMT) methods, contaminated Gaussian distribution method, and robust function method

were able to detect and rectify gross errors in data from distributed control system for on-line

optimization.

Since the normal distribution used in the measurement test method is not able to describe

the distribution behavior of a gross error, the measurement test method is very sensitive to the

presence of gross errors in measurements.  The presence of gross errors invalidates the statistical

basis for the data reconciliation and results in biased estimation.  To avoid this problem, series

elimination, iterative elimination, modified iterative elimination strategies have been proposed in

literature to improve the performance of measurement test.  These strategies significantly improve



82

the error rectification and gross error detection. However, they require the reconstruction of

constraints and the reclassification of measured and unmeasured variables which are caused by

nodal aggregation during searching for gross errors.  This is very inefficient.  Also, the method of

solution used in MT, MIT, and MIMT can not explicitly handle the unmeasured variables and

bounds, and the successive linearization of nonlinear equation results in lower solution accuracy

when the plant model is highly nonlinear and errors are larger.  In addition, the test statistic of

measurement test proposed by Mah and Tamhane (1982) is too conservative.  It is very easy to

commit type II error when the magnitude of gross errors is small.

The contaminated Gaussian distribution algorithms incorporated the distribution pattern

for both random and gross errors, and it can automatically reject the contribution of

measurements containing gross errors by giving a much smaller weight factors to such

measurements.  It can directly locate the gross error sources and gives an unbiased estimation for

all reconciled data.  The characteristic of this distribution demonstrates the properties of a robust

function, i.e., it is not  sensitive to the presence of gross errors, and it gives unbiased estimation

even the measurements contain both random and gross errors.  Also, the shape of contaminated

Gaussian distribution is sharper than those of robust functions.  This distribution function has

higher efficiency than robust functions.  However, this distribution function still has the nature of

the normal distribution.  When the gross error goes to extremely large (e.g., infinite), the

performance of the contaminated Gaussian distribution decreases and still results in biased

estimation.  This will be shown in the theoretical evaluation of distribution functions next chapter.
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Robust statistical methods were developed to overcome difficulties with the data that

contains gross errors and that does not follow the ideal normal distribution.  Robust statistical

methods use an objective function that is insensitive to the presence of gross errors in sampled

data.  These methods tend to look at the bulk of the data and ignore atypical values.  Robust

methods have the advantages of having a very simple mathematical form and of having very

convenient properties for optimization.  However, the efficiency (accuracy) of estimation from

these methods will be slightly lost because robust functions have a flatter shape that gives larger

variation in the estimation.  Also, the test to detect gross error of robust methods is not as straight

forward as the contaminated Gaussian distribution or other likelihood function does, although the

boxplot and dotplot methods from exploratory statistics (Albuquerque and Biegler, 1996) may

be used to identify the gross errors of sampled data.  Moreover, the criterion set by Albuquerque

and Biegler (1996) seems to cause more type I errors as discussed previously. 

In closing, measurement test method has been widely studied by both university and

industrial researchers.  However, its biased nature on the estimation and the inefficient

implementation from the iterative procedures result in a limitation of its applications to large scale

on-line optimization problems.  The new approaches, contaminated Gaussian distribution and

robust functions, have been proposed for the detection of gross errors.  However, they have not

been studied with real, large scale nonlinear plant models.  Based on the nature of the distributions

and the ability of ignoring the contribution of gross errors on the estimation, they are seen as the

appropriate algorithms for conducting combined gross error detection and data reconciliation and

for simultaneous gross error detection, data reconciliation, and parameter estimation with large
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scale plant models in on-line optimization.  They will be tested and evaluated as part of this

research.

B-4. Parameter Estimation

There are two types of models for parameter estimation according to Britt and Luecke

(1973).  One type is the explicit model, in which measurements are divided into two sets of

measured variables, independent variables and dependent variables.  In this type of model,

independent variables are measured with a much greater accuracy than dependent variables.  The

dependent variables can be expressed as an explicit function of independent variables and the

parameters.  For this type of model, parameters can be estimated by minimizing the sum of

squared errors of dependent variables (least squares method) or maximizing the likelihood

function, a probability distribution function of the measurement errors of dependent variables

(maximum likelihood method).  This is a unconstrained optimization problem, and linear

regression method is one of examples for this type of estimation.

  The other type of model is implicit or error-in-variables model.  There are errors in all

measurements and the variables can not be partitioned into dependent and independent variables

as in the explicit model.  The constraints of process models are implicit.  Therefore, the

optimization problem of parameter estimation must be formulated as constrained optimization

problem which will be discussed in the following section.  The error-in-variables models represent

the general case of process simulations for on-line optimization.  Hence, only the parameter

estimation methods that are applicable to this type of process model can be used for the



85

(2-64)

parameter estimation of on-line optimization.  The methods for error-in-variables model will be

reviewed in the next section.

Stewart, Caracotsios, and Sorensen (1992) gave a review of the literature for parameter

estimation, and they proposed the Bayesian method for the parameter estimation with explicit

model using n repeated experimental data.  The explicit model is expressed as:

yui = fi (xu, 22) + eui , (u = 1, 2, .. , n; i = 1, 2, .., m) (2-62)

where yui represents the multiple response data array, i.e., y = {yui}.  xu represents the vector

for independent variables that have accurate sampled data.  22 is the vector of the parameters to

be estimated.  u from 1 to n denotes the independent events (the repeated experiments) and i

from 1 to m represents the dimension of dependent variables y.  The function f describes the

relationship between the dependent variables y and independent variables x and parameters 22.

 eui is the error of dependent variable yui and it is assumed that eui is normally distributed with

mean as zero and unknown covariance matrix EE.  Therefore, the parameters and unknown

covariance matrix can be estimated by maximizing the posterior density function (Stewart,

Caracotsios, and Sorensen, 1992), i.e.,

Maximum: p(22, EE *y) % *EE *-(n + m  + 1) / 2 exp{-tr[EE-1v(22)]} (2-63)

The elements of matrix v(22) in Eq. 2-63 is determined by:

The authors concluded that Bayesian and likelihood approaches were superior to

weighted least squares and to the use of a pre-specified error covariance matrix.  The advantage



86

of their approach is giving the estimation of the error structure from a multiresponse data set,

along with the parameter vector of a predictive model based on Bayesian theorem.  The

optimization problem of parameter estimation in Eq. 2-63 is formulated for the traditional

parameter estimation with repeated experimental data.  It can not be directly applied to the

parameter estimation of on-line optimization.  However, its methodology can be used for the

parameter estimation of on-line optimization by modifying the problem formulation into

constrained optimization problem using error-in-variables models.

 Biegler, et al., (1986) presented the results of an industrial nonlinear parameter estimation

problem from Dow Chemical Company.  The model consists of six ordinary differential equations

and four algebraic equations (DAE) with nine parameters.  This is stiff differential/algebraic model

with error structure unspecified and the starting guess leads to a nontrivial optimization problem.

This problem was attempted by eleven researchers yielding five acceptable solutions.  They

compared the five solutions along with a failed solution in terms of accuracy and efficiency.

Finally, they arrived at the conclusions that good problem formulation, proper scaling and

reasonable initial guess were the guideline for tackling dynamic parameter estimation problems.

Rhinehart and Riggs (1991) presented a new technique for parameter estimation by two

simple methods, one for dynamic equations and one for steady-state models.  The one for

steady-state models used Newton's method with a relaxation coefficient, a one-step ahead

filtered process/model mismatch, and it used the modeled output/parameter sensitivity to calculate

an incremental adjustment to the model parameter at each sampling interval.  The relaxation

coefficient is incorporated in the Newton's linearization to improve convergence for highly
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nonlinear process model.  They concluded that these methods are effective and simple both

conceptually and implementationally and can be easily extended to multivariable case.  

Pinto, et. al., (1991) reformulated the general approach to parameter estimation in terms

of the relative uncertainties in the model parameters.  This new formulation took relative

uncertainties in model parameters into consideration and lead to new sequential experimental

design criteria.  Their numerical examples showed that the relative $-trace design criterion was

the best criterion for sequential experimental design. 

The other applications for parameter estimation are for the optimal design of sequential

experiments.  Dovi, Reverberi, and Maga (1993) described this application for both explicit and

implicit models and developed the theoretical formula to determine the optimal conditions for next

experiment.  

A new branch of parameter estimation is the quality control parameter design which

originated from the work of the Japanese quality expert G. Taguchi in 1980.  Parameter

estimation methodology is an off-line quality control method for identifying design settings that

make the product performance less sensitive to the effects of manufacturing and environmental

variations.  

   Maria and Muntean (1987) described an application of kinetic parameter identification

for the methanol conversion to olefin.  The complex kinetic model contained 33 reactions and 16

chemical species.  The reaction rate constants were estimated by minimizing the weighted sum

of squares of the errors for the product concentrations subject to a set of dynamic constraints.

The minimization used the combinative DP-SP-RRA (derivatives discretization procedure-a cubic
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spline approximation procedure-ridge regression analysis) and IP-SP-RRA (integral

transformation procedure-a cubic spline

approximation procedure-ridge regression analysis)

strategy and a multimodel NLSQ techniques was used to refine the parameter values for the

reduced model.

Based on the technique of Dunn and Bertsekas in optimal control problems, Albuquerque

and Biegler (1993) developed a decomposition algorithm for on-line estimation with nonlinear

dynamic constraints, a set of ODE.  In this approach, the differential equations were discretized

as algebraic constraints and a SQP method was used to solve this optimization problem.  The

authors proposed a strategy to solve the QP subproblem efficiently by taking advantage of the

problem structure.  Compared with the other methods, this algorithm performed well for both

linear and nonlinear cases in both efficiency and robustness.

Krishnan, et al., (1992) proposed a serial of techniques to locate the key parameters that

contributes a significant effect to the profit optimization and to filter out the unrelated plant

measurements for reducing the size of the optimization problems.  The authors described a two-

step parameter estimation scheme that was specially designed for on-line optimization.  The first

step involved determining key model parameters.  The second step was finding the best set of

measurements to estimate these parameters.  The key model parameters are determined through

perturbing individually by an amount depending on the estimation accuracy of parameters.  If

perturbing a parameter significantly changes the optimal objective function and/or alters the active

constraint set at the calculated optimum, then this parameter is regarded as a key parameter.
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After the key parameters are determined, the necessary measurements for estimating these

parameters are selected through testing the accessibility of measurements to parameters and the

observability of the parameters.  The simulated results using the William-Otto (simulated) plant

showed that the scheme was robust in the presence of measurement noise and uncertainties in

non-key parameters.  The methods proposed here is related to the methodology of plant model

formulation, and they will be incorporated in the strategy to formulate the plant simulation model

of our research work.

In subsequent research (Krishnan, et al., 1993), they applied this robust parameter

estimation technique to part of an operational zinc refinery.  They showed that the proposed

technique could be applied to an complex process where a highly detailed process model was

not available.  The methods involved developing a simple plant model with only steady-state mass

balance and simple shrinking core kinetic model.  They determined the key parameters and a set

of measurements, and minimized the nonlinear least square estimator.  They concluded that the

simple process model adequately represented the plant performances and was suitable for on-line

applications.

Diwekar and Rubin (1993) presented a methodological approach to the parametric

design of chemical processes which used the ASPEN simulator and was based on the stochastic

modeling capability.  They also analyzed different sampling techniques and compared the

stochastic optimization techniques of Latin Hypercube sampling and traditional Monte Carlo

Sampling.
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In summary, above is a brief review of the traditional parameter estimation.  These

methods require an explicit process model and the parameter estimation problem is formulated

as unconstrained optimization problem using repeated sampled data.  The methods proposed

above can not be directly used in the parameter estimation of on-line optimization.  The process

models of on-line optimization are complicated, highly nonlinear and all measurements in the

model are subject to errors.  They can not be formulated as an explicit model.  In addition to the

parameters, there can be a large number of unmeasured variables in the process models.

Consequently, an error-in-variables model must be used.  Some of the methodology discussed

above, such as least squares method, maximum likelihood method, and Bayesian method, can

be modified and used to conduct the simultaneous data reconciliation and parameter estimation

of on-line optimization using the error-in-variables model as constraints.  The following will review

the results for simultaneous data reconciliation and parameter estimation. 

B-5. Simultaneous Data Reconciliation and Parameter Estimation

On-line optimization requires that the model of a plant matches the performance of the

plant.  This is referred to as plant-model matching.  Plant-model mismatch can be caused by

either inaccuracies in the models, e.g., imprecise simplification, blunders in equations, and

uncertain plant parameters which are unmeasurable and time-varying.  The familiar examples of

time-varying plant parameters are catalyst deactivation and heat exchanger fouling which cause

change in the effectiveness factor of catalyst and in heat transfer coefficients from the  new plant.

Also, inaccurate parameters used in the process model for economic optimization will result in

non-optimal operating conditions.  In order to have the model match the plant operations,
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updating the process parameters is essential for on-line optimization.  In addition, the process

models of on-line optimization are complicated and highly nonlinear, and only error-in-variables

models can be used to describe the process.

Deming (1943) originally formulated the general problem of parameter estimation by

taking into account the errors in all measured variables.  Britt and Luecke (1973) presented

general methodology for the parameter estimation of error-in-variables model.  This type of

parameter estimation is a constrained optimization problem.  In error-in-variables model, vector

y represents the measured process variables with measurement values, and x represents the true

values of these variables.  All of the variables have errors and the relation of y and x is the same

as the measurement error model given in Eq. 2-1, i.e.,

y = x + e (2-1)

The error vector e has a zero mean and positive definite covariance matrix EE.

The general methodology of parameter estimation with error-in-variables model has a

structure similar to the data reconciliation and it is a simultaneous data reconciliation and

parameter estimation optimization problem.  The only difference is that the parameters in plant

model are considered as variables along with the variables in simultaneous data reconciliation and

parameter estimation rather than being constants in data reconciliation.  Both process variables

and parameters are simultaneously estimated through minimization of the sum squares of

measurement errors if the least squares method is used.

The general mathematical formulation of parameter estimation using maximum likelihood

method for normally distributed measurement errors is (Britt and Luecke, 1973):
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Maximize: L(x, 22) = (2B)-n/2 *EE*-½ exp{-½(y - x)TEE-1(y - x)} (2-65)
    x, 22
Subject to: f(x, 22) = 0

where 22 represents a set of parameters in plant model, and they are estimated with the variables

x by solving this optimization problem.  The equality constraints f(x, 22) are the plant simulation

equations and denote the implicit relationship among the process variables and parameters.

Solving Eq. 2-65 finds the values of x and 22 that maximize the likelihood function L(x, 22) and

satisfy the process constraints.  Taking a negative logarithm of the likelihood function converts the

maximization of the likelihood function to the minimization of the sum of squared measurement

errors, i.e., maximum likelihood method is converted to least squares method if the likelihood

function is a normal distribution function.  Therefore, Eq. 2-65 can be rewritten as (Britt and

Luecke, 1973; and Ramamurthi et al. 1993):

Minimize: (y - x)TEE-1(y - x) = eTEE-1e (2-66 )
    x, 22
Subject to: f(x, 22) = 0

The values for both the parameters and reconciled process variables are obtained simultaneously

by solving the optimization problem of Eq. 2-65 or 2-66.  This is a  simultaneous data

reconciliation and parameter estimation optimization problem.

Britt and Luecke (1973) described the use of Lagrange multiplier method to solve the

optimization problem of Eq. 2-66.  The constraints are implicit nonlinear equation, and there is

no analytical solution for Eq. 2-66.  The authors developed an iterative linearization technique to

solve this nonlinear problem.  They linearized the nonlinear constraints using Taylor expansion at

the point that was the solution of the last linearization, then iteratively searched for the optimal
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solution.  They reported difficulties in converging to the optimum in some test problems.  They

concluded that their algorithm provided a feasible approach to the general parameter estimation

problems.

The methodology of  parameter estimation proposed by Deming (1943) and Britt and

Luecke (1973) is the basic structure of parameter estimation in on-line optimization.  The

improvement over this structure is to provide a better distribution function that more accurately

describes the error structure of measurements and better optimization algorithms to solve the

problem, such as the generized reduced gradient or successive quadratic programming.

MacDonald and Howat (1988) reported the results of two procedures for parameter

estimation.  One is a statistically rigorous simultaneous data reconciliation and parameter

estimation, and it simultaneously reconciled the data to satisfy the constraints and estimate the

process parameters.  The other is a faster, non-rigorous sequential procedure.  It first reconciled

data to satisfy the material and energy balances and then estimates the process parameters.  The

authors applied these two procedures to estimate the tray efficiency of a flash unit.  It was

concluded that the simultaneous procedure gave a better estimation.  The sequential procedure

was computationally faster.

Kim, Liebman and Edgar (1990) used a two-stage and

a nested nonlinear algorithm which decoupled

parameter estimation and data reconciliation to

reduce the problem size.  The two-stage method solved

two NLP sub-problem iteratively, and the nested method
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nested reconciliation problem into parameter

estimation problem.  Both of these two methods used

NLP to overcome the drawbacks of successive

linearization solution.  When these methods were

compared with the simultaneous algorithm and

successive linear algorithm, they found that the two-

stage algorithm succeeded in finding optimal

parameter estimates for all test problems in an efficient

manner while other methods failed on one or more of

the problems.

Ramamurthi, et. al. (1993) proposed a successively linearized horizon-based strategy for

the estimation of parameter and dynamic data reconciliation.  They also proposed a two-level

strategy to decouple the estimation of process input from the estimation of the process outputs

and parameters.  The new algorithm resulted in a significant reduction in computational time

compared with NLP based methods.  The proposed algorithm demonstrated effective and

efficient performance for both open-loop and closed loop applications on a continuous stirred

tank reactor (CSTR). 

The profiling method, which is a technique based

on the signed-squared root of likelihood function,

was proposed by Albuquerque, et al. (1997) for error-in-

variable measurement problems.  This method produces
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improved confidence interval on the estimated

parameters.  The authors adopt a Bayesian approach and

apply Laplace’s method to integrate out the incidental

parameters (or control input variables).  The authors

concluded that estimation of and nonlinear

inference about process parameters can be obtained

fairly inexpensively by applying profiling and Laplace’s

approximation.  Also, this approach leads to an efficient

and effective analysis tool for process modeling, data

reconciliation, and on-line optimization. 

In summary, the errors-in-variables model

represents the general case of chemical plant models

used for simultaneous data reconciliation and

parameter estimation in on-line optimization.  The least squares method has been

used for the simultaneous data reconciliation and parameter estimations.  Most of reported

applications assumed that measurement errors are normally distributed and they used the least

squares method to conduct the simultaneous data reconciliation and parameter estimation.  Other

methods, such as contaminated Gaussian distribution and robust functions, are considered as

potential methods for plant parameter estimation.  They will be used to conduct simultaneous data

reconciliation and parameter estimation in this research. 
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For on-line optimization using errors-in-variables model, parameter estimation is

conducted with data reconciliation simultaneously.  In order to reduce the optimization size and

improve the convergency and efficiency of solutions, some decomposed strategies have been

proposed to solve the simultaneous parameter estimation and data reconciliation optimization

problems when the scale of models is large and highly nonlinear. 

B-6. Economic Model  

The economic model represents the net profit from plant operations which is to be

maximized along with satisfying the material and energy balances for the plant and meeting the

demand for product with the available raw materials.  The net profit is the difference between the

sale of products and by-products and the total production cost which includes manufacturing

costs and general expenses.  The manufacturing costs include direct production costs, fixed

charges and plant overhead costs, administrative expenses and distribution and marketing

expenses.  Included in direct production costs are raw materials, labor, power, utilities,

maintenance, laboratory charges, and royalties, among others.  Fixed charges include

depreciation, taxes, insurance and financing.  Plant overhead costs include safety, general plant

and payroll overhead, control laboratories and storage.  Administrative expenses include

executives salaries, clerical wages, engineering and legal costs and communications.  Distribution

and marketing expenses include sales expenses, shipping advertising and technical sales services.

Also included in total product costs are research and development and gross-earnings expenses

(Peter and Timmerhaus,  1991).



97

  To develop the mathematical expression for the economic model, the sale prices are

obtained as projections from the marketing department as a function of plant production rate,

availability of product from competitors and time, among others.  Manufacturing costs are

estimated from historical data, and depend on the condition, severity of operation, and time

between turn-around, in addition to other factors.  General expenses are usually treated as fixed

on an annual basis, for convenience.  

In summary, standard methods can be used to develop the economic model with the

appropriate data available.  Thus depending on the need, the economic model can be very

elaborate or a simple value-added equation.  Economic optimization in on-line optimization is to

determine the optimal operation condition for the plant.  This optimization generates the optimal

set points for controllers in the distributed control system.

B-7. Plant Model

A precise and robust plant model is essential for on-line optimization.  It serves as the

constraints for gross error detection, data reconciliation, parameter estimation and economic

optimization.  Therefore, a plant model must be established and validated before using it for on-

line optimization.  The plant model is written based on conservation laws, kinetic and

thermodynamic models, and any other engineering knowledge.  It is generally expected that

rigorous models based on fundamentals would represent the plant better than a simple one based

on empirical results.  However, a rigorous model may have the disadvantage of requiring

significantly longer computation time.  On the other hand, a simple model may not provide an
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(2-67)

accurate enough representation of the plant behavior and the optimization based on this type of

model may result in non-optimal or physically infeasible set points (Krishnan et al, 1992). 

Open Form Equation Based Versus Close Form Modular Process Model: Chemical and

refinery processes can be simulated as different formats of simulation models.  One is called open

form equation based process model; the other is the traditional closed form sequential modular

model.  The open form models are written as a set of algebraic and/or differential equations, such

as,

for dynamic processes or f(x) = 0 for steady state processes.  In Eq. 2-67, all of the variables

are determined by a simultaneous solution of the equations.  For example, the energy balance

equations for a heat exchanger can be written as:

heat balance on cold side: Q - Fc Cpc (Tc2  - Tc1) = 0 (2-68)
heat balance on hot side: Q - Fh Cph (Th1 - Th2) =0
heat transferred: Q - UA[((Th1-Tc2) - (Th2 - Tc1))/ln((Th1 - Tc2)/(Th2  - Tc1))] =0

These three equations can simultaneously determine any three unknown variables (e.g., Tc2, Th2

and Q)in the equations using a simultaneous solution method.  The optimization problems with

open form models can be solved simultaneously and efficiently by optimization modeling

packages, such as GAMS or AMPL, which have a number of solvers built-in.  

The closed form plant model follows traditional design methods, using the information at

input streams of a unit to determine the values of the output variables.  The changes at an up-

stream location can affect variables at down-stream locations, but the changes at a down-stream
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location can not affect the determination of process variables at up-stream locations.  The solution

for this type of model is sequential.  Therefore, optimization problems with closed form models

can only be solved with  iterative methods to search for the optimal solution.  This requires nested

convergence schemes for unit operations within flowsheets.  This can be seen by the simulation

for the determination of the output temperatures Tc2 and Th2 and heat transferred Q for a heat

exchanger.  The energy balance equations for a heat exchanger are:

heat balance on cold side: Q = Fc Cpc (Tc2  - Tc1) (2-69)
heat balance on hot side: Q = Fh Cph (Th1 - Th2)
heat transferred: Q = UA [((Th1 - Tc2) - (Th2  - Tc1))/ ln((Th1 - Tc2) / (Th2  - Tc1))]

To determine Tc2, Th2 and Q, the sequential flowsheet simulation package (closed form

sequential modular) requires coding a convergence scheme to solve these equations iteratively

for Tc2, Th2 and Q (Fatora and Ayala, 1992).  The reason is that logarithm mean temperature

difference is highly nonlinear and these three variables can not be explicitly determined by other

known variables.  These complex convergence schemes lack robustness in the presence of

changing real time process data, and they consume excessive amounts of computer time.  

There has been a debate about the use of open form equation based process models

versus traditional closed form sequential modular models for on-line optimization since the mid

1980's (Hardin, et al., 1995).  The debate centered around the relative speed of the open form

solution versus the relative robustness of closed form model development.  The open form plant

model has a great advantage in terms of computation efficiency and robust solvers, and this is not

available for the closed form plant models.  The difficulty in developing open form plant models

will be solved by the development of process modeling software that creates a model
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development environment similar to sequential modeling.  The process modeling software will

automatically translate the graphic input information from users to an equation-based model with

graphical, object-oriented environments for configurating, executing and maintaining the on-line

optimization applications.  Also, the open form plant models are easily modified to account for

process changes since the convergence scheme is separated from the process model.  Eventually,

the use of open form models becomes the accepted state of art (Hardin, et al., 1995).  However,

the discontinuity in the constraints of process models, e.g., the thermodynamic properties are

expressed by different regression functions for different ranges, still challenges researchers in

solving  optimization problems with open form process models.

 Plant optimization with closed form process models can be solved by process

flowsheeting programs.   Process flowsheeting programs were designed to relieve the burden

deriving process models and writing computer programs.  They use a simulation language which

connects unit modules.  Flowsheeting programs available now are large, elaborate and can be

used for complicated design problems.  They use well-established numerical methods to solve

process model equations which include rigorous unit operation model and sophisticated

thermodynamic model equations.  Also, they can contain detailed costing programs and a built-in

optimization algorithm for optimal design.  These programs run on PC’s, workstations, and

mainframes. There are several the commercial codes such as ASPEN, DESIGN II, PRO II and

HYSIM that are widely used in chemical process industries.

The optimization problems with open form equation based process model can be solved

by optimization-modeling languages such as GAMS (General Algebraic Modeling System) and
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AMPL (A Modeling Language for Mathematical Programming). GAMS and AMPL were

developed to make the formulation and solution of large scale mathematical programming

problems more straightforward and comprehensible to the users.  GAMS has been used

successfully with large economic models of industrial sectors by the World Bank (Brook,

Kendrick, and Meeraus, 1988), and AMPL was developed AT&T Bell Laboratories for

telecommunication applications (Fourrer, Gay, and Kernigan, 1993).  However, applications to

chemical plants have been limited and confined to relatively small problems.  They are equation

based programming languages, and the programs are similar to the mathematical formulation of

process models.  Also, a number of solvers for solving linear, nonlinear, and mixed integer

linear/nonlinear optimization problems are provided as options for users to choose.  A

disadvantage is that detail unit modules of processes (process constraint equations) are not

available and must be provided by users.

In summary, both open form equation based and close form sequential modular process

models have been used for simulating and optimizing processes.  Flowsheeting simulation

programs can develop close form sequential models for users to simulate and optimize a process.

However, there is no process modeling software available for developing the open form process

model.  An open form model must be developed by users writing in a mathematical programming

language, and this model can be solved by optimization modeling packages.  Flowsheeting

programs offer a quick and efficient way to develop plant simulations, but require significant

amounts of computer time.  The optimization modeling languages require the same effort as

required to develop the individual process models in Fortran without having to incorporate
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optimization algorithms.  Optimization modeling languages are able to simultaneously and

efficiently solve the optimization problem.  They require much less computation time and provide

more reliable solution. 

Steady State Model Versus Dynamic Model: A chemical process can be simulated by

either a steady state or dynamic model.  Chemical plants operate at steady state with transient

periods that are relatively short compared to steady state operations.  A steady-state

representation of a process is generally used for continuous operations in chemical plants and

petroleum refineries.  Steady state models are used to simulate the plants in on-line optimization

applications.  However, during the starting up of a continuing process or for a batch process, it

is necessary to use the dynamic models to simulate the process.  

The steady state process models are represented by a set of algebraic equations.  The

equations do not vary with time.  The algebraic equations in steady state models are established

based on conservation laws and other engineering knowledge.  Dynamic process models are

represented by a set of ordinary differential equations that describe dependency of process

variables on time.  The differential equations in dynamic models are based on conservation laws,

i.e., the accumulation of mass, momentum, and energy, which is the time varying term, is equal

to the input plus generation minus the output of the mass, momentum, and energy (Albuquerque

and Biegler, 1995; and Robertson and Lee, 1996).  Usually, each differential equation in the

dynamic model is discretized to obtain a set of algebraic equations with an appropriate time step.

 Albuquerque and Biegler (1995) proposed to discretize the differential equations using standard

Implicit Runge-Kutta method (IRK).
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Observability and Redundancy: A process model used as constraints for data

reconciliation of on-line optimization must satisfy the observability in unmeasured variables and

redundancy in measured variables (measurements).  The observability in unmeasured variables

ensures the unique solution for unmeasured variables from data reconciliation.  The redundancy

in measured variables (measurements) is necessary for reconciling process data and rectifying

measurement errors.  Observability is defined by Crowe (1989) as:

“An unmeasured quantity at steady state is observable if and only if it can be uniquely

determined from a fixed set of values, corresponding to the measured variables, which

are consistent with all of the given constraints.  Any unmeasured quantity which is not so

determinable is unobservable.” 

And redundancy is defined by Crowe (1989) as:

“A measured quantity is redundant if and only if it would be observable if that quantity

was not measured.  Otherwise, the measured quantity is non-redundant.”

Kretsovalis and Mah (1988) and Crowe (1989) has given detail review on the

methodology for classifying the observability of unmeasured variables and the redundancy of the

measured variables for steady state process models.  For a single component process network

(mass balance only), a simple graph-theorety procedure has been derived for observability and

redundancy examination by Mah, et al., (1976).  A more general treatment using projection

matrices was developed by Crowe, et al., (1983) for a network with linear constraints.  For

single component mass and energy networks (mass and energy balances) without chemical

reactions, a examination method has been developed by Stanley and Mah (1981).  For
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multicomponent networks, Kretsovalis and Mah (1987) presented two new examination

algorithms which made use of graph-theorety properties and the solvability of subsets of

constraint equations.  These algorithms do not require that the stream compositions be either

measured with respect to all components or not measured at all.  However, the reactions and

energy balances are not considered in these algorithms.  To have a more general framework for

identifying the observability of unmeasured variables and redundancy of measured variables,

Kretsovalis and Mah (1988) presented a treatment for a general process network, allowing for

overall and component mass balance, energy balances, reactions, heat exchanges and stream

splitting.  This method uses the graph-theoretic properties and solvability similar to their previous

work.  

For a process model that includes a numbers of linear algebraic equations, f(x, z) = 0,

it is rearranged as following for examining the observability and redundancy:

Ax + Bz = 0 (2-70)

where A and B are the coefficient matrices corresponding to measured variables x and

unmeasured variables z in linear constraints.  In Eq. 2-70, the measured variables are considered

as known variables (constants) using the measurements as their values.  Then, Eq. 2-70 is

rearranged as:

Bz = - Ax = S (2-71)

where Ax in the right hand side is a constant vector S.  If equations Bz = S have a unique solution

for variables z, then the plant model satisfies the observability on unmeasured variables.
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Otherwise, the values of the unmeasured process variables determined from the constraints in the

plant model have no meaning. 

Crowe (1989) presented a direct method for identifying the observability of unmeasured

variables and the redundancy of measured variables for linear mass balances with chemical

reactions.  To examine the observability and redundancy of a linear plant model, the linear

constraints are rearranged as Eq. 2-71.  According to the definition of the observability given by

Crowe, the following lemma provides the test for classifying the observability of unmeasured

variables.

Lemma (Crowe, 1989):If there exists a nonzero vector t such that Bt = 0, then each unmeasured

variables corresponding to a nonzero element of t is unobservable.

Proof of lemma: Suppose there is a solution z = z1 that satisfies equations in Eq. 2-71, i.e., Bz1

= S.  If t … 0 and if Bt = 0, then the vector (z1 + <t) also satisfies those equations in Eq.

2-71 for any scalar <, i.e.,

B(z1 + <t) = Bz1 +<Bt = S, where Bz1 = S and Bt = 0 (2-72)

This means that these equations have multiple solutions z = z1 + <t where < is an arbitrate

scalar with any value.  Therefore, the equations do not have a unique solution for

unmeasured variables z and each variable corresponding to a nonzero element of t is

unobservable.

Krishnan, et al., (1992 and 1993) proposed a structural analysis method to examine the

observability of unmeasured variables by checking the rank of the structural parameter

observability matrix.  They proposed a structural analysis method to examine the required



106

(2-75)

measurements for estimation.  For a steady-state linearized system, the constraint equations is

rearranged as:

Ax + Bu + E22 = 0 (2-73)

where A, B and E are matrices corresponding to the state variables x, input variables u, and

parameters 22 respectively.  Input variables u are the variables in the input streams of a unit. State

variables are the variables in Eq. 2-73 excluding input variables u and parameters 22.  Also,

measured variables y are expressed as linear functions of state variables of system, i.e.,

y = Cx (2-74)

Two steps are required to determine the observability of parameters in a process model.

First, the measurements in the model must be examined to determine if they are accessible to the

parameters.  A measurement is said to be accessible to a parameter if it contains some

information about the parameter, that is, if changes in the parameter are the cause of changes in

the measurement (Krishnan, et al., 1992).  If a measurement is not accessible to the parameter,

it can be excluded from the set of necessary measurements.  In the examination of accessibility,

input variables u are considered as unknown parameters for all of the units except the first unit

in the plant flowsheet and the output variables are considered as measured variables for all of the

units except the last unit.  The necessary measurements for entire plant are examined unit by unit

through an extended structural matrix Smod for each unit.  The extended structural matrix Smod is

defined as:
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(2-76)

where A, B, E and C are the same matrices as defined in Eq. 2-73 and 2-74. 

The second step is to test the observability of parameter using the structural parameter

observability matrix Spob.  The structural parameter observability matrix is defined as:

where the matrices A, E, and C have the same meaning as in Eq. 2-73 and 2-74.  A system is

said to be structurally parameter observable, if and only if, its measurements are accessible to all

the parameters and the structural parameter observability matrix Spob has full generic rank

(Krishnan et al., 1992).  A structural matrix is said to have generic rank if a unique column

variable can be associated with each row.  The detail methodology of this structural analysis is

discussed in Krishnan et al.’s paper (1992).  The determination of generic rank of the structural

matrix is referenced on Johnston et al.’s (1984) algorithm.  The method proposed to determine

the observability of parameters in a process model will be incorporated in this research for

developing the process model of the sulfuric acid plant.

In summary, observability of unmeasured variables and parameters is necessary for

having a unique solution of these unmeasured variables and parameters from data reconciliation.

Having some degree of redundancy in process measurements is necessary for rectifying the

measurement errors.  Several methods have been proposed to examine the observability and

redundancy for steady state process models.  However, these methods are limited to certain type

of simple linear process model and are not general enough for implementation.  Also, there are

no reports in literature on how many degrees of redundancy in measured variables are required

to have an accurate  data reconciliation result.  Based on the methods proposed by Crowe
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(1989) and Krishnan, et al., (1992 and 1993), a general method to examined the observability

and redundancy of a plant model will be proposed and used to formulate the simulation model

of the sulfuric acid process.

  Summary: A precise and robust plant simulation is necessary to describe the processes

for on-line optimization.  It gives the relationship among the process variables and serve as

constraints for the optimization problems.  The plant models can be written as either open form

equation based or close form sequential modular.  The close form plant model has been used in

process design and optimization for many years, and it is easily developed with flowsheeting

programs.  However, the computation for solving a optimization problem with this type of models

is time consuming.  The optimization problem with an open form equation based plant model can

be solved simultaneously and efficiently by current optimization programs.  However, the

development and modification of the open form models is not as straight forward as one of closed

form.  It requires the user to provide the detail information about the constraint equations.

Simulation software is being developed, and this will provide a process model development

environment similar to the ones available now for sequential modeling to automatically translate

the graphic input information to an equation based model, e.g., Aspen Tech’s RT-OPT and

Simulation Science’s ROMEO.  Open form equation based models are required for on-line

optimization.  

A chemical process can be simulated by either steady state or dynamic models.

Chemical plants usually operate for extended period at steady state with transient periods that are
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relatively short compared to steady state operations.  Therefore, the steady state process models

can be used for on-line optimization. 

The plant model for on-line optimization must satisfies the requirement of observability

to ensure that the model has unique solution and redundancy to provide resolution for error

rectification.  Methods for examining the observability and redundancy has been proposed by

several authors for steady state models.  However, they are limited to the simple linear plant

model and not general enough for implementation. 

B-8.  Steady State Detection and Data Exchange

Steady State Detection:  As shown in Figure 1.4, it is necessary to make sure the process

is operating at steady state before the plant data is taken from distributed control system for

conducting on-line optimization.  Steady state plant data is required for steady state process

models.  

The time series horizontal screening method has been used in industry to detect the

steady state.  In this method, the measured values for key process variables are observed for a

time period.  If the measured values remain in a stable range with tolerant random noises, then

the process is said operating at steady state.

Data Exchange:  An important step between DCS and on-line optimization is data

exchange.  Before conducting on-line optimization, the plant data is retrieved from distributed

control system and input into on-line optimization system by a coordinator program.  The general

practice in managing data in a distributed control system is with a data historian program.  Data

from this database can be extracted and used in a spreadsheet program for example.  A
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coordinator program is used to extract the sampled data that is required by on-line optimization

system and to generate a data file in a format required by on-line optimization system.  Then this

data file will be used by the optimization programs for gross error detection, data reconciliation,

and parameter estimation.  

As shown in Figure 1.4, after on-line optimization executes economic optimization and

generate a set of optimal set point, the coordinator program will generate a report file which

includes the optimal set points.  These optimal set points can be sent directly to distributed control

system or they can be viewed by operators for the use of DCS.

B-9. Optimization Algorithms  

There is general agreement in the literature (Pike, 1986 and Biegler, 1992) that the three

best optimization algorithms for solving nonlinear programming problems are successive linear

programming, successive quadratic programming and the generalized reduced gradient methods.

Successive linear programming linearlizes the objective function and constraints around a feasible

starting point and solves a sequence of linear programming problems to arrive at a local optimum.

Successive quadratic programming uses a quadratic approximation to the objective function and

a linear approximation to the constraints and solves a sequence of quadratic programming

problems to arrive at a local optimum.  Quadratic programming uses the Kuhn-Tucker conditions

to convert the quadratic programming problem to a set of linear equations which can be solved

by linear programming.  Thus, successive quadratic programming solves a sequence of linear

programming problems.  To avoid evaluating the Hessian matrix of second partial derivatives of

the objective function, a quasi-Newton update formula such as BFGS is used which only requires
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gradient values.  The generalized reduced gradient also linearlizes the objective function and

constraint equations about a starting point, and it manipulates these equations to form a reduced

gradient line to provide a direction to perform a series of line searches to arrive at a local

optimum.  All of the methods use the same information, values of the first partial derivatives of the

objective function and constraints; but each use this information in a different way (Pike, 1986).

Biegler (1992) discussed embellishments for these algorithms and their further

applications in data validation and parameter estimation which are nonlinear programming

problems.  He exploited the structure of process optimization problems to propose general

decomposition method to deal with large, nonlinear models with few degrees of freedom, and

tailored quasi-Newton strategy for least-square structure of the optimization problem, and more.

These extensions of the successive quadratic programming (SQP) algorithms yield more reliable

and efficient performance than the general purpose SQP algorithm. 

GAMS (General Algebraic Modeling System) was developed at the World Bank to

solve large and complex mathematical programming models and uses a programming language

that makes concise algebraic statements of the models that is easily read by both the modeler and

the computer (Brook et al., 1988).  This was done to expand the application of mathematical

programming in policy analysis and decision making.  GAMS includes a number of mathematic

programming solvers for linear programming (LP), mixed integer linear programming (MILP),

nonlinear programming (NLP), discontinuous nonlinear programming (DNLP), and mixed integer

non-linear programming (MINLP).  Its NLP solvers have been tested in a wide variety of
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problems and have been proven to be robust and reliable.  They are well suited for the nonlinear

programming problem for data reconciliation. 

GAMS includes a number of important and widely used nonlinear programming codes

such as MINOS, NPSOL and CONOPT.  MINOS, developed at Stanford University,

implements generalized reduced gradient method which is more effective for problems with

constraint equations that have sparse matrices.  NPSOL, also developed at Stanford University,

uses successive quadratic programming and is more effective for problems with constraint

equations that give dense matrices.  CONOPT, developed by Drud (1985,1992), uses the

general reduced gradient algorithm and is well suited for models with very nonlinear constraints

and models with very few degree of freedom.  These codes were developed to facilitate the

formulation and solution of the optimization problem.

The modeling language AMPL (A Modeling Language for Mathematical Programming)

appeared in 1993 and was developed at AT & T Laboratory for communication applications

(Fourer, et al., 1993).  AMPL has language structure similar to GAMS.  In addition, it has

separate model and data files and can function interactively.  AMPL includes the solver MINOS,

XA, and OSL with other to be available.

In summary, GAMS and AMPL offer attractive new tools for solving nonlinear

programming problems.  They map the mathematical optimization problems to the rigorous

programs required by optimization solvers and provide flexibility in writing source codes for

process models.  Therefore, the user does not have to write the process and economic models
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(2-77)

(2-78)

in a higher level language like Fortran and link to a solver like MINOS.  They release the users

from the work of programming.

B-10. Variance and Covariance Matrix Estimation

As described in the sections on gross error detection, data reconciliation, and parameter

estimation previously, all algorithms require information for the variance and covariance of

measurement errors to scale the errors.  The most commonly used statistical technique for

covariance matrix estimation is the direct method, i.e., the variance/covariance is determined by:

with the mean determined by:

where n is the number of samples.  The covariance matrix of measurement errors is EE  =  [Fij
2

].  The covariance matrix of constraint residuals H is determined by Eq. 2-14 for linear

constraints as discussed previously, i.e.,

H = A EE AT (2-14)

Eq. 2-77 and 2-78 represent the unbiased maximum likelihood estimators for variances

and means if the sample data is independent of each other and no gross errors are present in the

samples.  This method requires the n samples must be taken from the same steady state point of

the process, otherwise the direct method may give incorrect estimates.  Also, the presence of

gross error in sampled data violates the statistical basis that only random errors are present. 
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Almasy and Mah (1984) and Keller, et al., (1992) made use of the covariance matrix of

the constraint residuals to eliminate the dependency between sample data (or the influence of

unsteady state behavior of the process during sampling period) through an indirect method.  The

indirect method estimates the variance of measurement errors by minimizing the sum of the

squared differences between the variances H of constraint residuals calculated directly from

sampled data and the estimated constraint residual variances AEE*AT, i.e.,

Minimize: (H -  AEE*AT)T(H -  AEE*AT) (2-79)

where the variances of constraint residual H are determined by Eq 2-14 using the direct method

in Eq. 2-77 to determine EE.  Minimizing Eq. 2-79 estimates the variances and covariances of

measurement errors, EE*. 

The authors compared simulation results, and they suggested that this indirect method for

variance-covariance estimation should be used in practical applications.  This indirect method can

reduce the influence of unsteady state behavior of the process on the estimation.  However, this

method is still sensitive to the presence of gross errors in the sample data.  Consequently, a few

outlying sample data will cause an incorrect estimation of the covariance matrix, and it is not

robust.  Also, this method is only applicable to process models with linear constraints.

Chen, et al., (1997) proposed a robust indirect method to estimate the variance-

covariance matrix based on an M-estimator proposed by Huber (1964).  The basic idea of M-

estimator is to assign weights to each sample data vector based on its own Mahalanobis distance

so that the influence of a given point decreases as it becomes less and less characteristic.  This

approach uses an iterative method to calculate the variance and covariance matrix of constraint
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residuals.  After the variance and covariance matrix of constraint residuals is determined, it uses

the indirect method to estimate the variance and covariance matrix of measurement errors.  This

algorithm is described as follows.

Consider a n dimensional process sample data vector at a time k yk:

yk  = xk + ek (2-80)

where yk = {yk1, yk2, ..., ykn), for k = 1, 2, ..., s standing for repeated sample data.  xk is the

process variables at time k and ek is the vector of measurement errors at time k.  Process

variables xk satisfies constraints in the process model, i.e., 

Axk = 0 (2-81)

where A is the coefficient matrix of constraints in the process model.  The constraint residual rk

is determined by:

rk = Ayk = Axk +Aek = Aek (2-82)

Assuming that ek is normally distributed with zero mean and positive definite covariance matrix

EE as discussed in gross error detection section, the mean vector and covariance matrix of

constraint residuals are:

E(rk) = E(Aek) = AE(ek) = 0 (2-83)

and H = cov(rk) = E(rk rk
T) = E(A ekek

TAT) =AE(ekek
T)AT =AEEAT (2-84)

where H = (hij)m×m, i = 1, 2, ..., m and j = 1, 2, ..., m.  Using the Kronecker product of matrices

and vec(o) operator (Almasy and Mah, 1984), the covariance matrix H can be rewritten as:

vec(H) = (A¼A)vec(EE) (2-85)
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(2-87)

The indirect method uses Eq. 2-85 to estimate covariance matrix of measurement errors EE.  This

procedure requires the value of the covariance matrix H which can be calculated from the

residuals using the balance equations.

The procedure of the robust covariance estimation is described in following:

Step 1 Calculate the residuals r by:

rk = Ayk, for k = 1, 2, ..., s (2-86)

where, rk = [rk1, rk2, ..., rkm]T.  s is the number of sample data sets and m is the dimension

(number) of constraint residuals.  

Step 2 Calculate the weight functions u1 and u2 for each data set by:

and u2(d) = [u1(d)]2 /& (2-88)

where & = G(k2/2, 1.5) + 2k2 [1-N(k)] (2-89)

In Eq. 2-89, N(k) is a multivariate normal cumulative distribution; and G(x,f) is a Gamma

distribution with f degree of freedom.  In Eq. 2-87, k is a constant specified by the user

to take into account of the loss in efficiency to Gaussian distribution for the exchange of

resistance to gross errors.  dk is the Mahalanobis distance for a sample data set from the

current estimate of mean (location) m* and it is determined by:

dk
2 = (rk  - m*)T H*-1 (rk  - m*) (2-90)

where H* is the current estimate of the covariance matrix, and m* is the current estimate

of mean.  Both H* and m* are initialized by:
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(2-95)

(2-94)

m* = median (rkj); k = 1, 2, ..., s; j = 1, 2, ..., m.  (2-91)
  k

and H* = diag( t12, t2
2, ..., tm

2) (2-92)

where tj = median (*rkj - mj*)/0.6745 (2-93)
k

After weight factors for each set of data are determined, mean m and variance/

covariance matrix H are updated by the following functions:

and

After the means m and covariances H are updated, the new weight factors u1 and u2 are

calculated based on the current values of m and H.  Then the means and variances are

calculated by Eq. 2-94 and 2-95 using the new weight factors.  This iterative process

continues until the maximum difference of elements of H between two successive

iterations are smaller than a pre-specified threshold value (authors use 10-6 as the

threshold value).

Step 3 Calculate the maximum likelihood estimator of vec(EE) by

vec(EE) = (GTG)-1GTvec(H) (2-96)

where vec(H) = (h11, h12, ..., h1m, h21, h22, .., h2m, ..., hm1, hm2, ..., hmm )T is determined

from Step 2.  The matrix G is determined by the coefficient matrix of linear constraints,

i.e.,
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(2-97)

where aij is the elements of coefficient matrix A and Aj is the jth column of matrix A, i.e.,

A = ( A1, A2, ...,  Ad). Then the robust covariance EE can be obtained by reshaping

vec(EE) as following:

EE = vec-1(vec(EE)) (2-98)

where vec(EE) = (F11
2, F12

2, ..., F1m
2, F21

2, F22
2, ..., F2m

2, ..., Fm1
2, Fm2

2, ..., Fmm
2). 

Above is the procedure to estimate the variance and covariance matrix of measurement

errors using robust indirect method.  This method assigns different weight factors to the sampled

data according to its distance of the sample data to the current estimate values of means m*.  It

eliminates the effect of sample data containing gross errors by a iterative procedure described in

Step 2 and determines the covariance matrix of constraint residuals based on the normal (good)

sample data.  Then, the variance and covariance matrix of measurement errors is determined by

the indirect method proposed by Keller, et al., (1992).  This robust method is able to eliminate

the influence of unsteady state behavior of the process and is insensitive to the sample data

containing gross errors.  However, this method is still limited to linear process constraints.  This

method has not been able to apply to on-line optimization applications that have a highly nonlinear

and complicated process and a large number of unmeasured variables.  
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In summary, there are three methods to estimate the variance and covariance matrix of

measurement errors for the algorithms required known variance/covariance information.  The

direct method can give unbiased estimation if the repeated sample data is taken from a steady

state process and no gross errors are present in the sample data.  This method directly

determined the variance/covariance matrix of measurement errors using sample data for measured

variables, and it is applicable for any process and easy to compute.  However, in the real process

operation, the process conditions are continuously undergoing changes.  Also, some of sample

data may contains gross errors.  The indirect method proposed by Keller, et al. (1992), is to

overcome the influence of unsteady state behavior of the process.  However, this method is still

sensitive to the presence of gross errors in the sample data, and its applications are limited to

linear constraints with all variables measured.  The robust indirect method proposed by Chen, et

al. (1997) improves the robustness of indirect method by assigning different weight factors to the

sample data set according to the distance of the sample data to the current estimated means to

calculate the mean and covariance matrix of constraint residuals.  This robust indirect method is

not sensitive to the presence of gross errors in sample data and is able to eliminate the influence

of unsteady state behavior of the process.  However, it still limited to linear constraints with all

variables measured as the indirect method.  

In addition to the above theoretical approach to determine the variance/covariance

matrix, the time series screening methods are used to detect steady state and to filter out outlier

in sample data.  Although these methods can not detect the persistent gross errors, it is a practical

and effective way to detect steady state and to eliminate the instantaneous outlier.  For
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complicated and highly nonlinear process data, it is proposed to apply the time series screening

methods to pre-process sample data, and then the variance/covariance matrix of measurement

errors can be determined by direct method using the pre-processed sample data.

C. Dynamic On-Line Optimization

For the dynamic on-line optimization, the methodology is similar to the steady state on-

line optimization.  The difference between these two approaches is the process model. The steady

state process models are represented by a set of algebraic equations.  The equations do not vary

with time.  The algebraic equations in steady state models are established based on conservation

laws and other engineering knowledge.  Dynamic process models are represented by a set of

ordinary differential equations that describe dependency of process variables on time.  The

differential equations in dynamic models are based on conservation laws, i.e., the accumulation

of mass, momentum, and energy, which is the time varying term, is equal to the input plus

generation minus the output of the mass, momentum, and energy (Albuquerque and Biegler,

1995; and Robertson and Lee, 1996).

The optimization problem with a dynamic process model is expressed as (Albuquerque

and Biegler, 1995) :

Maximize: P(x, y) (2-99)

Subject to:

x(t1) = x1

where f represent a set of differential and algebraic equations for a dynamic process and x(t1) =

x 1 is the initial conditions.  To solve this optimization problem, the differential equations in the
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dynamic model are discretized and converted into a set of algebraic equations with an appropriate

time step.  Then this optimization problem with discretized algebraic equations can be solved by

the optimization language, such as GAMS and AMPL.  Albuquerque and Biegler (1995)

proposed to discretize the differential equations using standard Implicit Runge-Kutta method

(IRK).

Liebman, et  al., (1992) described a new method for general nonlinear dynamic data

reconciliation that used nonlinear programming techniques to minimize a weighted least-squares

objective function in a moving time window.  The dynamic process models are usually ordinary

differential equations as shown in the constraints of Eq. 2-99 and they are discretized into

algebraic equations by collocation techniques.  A large sparsity successive quadratic programming

(LSSQP) which was well-suited for solving large sparse NLPs was developed to perform

optimization over a window width each time.  The optimization is repeated until current time is

reached.  They showed that the method was insensitive to the level of measurement noise when

applied to processes operating in strongly nonlinear regions where the Kalman filter approach is

not applicable.  Also, a procedure was developed to treat the systematic errors in the data.  They

also indicated that the main disadvantage of the approach was the computational burden for

solving the required accurate dynamic process model. 

The Dynamic Matrix Control Corporation used rigorous equation-based models and

dynamic control technology in their closed-loop real time optimization systems (Culter and Ayala,

1993).  The optimization system utilized global spline collocation to solve process differential and

algebraic equations (DAE) simultaneously using a tailored successive quadratic programming
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methods.  Both on-line and plant laboratory measurements are used to update the model

parameters.  This system was applied in GE Plastics's two Bisphenol-A plants (Lowery, et al.,

1993).  This system resulted in a two percent increase in production and improved product

quality with higher product yield. 

D. Summary of the Status of On-Line Optimization

On-line optimization involves several steps.  They are combined gross error detection and

data reconciliation to eliminate or rectify gross errors in plant data,  simultaneous data

reconciliation and parameter estimation to updated plant model to ensure that model matches the

plant operations, and economic optimization to generate a set of optimal setpoints for the

distributed control system.

Gross errors can be detected by time series screening methods or statistical methods.

Time series screening methods are simple and have been practiced in industrial applications.

However, they can not detect persistent gross errors such as instrument bias or malfunctioning

and process leaks.  Statistical methods are more complicated and require a detailed plant model

to relate the individual measurements.  Persistent gross errors can be rectified using other good

measurements through statistical methods and the process model.  It has been proved that the

statistical approach is an effective way to detect the gross errors in plant data.  

Statistical methods have been widely studied.  However, most studies are based on the

assumption that measurement errors are normally distributed, and they were applied to a simple

small hypothetical process.  Only the least squares or measurement test method has been

reported to have been applied to real chemical and refinery processes.  The normal distribution
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used by this method results in biased estimation when gross errors are present.  Therefore,

developing new effective statistical methods for gross error detection is very important.  The

contaminated Gaussian distribution and robust functions have been proposed to detect the gross

errors.  The estimation from these methods are insensitive to the presence of gross errors.

Therefore, these methods result in unbiased estimation even thought gross errors are present in

measurements.

Chemical processes are complicated, and large portion of process variables are

unmeasured, only errors-in-variables models are suitable for describing the chemical processes.

Therefore, the methods for conducting gross error detection and parameter estimation, which are

applicable to on-line optimization, requires simultaneous data reconciliation.  

The least squares, likelihood function, and Bayesian methods have been proposed  for

traditional parameter estimation, and they can be modified and used for parameter estimation in

on-line optimization.  The methodology of parameter estimation for large scale on-line

optimization applications is still under developed.  It is possible to combine gross error detection

with parameter estimation if the algorithm used to reconcile process variables and estimate

parameters is not sensitive to the presence of gross errors.

The objective of economic optimization in on-line optimization is to generate a set of

optimal set points that maximize the plant profit, which can include minimizing pollutant emission

and energy consumption, and maximizing product quality.  This can be achieved by solving the

economic optimization problem which is to optimize the economic model subject to process
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model.  Depending on the need, the economic model can be very elaborate or a simple value-

added equation.

A precise plant model is necessary to simulate the process for on-line optimization.  It

serves as constraints for data validation and parameter estimation to relate individual measurement

together for error rectification and for economic optimization to determine the best operation

conditions of the plant.  Chemical processes can be simulated by an open form equation based

model or a closed form sequential modular model.  The open form model has the advantage of

computation speed and solution robustness.  The close form model can be easily developed using

flowsheeting programs.  However, solving a optimization problem with a close form model as

constraints requires iterative methods to search for optimal solution.  It is time consuming and may

be difficult to converge.  The development of simulation software will provide a convenient

graphical user interface environment similar to sequential modular simulation for developing open

form equation based models.  Open form models are required for simulating processes in on-line

optimization.  Also, to ensure the results of the research are meaningful to industrial plants, an

actual process is required rather than a mathematical simulation of a hypothetical process, e.g.

the William-Otto plant (Krishnan, 1992). 

Several optimization algorithms, such as SLP, SQP, GRG, have been developed for

solving the nonlinear optimization problems with open form models.  Each is effective for solving

certain type of problems.  The SQP and GRG algorithms have been widely used in industrial

practice and are accepted as standard algorithms for solving nonlinear optimization problems.
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To ease engineers’s effort in solving optimization problems, optimization modeling

languages, such as GAMS and AMPL, were developed to alleviate many of the difficulties

associated with the development and solution of large, complex mathematical programming

models and to allow direct formulation and solution on a computer.  They have problem

formulation in a language similar to the mathematical statement of the optimization problems.

Also, there are a number of solvers included in the languages for users to choose, and changing

the solver (optimization algorithm) will not require modifications to the program.

Based on the review above, the work will be conducted on this research project will be

described as follows.  The objective of this project is to investigate the best way to implement on-

line optimization.  This work involves the development and evaluation of process simulation model

for typical chemical plants and the investigation and evaluation of the methodology for on-line

optimization.  Also, an interactive on-line optimization program will be developed to alleviate the

effort of engineers to apply on-line optimization which is based on the results from this research

project.

Plant model: An actual plant, the sulfuric acid contact process from IMC Agrico

Chemical Company’s plant in Convent, Louisiana, is used in this on-line optimization research for

comparing the efficiency and accuracy of the algorithms and investigating the best way to

implement on-line optimization.

A open form steady state process model will be established based on the previous

research by Lowery (1966), Crowe (1971), Doering (1976), Richard (1987), and Zhang

(1993), for the sulfuric acid plant.  This process incorporates nearly all types of process units
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found in chemical plants such as packed bed catalytic chemical reactors, absorption towers and

heat exchanger networks, among other.  

Through contacts with the Agrico Chemical Company's engineers, actual plant designed

data and plant operating data were obtained on the IMC Agrico Chemical Company's Uncle

Sam E-train plant in Convent, Louisiana.  The data will be used to study the best way to conduct

on-line optimization.  This plant, designed by Enviro-Chem System Division of Monsanto, began

operation in March, 1992.  It is automated with the Bailey INFI 90 Distributed Control System

(DCS). It converts at least 99.7% raw sulfur feed into acid product and extracts the energy

produced in the exothermic reactions in an efficient manner to produce steam as a by-product.

It represents the state-of-art contact sulfuric acid technology.

The flow rate and temperature measurements play

an important role in controlling and monitoring the

process.  Also, a rigorous kinetic model is important to

describe the reaction rates and conversion of sulfur

dioxide to sulfur trioxide.  It is necessary to include

material and energy balances as well as kinetic model

of SO2 reaction in the sulfuric acid plant model.  This

results in a nonlinear steady-state plant model.

The work in plant model formulation chapter will include establishing process simulation

model for the Monsanto’s designed sulfuric acid contact process, evaluating how  precise the

process model represents the processes, examining the observability and redundancy of the plant
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model, and comparing the performance of different types of measurements and constraints on

data validation and parameter estimation.  Based on the evaluation results, the general rules to

formulate the process simulation model will be proposed for better formulating process models.

Combined Gross Error Detection and Data Reconciliation:  Based on the complex

characteristics of chemical process, i.e., the constraints are highly nonlinear and large portion of

process variables are unmeasured, only the statistical methods based on the distribution function

of measurement errors are applicable for gross error detection of on-line optimization.  These

methods include measurement test method, contaminated Gaussian distribution method, and

robust function method.  The performance of these algorithms will be evaluated theoretically

based on the influence function and relative efficiency and numerically based on gross error

detection rate, number of type I errors, and error reductions after data reconciliation.  Also, a

modified compensation strategy will be proposed to avoid the misrectification by data

reconciliation algorithms (distributions) due to the presence of larger gross errors.

As discussed previously, the data reconciliation results from the combined gross error

detection and data reconciliation and the simultaneous data reconciliation and parameter

estimation are interactive.  Data reconciliation associated with gross error detection and with

parameter estimation uses the same plant model.  Data reconciliation in gross error detection step

uses previous values of process parameters in the process model when reconciling the process

data.  This results in the reconciled data is consistent with the old (previous) values of parameters.

If the whole set of reconciled values for measured variables is used for estimating the parameters,

the parameters will have the same values as the previous and they are not able to be updated.
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Therefore, a strategy to generate a set of pre-processed data from the combined gross error

detection and data reconciliation (data validation) for the simultaneous data reconciliation and

parameter estimation will be proposed to avoid the interaction between data validation and

parameter estimation.

Simultaneous Data Reconciliation and Parameter Estimation: Normal distribution (least

squares method), contaminated Gaussian distribution and robust function can be used to conduct

combined gross error detection, data reconciliation, and parameter estimation.  Two strategies

will be used to conduct parameter estimation, and their performance will be compared.  One is

called two step estimation.  Step one is to detect and rectify gross errors in measurements using

the contaminated Gaussian distribution, and this step generates a set of pre-processed

measurements based on the proposed strategy.  Step two estimates the parameters using the least

squares method with the measurements generated from step one.  The other one is called one

step estimation that conducts gross error detection, data reconciliation, and parameter estimation

simultaneously using contaminated Gaussian distribution algorithm or robust functions.

Economic Optimization: After the algorithms for conducting gross error detection and

parameter estimation are evaluated.  The final plant economic optimization is performed subject

to the current plant model and external economic conditions.  The mathematical modeling

software, GAMS, will be used to solve the optimization problems in on-line optimization.  This

will determine the best operating conditions for the current plant operation.  

Interactive On-Line Optimization System: An interactive on-line optimization program will

be developed to alleviate engineer’s effort in applying the on-line optimization.  It will incorporate
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the best structure of on-line optimization developed in this research and provide a graphical users

interface (GUI) environment for engineer to enter the process information and to solve the on-line

optimization problems for values of the optimal set points for DCS.  The capability of this

program will be demonstrated with the sulfuric acid process from IMC Agrico Company.

In the subsequent chapters, the methodology for on-line optimization used in the research

will be discussed and a detail process model for the sulfuric acid contact plant from IMC Agrico

Company will be established and validated.  Then, this large scale process model will be used to

conduct the numerical evaluations for the proposed methodology of on-line optimization system,

and the results will be provided.
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CHAPTER III  THE METHODOLOGY OF ON-LINE OPTIMIZATION

A. Introduction

The on-line optimization for chemical processes includes three important steps: combined

gross error detection and data reconciliation, simultaneous data reconciliation and parameter

estimation, and plant economic optimization.  In combined gross error detection and data

reconciliation,  a set of accurate plant measurements are generated from plant’s distributed

control system (DCS).  This set of data is used for estimating the parameters in plant models; and

parameter estimation is necessary to have the plant model match the current performance of the

plant.  Then, the plant economic optimization is conducted to optimize the economic model using

this current plant model as constraints.

Each optimization problem in on-line optimization has a similar mathematical statement

as following:

Optimize: Objective function
Subject to: Constraints from plant model

where the objective function is an joint distribution function for data validation or parameter

estimation and a profit function (economic model) for plant economic optimization.  The constraint

equations describe the relationship among variables and parameters in the process, and they are

material and energy balances, chemical reaction rates, thermodynamic equilibrium relations, and

others.

Chemical plants operate at steady state with a relatively short transient periods and steady

state plant models can be used to describe the relationship among process variables and
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Figure 3.1 The Procedure of On-Line Optimization Implementation

parameters of the plants.  These plant models are complicated and highly nonlinear, and all

measurements are subject to either random or gross errors.  Therefore, the error-in-variables

formulation is required for the plant model of on-line optimization.

B. The Implementation Procedures for On-Line Optimization

As discussed in previous chapter, gross error detection and parameter estimation are

coupled with data reconciliation for complicated and highly nonlinear processes.  Therefore, there

are two ways to conduct on-line optimization as shown in Figure 3.1.  In one procedure, three

nonlinear optimization problems are solved sequentially as shown in Figure 3.1.a.  These three

optimization problems are combined gross error detection and data reconciliation, simultaneous

data reconciliation and parameter estimation, and plant economic optimization represented by

three boxes.  In combined gross error detection and data reconciliation, gross errors in the plant
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data are eliminated or rectified, and a set of reconstructed measurements is generated based on

the result of data reconciliation and gross error detection.  In simultaneous data reconciliation and

parameter estimation, parameters in a plant model are estimated using the reconstructed

measurements from combined gross error and data reconciliation.  These updated values of

parameters are used in the plant model for economic optimization.  Plant economic optimization

generates a set of optimal set points for plant DCS based on the updated  plant model and

economic conditions.

As mentioned previously, there are an interaction between data reconciliation associated

with gross error detection and with parameter estimation.  Data reconciliation associated with

gross error detection requires updated parameters in the plant model.  However, before the gross

errors detection, only the parameter values from the previous optimization cycle are available.

Consequentially, the previous parameters in last cycle of on-line optimization are used in the plant

model for conducting gross error detection and data reconciliation.  Data reconciliation in this step

will force the all reconciled process variables to satisfy the plant model with old plant parameter

data.  If reconciled data for all measurements is used in simultaneous data reconciliation and

parameter estimation, then the parameters will not be updated because the reconciled data was

obtained using the old plant parameters.  Therefore, using all of the reconciled measurements from

gross error detection and data reconciliation in parameter estimation step will give the same

estimation as  the old values for parameters.  

Therefore, a strategy is proposed to avoid this dilemma.  It is to detect and rectify the

measurements containing gross errors using the plant model with the parameter values from
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previous on-line optimization cycle in gross error detection and data reconciliation.  Then a new

set of measurements is constructed using the reconciled data to replace the measurements

containing gross errors along with the original measurements that contain only random errors.

This new set of measurements is supposed only containing random errors, and it can be used to

conduct simultaneous data reconciliation and parameter estimation using least squares method

with error-in-variables formulation.

The other procedure is that on-line optimization involves solving two nonlinear

optimization problems as shown in Figure 3.1.b.  In this procedure, gross error detection, data

reconciliation, and parameter estimation are conducted simultaneously to rectify gross errors,

reconcile process variables, and estimate plant parameters using one algorithm.  Then, economic

optimization is conducted using the updated plant and economic models.

Simultaneous gross error detection, data reconciliation, and parameter estimation

procedure may be a better way to conduct on-line optimization, if the algorithm is not sensitive

to the presence of gross errors, and if that both parameters and measurements with gross errors

are converted to unmeasured variables in the one data reconciliation optimization problem does

not affect the observability and redundancy of the plant model.  This procedure eliminates the

interaction of data reconciliation associated with gross error detection and with parameter

estimation.  No one has reported an application using this simultaneous procedure yet.  As

discussed in literature review, least squares method is not able to accurately reconcile process

data that contains gross errors, and it can not be used for this simultaneous procedure.  The

contaminated Gaussian distribution and robust functions are insensitive to the presence of gross
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errors when reconciling  process data.  The methods based on these distribution functions can

be used to conduct the simultaneous gross error detection, data reconciliation, and parameter

estimation, and this will be investigated and evaluated as part of this research work.

In summary, two possible procedures for on-line optimization have been proposed, and

they will be investigated using a large scale real chemical plants.  One procedure uses combined

gross error detection and data reconciliation algorithms to pre-process the plant data, i.e., identify

measurements with gross errors and replace them with reconciled data for these measurements.

Then this set of pre-processed plant data with only random errors is used to conduct

simultaneous data reconciliation and parameter estimation.  This strategy will avoid the effect of

using old plant parameters in the plant model for combined gross error detection and data

reconciliation on updating parameters in simultaneous data reconciliation and parameter

estimation.  The other is a simultaneous gross error detection, data reconciliation, and parameter

estimation procedure using the algorithms that have an ability to rectify data containing both

random and gross errors. 

The following section will discuss and evaluate the methodology for gross error detection,

data reconciliation, parameter estimation, and plant economic optimization.  Also, the statistical

background information which is cited in main text is given in Appendix B.

C. Methodology of On-Line Optimization

In general, an optimization problem is to optimize an objective function subject to a set

of linear/nonlinear constraints.  In on-line optimization applications, the objective function is an

joint probability function for data reconciliation and parameter estimation or a profit function
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(economic model) for plant economic optimization.  The constraints are a set of linear and

nonlinear equations that describe the relationship among the process variables and parameters,

which is called process model or simulation.  The general mathematical statement for the

optimization problems of on-line optimization is:

Optimize: P(y, x) (3-1)
Subject to: f(x, z, 22) = 0

g(x, z, 22) # 0
xL # x # xU, zL # z # zU

Eq. 3-1 is to optimize the objective function P subject to a process model that includes

the equality constraints f, inequality constraints g, and bounds on the variables.  In Eq. 3-1, the

vector y represents a set of measurements sampled from distributed control system for measured

variables and vector x denotes the true values of the same measured variables as y.  The vector

z represents a set of unmeasured process variables that include all process variables except the

measured ones in plant model, and 22 is the vector of  process parameters.  The equality

constraints f describe the relationship among the process variables and parameters, such as mass

and energy balances, chemical reaction rate equations, heat transfer equation, and others.  The

inequality constraints g represents the demand of products, the availability of raw materials, the

limitation on the capacity of equipment, the allowable operating conditions, and the restrictions

on waste and pollutant emission.  In addition, xL# x # xU and zL # z # zU give upper and lower

bounds on process variables.  

The relation between measurements y and the true data x for measured variables is

defined by a measurement model given in Eq. 2-1, i.e.,
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(3-2)

y = x + e (2-1)

where the vectors e represents the measurement errors that could be random or gross errors.

The following will discuss and theoretically evaluate the applicable algorithms for

combined gross error detection and data reconciliation, simultaneous data reconciliation and

parameter estimation , and plant economic optimization.

C-1. Algorithms for Combined Gross Error Detection and Data Reconciliation

The process data from distributed control system is subject to two types of errors,

random error and gross error, and the gross error must be detected and rectified before the data

is used to estimate plant parameters.  As discussed in Chapter II, only combined gross error

detection and data reconciliation algorithms can be used to detect and rectify the gross errors in

measurements for on-line optimization.  These algorithms are measurement test method using a

normal distribution, Tjoa-Biegler’s method using a contaminated Gaussian distribution, and robust

statistical method using robust functions.  The methodology of these algorithms will be given, and

their theoretical performance will be evaluated in the following section.     

Measurement Test Method: This method assumes all measurements are subject to only

random errors with known normal distributions under null hypothesis and the measurement errors

are independent of each other.  Then the distribution function for measurement error i under null

hypothesis is:
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(3-3)

where ei is the measurement error as described in Eq. 2-1 and Fi is the standard deviation of the

measurement error.  The joint distribution for all measurement errors is the product of the

distributions for individual measurement error given in Eq. 3-2, i.e.,

where EE is the diagonal matrix of the known variances Fi
2 of measurement errors e.  

The measurement errors are estimated by maximizing the joint probability density function

P or minimizing the sum squares of standardized measurement errors, eTEE-1e, subject to a set of

constraints which represent the relationship among the variables.  This is the well known least

squares method and it is expressed as:

Minimize: eTEE-1e = (y - x)TE-1(y - x) (3-4)
     x, z

 Subject to: f(x, z, 22) = 0
xL # x # xU, zL # z # zU.

where x, y, z, and 22 have the same meaning as described in Eq. 3-1 previously.  In Eq. 3-4, x

and z are variables to be determined by the optimization.  22 is a constant vector of parameters

ans y is a constant vector of measurements.  Solving Eq. 3-4 will estimate the values for the

measured variables x and unmeasured variables z.  Then, the measurement errors can be

determined by e = y - x.  

After data reconciliation, each measurement error is examined to see if it contains a gross

error by a test statistic.  The test statistic of measurement test method is:
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*,i * = *ei*/Fi ~ N(0, 1) (3-5)

Eq. 3-5 means that the standardized measurement error, ,i  = e i /F i, follows a standard normal

distribution N(0, 1) if the measurement does not contain gross error.

If the value of test statistic, *ei*/Fi , exceeds the critical value C, then this measurement

contains a gross error.  Otherwise, there is no gross error in this measurement.   The critical value

C is selected from the table of standard normal distribution function at the significant level $ for

individual measurement.  If the overall significant level is specified as 0.05 (e.g., 95% confidential

interval), " = 0.05, and 43 measurements are used, then the significant level for individual

measurement is:

$ = 1 -  (1-")1/m = 1-(1-0.05)1/43 = 0.0012.

At the $/2=0.006 point, the critical value C is determined from the standard normal distribution

with accumulated probability at 0.994, and the value is 3.2, i.e., C = 3.2. 

The optimization problem of measurement test method in Eq. 3-4 is programmed in

GAMS language, and the program is given in Table F-13 of Appendix F and in GAMS source

code disk with file name as: meastest.gms..

The Contaminated Gaussian Distribution: Biegler, et al., (Tjoa and Biegler, 1991;

Albuquerque and Biegler, 1995) proposed a contaminated Gaussian distribution function to

describe the measurement errors.  A measurement is subject to either random or gross error.

The two possible outcomes are: G = {Gross error occurred} with prior probability 0 and R =

{Random error occurred} with prior probability 1-0.  Therefore, the distribution of a

measurement error is:
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(3-7)

(3-8)

(3-9)

(3-10)

P(yi * xi) = (1-0)P(yi * xi, R) + 0 P(yi * xi, G) (3-6)

where  P(yi * xi, R) is the probability distribution of a random error and P(yi * xi, G) is the

probability distribution of a gross error.

It is assumed that the random errors are normally distributed with a zero mean and a

known variance Fi
2.  The distribution function for a random error is:

Also, it is assumed that the gross errors are subject to a contaminated normal distribution which

has a zero mean and larger variance (bF)2, (b >> 1).  Therefore, the distribution function for a

gross error is:

If the measurement errors are independent of each other, then the likelihood function for

all measurements is the product of the distributions for individual measurement, i.e.,

The measurement errors are estimated by maximizing the joint probability density function

(likelihood function) in Eq. 3-9 or minimizing the negative logarithm of Eq. 3-9.  The optimization
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(3-11)

problem for combined gross error detection and data reconciliation using the contaminated

Gaussian distribution can be stated as:

Minimize:
    x, z

Subject to: f(x, z, 22) = 0
xL # x # xU, zL # z # zU

 
This optimization problem is comparable to Eq. 3-4 for the least squares (measurement test)

method.  Solving Eq. 3-10 determines the values of measured and unmeasured variables (x and

z).  These values maximize the joint likelihood function P(y * x) (or minimize the negative

logarithm of the joint likelihood function) and satisfy the process constraints.  Then, the

measurement errors are determined by e = y - x.

After data reconciliation, each measurement is examined with a test statistic to see if it

contains a gross error.  The test statistic for gross error detection is:

If 

then measurement i contains gross error.  Otherwise, no gross error is present in this

measurement.  In the GAMS program, DataVali.gms, two parameters in Eq. 3-11 are specified

as: 0 =0.5 and b = 10.  Therefore, the test statistic for contaminated Gaussian distribution of

Tjoa-Biegler’s method is: if *,i* > 2.157, then measurement i contains a gross error.

As discussed in the review of contaminated Gaussian distribution method of Chapter II,

contaminated Gaussian distribution method is composed of the distribution functions for random
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(2-52)

and gross errors.  The reconciled data from contaminated Gaussian distribution method is not

sensitive to the presence of gross errors, and this method gives an unbiased estimation for the

reconciled data.  This can be seen by weight coefficients of measurements in the linearized joint

distribution as discussed in contaminated Gaussian distribution method of Chapter II.

The objective function in Eq. 3-10 (or Eq. 2-49) can be approximated as a linear function

using a first order Taylor expansion, i.e., D = 3wi [(yi - xi)-(yi - xi)0] = 3wi (,i - ,i
0), where wi

is the weight coefficient of measurement yi on the joint distribution function (objective function in

Eq. 3-10) evaluated at the last feasible point xi
0 or ,i

0, and it is the partial derivatives of the joint

contaminated Gaussian distribution function with respect to the variable xi as given in Eq. 2-52,

i.e., 

For smaller error, e.g., ,i < 2, the exponential term in the Eq. 2-52 is much larger than the second

term 0/b3 (or 0/b),  The weight function can be simplified as wi % (yi-xi)/Fi
2 = ,i /Fi.  For larger

error, e.g., ,i > 4, the exponential term in the equation is much smaller than the second term 0/b3
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(2-54)

(or 0/b).  The weight function can be simplified as wi % (yi-xi)/(bFi)2 = ,i/(Fi b2).  Therefore, Eq.

2-52 can be approximated as given in Eq. 2-54:

From the weight coefficient function in Eq. 2-54 and the linearized objective function, it

is seen that the measurement with a smaller error has a large weight coefficient (i.e., wi = ,i/Fi )

in the linearized objective function than the measurement with a larger error (i.e., wi = ,i/(Fi b2),

where b>>1).  This means the measurement with a larger error has a less effect on the

minimization, and the objective function value is determined mainly by the measurements with

small errors. 

The procedure to conduct contaminated Gaussian distribution method is:

1. Solve Eq. 3-10 to determined the reconciled values for measured variables and

unmeasured variables, and then the measurement adjustments, a = ~x - y, are determined

by the measurements y and reconciled data ~x.

2. Examine the standardized measurement adjustment ,i, ,i  = ai / Fi, using the criterion

given Eq. 3-11 to determine if a measurement contains a gross error.  If a measurement

contains a gross error, then its value is replaced with the reconciled data.  A new set of

measurements is constructed using the reconciled data to replace the measurements

containing gross errors along with the original measurements that contain only random

errors.  This new set of measurements contains only random errors, and it is used in
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(3-12)

simultaneous data reconciliation and parameter estimation  to update plant parameters

for on-line optimization.

The optimization problem of contaminated Gaussian distribution method in Eq. 3-10 is

programmed in GAMS language, and the program is given in Table F-1 of Appendix F and in

GAMS source code disk with file name as: datavali.gms.

Robust Statistical Methods: The basic idea of robust estimation is to build a robust

distribution function D which is asymptotic to the normal distribution or any pre-assumed rigorous

distribution function that describes the distribution pattern of measurement errors under some

ideal assumptions.  The estimator (mean or variance) determined by the robust distribution is

insensitive to extreme observations and yet maintains a high efficiency (lower dispersion).

Two robust functions have been proposed in literature for mean estimation, and they are

applicable for data reconciliation and gross error detection of on-line optimization.  These robust

functions are Lorentzian distribution proposed by Johnston and Kramer (1995), which was

originally presented by Huber (1981), and Fair function proposed by Albuquerque and Biegler

(1995). 

Lorentzian distribution function of a measurement error is given as:

where ,i   is the standardized measurement error, i.e., ,i  = ei   /Fi = (yi - xi )/Fi.  The robust

function of  measurement errors using Lorentzian distribution is the sum of the individual

distribution, i.e, 
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(3-13)

(3-14)

(3-15)

(3-16)

(3-17)

The optimization problem for the combined gross error detection and data reconciliation

using the Lorentzian distribution function is expressed as:

Maximize:
    x, z

Subject to: f(x, z, 22) = 0
xL # x # xU, zL # z # zU

Fair function for a measurement error is given as:

where ,i   is the standardized measurement error, i.e., ,i  = ei   /Fi = (yi - xi )/Fi.  The robust

function of measurement errors using Fair function for individual measurement error is the sum of

the individual distribution functions, i.e., 

The optimization problem for the combined gross error detection and data reconciliation

using Fair function is expressed as (Albuquerque and Biegler, 1995): 

Minimize
    x, z
Subject to: f(x, z, 22) = 0
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xL # x # xU, zL # z # zU

where c is a tuning parameter.  This parameter reflects the relative efficiency of the estimator at

this distribution.  It was pointed out that Fair function is convex and has continuous first and

second derivatives (Albuquerque and Biegler, 1995).

After solving the optimization problem in Eq. 3-14 or Eq. 3-17, the reconciled data for

measured variables is determined, and the measurement adjustments can be determined by a =

y - ~x.  Then , each measurement adjustment is examined to see if it contains a gross error by the

test statistic.

The test statistic for robust method is established using a statistical hypothesis test

procedure as measurement test method.  If the standardized measurement adjustment,

*,i*=*ai*/Fi, does not exceed the critical value C, then measurement i does not contain a gross

error.  Otherwise, the measurement contains a gross error. The critical value C is determined by

the robust function at the specified confidential interval or significant level $.  For example, if 95%

of confidential level is used, then the overall significant level " is 0.05 and the significant level for

individual measurements $ is calculated by Eq. 2-23 from the given overall significant level " and

the number of measurements m.  Then, the critical value C is the error size that has an

accumulated probability value as (1-$/2).

The procedure to conduct gross error detection and data reconciliation with robust

method is the same as one for contaminated Gaussian distribution method, and it is:  
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1. Solve Eq. 3-14 or Eq. 3-17 to determined the reconciled values for measured variables

and unmeasured variables, and then the measurement adjustments are determined by the

measurements y and reconciled data ~x.

2. Examine the standardized measurement adjustment ,i, ,i = ai / Fi, to determine if a

measurement contains a gross error.  If the standardized measurement adjustment ,i is

larger than the critical value C, i.e., *, i* > C, then measurement i contains a gross error.

Otherwise, there is no gross error in measurement i.  If a measurement contains a gross

error, then its value is replaced with the reconciled data.  A new set of measurements is

constructed using the reconciled data to replace the measurements containing gross

errors along with the original measurements that contain only random errors.  This new

set of measurements contains only random errors, and it is used in simultaneous data

reconciliation and parameter estimation  to update plant parameters for on-line

optimization.

The optimization problem of robust method using Lorentzian distribution in Eq. 3-14 is

programmed in GAMS language, and the program is given in Table F-14 of Appendix F and in

GAMS source code disk with file name as: robust.gms.

In the following section, the theoretical performance of four distribution functions: normal

distribution of measurement test method, contaminated Gaussian distribution of Tjoa-Biegler’s

method, Lorentzian distribution and Fair function of robust method, are evaluated  based on the

influence function and relative efficiency of the distributions.  Then, the distributions that have
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better theoretical performance will be tested with the sulfuric acid plant to numerically evaluate

their performance. 

Evaluation of  Distribution Functions for Data Reconciliation and Gross Error Detection:

Three important concepts in the theoretical evaluation of the robustness and precision of an

estimator from a distribution function are the break-down point, relative efficiency, and influence

function (Seber, 1984).  In statistical estimation, estimator T is the mean or variance of the sample

data, and T is estimated with samples of data.  In data reconciliation of on-line optimization, T

is the estimated values of reconciled variables from data reconciliation evaluated with plant data

sampled from the distributed control system.  Robustness of an estimator is unbiasedness

(insensitivity) to the presence of gross errors in measurements.  How sensitive an estimator to the

presence of gross errors can be measured by the influence function of the distribution function that

is used to verify the samples of data.  Also, the precision (accuracy) of an estimator from a

distribution is measured by the relative efficiency of the distribution.  It is said that the estimator

is precise if the variation (dispersion) of its distribution function is small (Larsen and Marx, 1986).

The break-down point can be thought of as giving the limiting fraction of gross errors that

can be in a sample of data and a valid estimation of the estimator is still obtained using this data

(Huber, 1981).  For repeated samples, the break-down point is the fraction of gross errors in the

data that can be tolerated and the estimator gives a meaningful value.  It is the maximum allowable

number of extreme observation for a given sample size n, and it represents the global reliability.

For constrained estimation using single set of process data in data reconciliation of on-line

optimization, a validated estimation for the reconciled data also depends on the degree of
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redundancy in the measurements.  Exceeding either the degree of redundancy or the break-down

point will cause the estimator to give an incorrect value.  The degree of redundancy is the

excessive number of measurements in addition to those that are required to determine the status

of a process.

The relative efficiency of estimator T1 with respect to estimator T2 is defined as the ratio

of the variances of distribution function P1 for estimator T1 and distribution P 2 for estimator T2.

Also, estimator T1 is more efficient than T2 if the variance of distribution P1 for estimator T1 is less

than the variance of distribution P 2 for estimator T  2 (Larsen and Marx, 1986).  This is intuitively

viewed by the shape of the distribution functions.  A distribution that is wider in shape will has a

larger variance or standard deviation than one that is narrower in shape.  This means that the

former has a lower efficiency than the latter.

For the two distribution functions shown in Figure 3.2, the : represents the true value of

a variable.  T1 is the estimator of the variable from distribution P1, and T2 is the estimator of the
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Figure 3.2 Comparison of Two Distributions with Different Dispersions
     after Larsen and Marx, 1986 

variable from distribution P2.  For a given distribution function, the estimator can have a value in

the range from the true value minus two times standard deviation of the distribution function to the

true value plus two times the standard deviation with a 95% confidential interval.  If distribution

function P1 is used to describe the samples of data, the possible estimated range of the estimator

is from : - 2F1 to : + 2F1 as shown in Figure 3.2.a.  If distribution function P2 is used to describe

the samples of data, the possible estimated range of the estimator is from : - 2F2  to : + 2F2 as

shown in Figure 3.2.b.  From the comparison of Figure 3.2.a for distribution P1 and Figure 3.2.b

for distribution P2, it is seen that the distribution function P1 has a smaller standard deviation than

the one for P2.  Therefore, the estimated value from distribution function P1 is closer to the true

than one from distribution function P2.  It is concluded that the estimated accuracy of the

reconciled data is determined by the relative efficiency of the distribution function that is used by

the algorithm to describe the samples of data.  A distribution having a smaller variation has higher
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(3-18)

(3-19)

relative efficiency than one having a larger variation, and therefore, the corresponding estimator

has a higher estimation accuracy.

The influence function quantifies the influence of a measurement on the estimated value

from data reconciliation.  The influence function (IF) of estimator T at F is given by (Hampel, et.

al., 1986):

where T is an estimator that is evaluated with sampled data y.  In statistical estimation, T is the

mean or variance of the sample data, and T is estimated with samples of data.  In data

reconciliation of on-line optimization, T is the estimated values of reconciled variables from data

reconciliation evaluated with data sampled from the distributed control system.  F is the

distribution function for the majority of measurement data and G represents the distribution

function of an arbitrary observation y, which can be a normal or an extreme measurement.  In Eq.

3-18, )t is the portion of data having the character of distribution G counted in all observations.

  

Based on the definition of IF given in Eq. 3-18, the influence function for the mean

estimator with n repeated observations is derived as following.  For the estimation of mean x using

repeated n observations yi (i = 1, 2, .. , n), the estimated mean using a normal distribution (least

squares method) is equal to the sample mean, i.e.,
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(3-20)

(3-21)

where xn represents the sample mean x that is estimated by n observations.  If one additional

observation (observation n+1) is included, then the mean estimated by n+1 observations, xn+1 is:

Substituting Eq. 3-19 and 3-20 into Eq. 3-18, with T[(1-)t)F + )tG] = xn+1 and T[F] = xn, and

)t = 1, gives the influence function of the mean estimator as:

which represents the contribution from a good measurement or the bias effect from a bad

observation on the estimation.  The influence function is proportional to the difference between

the observation yn+1 and the mean estimated by n observations, x n, which is the measurement

error.

Above is a simple example to show how to determine the influence function of an

estimator from the definition of influence function.  The influence function in Eq. 3-18 represents

the effect of an arbitrary observation on the estimator T.  For M-estimate, the influence function

is defined as a function that is proportional to the derivative of a distribution function with respect

to the measured variable, (MD/Mx) (Huber, 1981 and Hampel, et al., 1986), i.e., 

IF % MD/Mx  (3-22)

The measurement test method uses a normal distribution for measurement error as given

in Eq. 3-2.  Taking a logarithm of the normal distribution gives:
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(3-23)

(3-24)

Therefore, the influence function of the normal distribution (measurement test method) for

measurement i is proportional to MDi/Mxi, i.e.,

where yi   denotes an arbitrary observation (measurement) and x  i is the true value of the

measurement.  

IFMT in Eq. 3-24 is similar to one of sample mean estimation in Eq. 3-21.  As shown in

Eq. 3-24, the influence function of measurement test method for measurement i is proportional

to the measurement error and is not bounded when the measurement error goes to infinity.  This

means that measurement test method is unable to bound the effect of gross errors on estimators.

The presence of gross errors will result in biased estimation of reconciled variables from

measurement test method, and the degree of bias is proportional to the magnitude of the gross

error.

  The contaminated Gaussian distribution is a superposition of a  normal distribution with

a variance (F2) representing a random error and a normal distribution with a larger variance

(bF)2, (b >>1) representing a gross error.  This is given by the following equation:
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(3-25)

P
(e

)

error, e

Figure 3.3 The Comparison of Contaminated Gaussian
                 Distribution and Normal Distribution

(3-26)

where b is the ratio of standard deviation of gross errors to one of random errors.  0 is the prior

probability of a gross error and 1-0 is the prior probability of a random error.  Eq. 3-25 is

illustrated in Figure 3.3.  From Figure 3.3, it can been seen that the shape of contaminated

Gaussian distribution is close to standard normal distribution N(0,1) in the middle and has longer

and flatter tail than the standard normal distribution N(0, 1) at the two sides.  Intuitively, this

distribution should be more

robust than a single normal

distribution in bounding the

effect of gross errors on

the estimator.  This

distribution function is able

to reduce the degree of

bias caused by large gross

errors on the estimation of

reconciled variables, which will be seen from its influence function.

Taking a logarithm of the contaminated Gaussian distribution in Eq. 3-25 gives:
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(3-27)

(3-25)

(3-28)

The influence function of the contaminated Gaussian distribution for measurement i is proportional

to the derivative of Di with respect to xi, i.e.,

Eq. 3-27 shows the influence function of the contaminated Gaussian distribution is a function of

the standardized measurement error, ,i  = (yi  -  xi)/Fi.  For smaller error e.g., ,i < 2, the

exponential term in the Eq. 3-27 is much larger than the second term 0/b3 (or 0/b) for 0 = 0.5

and b = 10.  In this case, the influence function can be simplified to the one for normal distribution

in Eq 3-25:

The influence function of the contaminated Gaussian distribution for small errors (,i < 2)

is the same as one of the normal distribution for measurement test method.  This contaminated

distribution acts like a normal distribution for small measurement errors, i.e., the probability

function of the random error dominates the contaminated Gaussian distribution.  For a larger

error, e.g., ,i > 4, the exponential term in the equation is much smaller than the second term 0/b3

(or 0/b) for 0 = 0.5 and b = 10.  The influence function can be simplified as:    
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(3-29)

For a larger measurement error, the distribution function of the gross error dominates the

contaminated Gaussian distribution.  As shown in Eq. 3-28, the influence function of the

contaminated distribution function is similar to one of the normal distribution with reduced

magnitude of influence function value.  The magnitude of influence function is reduced b2 times

compared with the influence function of the normal distribution for measurement test method in

Eq. 3-24 when a measurement contains a gross error.  For example, if a measurement has a

gross error size at 10F, the normal distribution function of measurement test method has an

influence function value as 10; and the contaminated Gaussian distribution function has an

influence function value as 0.025 for b=20.  

The influence function of contaminated Gaussian distribution can be simplified as:

Eq. 3-29 shows that the influence function of the contaminated Gaussian distribution is still

proportional to the error magnitude, although it has a much smaller value for a measurement with

a larger (gross) error than a measurement with a smaller (random) error.  Therefore, the

contaminated Gaussian distribution function can not bound the effect of very large gross errors

(e.g., a gross error larger than 50F).

In contaminated Gaussian distribution, b is a tuning parameter to shape the distribution.

Increasing b will reduce the effect of a gross error on the estimation and increase the robustness

of this approach.  However, it will decrease the relative efficiency to the normal distribution.  In
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(3-30)

the practical applications, b is usually chosen as 10-20; and therefore the effect of a gross error

on the estimation reduces 100-400 times compared with measurement test method.  Also, gross

errors will rarely go to infinity but most are of moderate magnitude.  For a moderate magnitude

gross error (about 5F to 20F), the effect of the gross error is negligible using the contaminated

Gaussian distribution.  Therefore, it is concluded that the contaminated Gaussian distribution is

robust for the estimation with the moderate magnitude of gross errors.    

The Lorentzian distribution function is given in Eq. 3-11 previously, and the influence

function is:

As shown in Eq. 3-30, the influence function of Lorentzian distribution for measurement

i is a function of the measurement error.  The influence function increases with the increase of a

error for small (normal) errors; and then it decreases and eventually approach zero with the

increase of a error for large (gross) errors.  As defined earlier, the value of the influence function

represents the contribution of a measurement to the estimator.  Lorentzian distribution has the

advantage that it has a large value of influence function for measurements with small (random)

errors and has a small or zero value of influence function for measurements with large (gross)

errors.  This means that Lorentzian distribution can ignore the contribution of the measurements

with gross error even though these measurements are included in the data for data reconciliation.

The Fair function is given in Eq. 3-15 previously, and the influence function of the Fair

function for measurement i is:
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(3-31)

As shown in Eq. 3-31, the influence function is a function of the measurement error, i.e., with the

increase of error, the influence function increases and finally approaches to a constant c.  For the

error smaller than c, the influence function has a similar dependency on error as one for normal

distribution.  For the error larger than c, the influence function increases slowly and approaches

constant c when the error larger than 10 times of c.  The effect of the gross error on the

estimation is bounded on a value c when the error goes to infinite.  The parameter c in Fair

function determines the robustness and efficiency of the estimation.  Smaller c value will be more

robust but less efficiency.  Fair function is able to bound the effect of very large gross errors. 

The reconciled data (estimator) from a good distribution function is both robust (or

insensitive) to the presence of gross error and has a high relative efficiency.  The robustness of

an estimator to larger (gross) errors is compared in Figure 3.4 by giving the influence function for

normal distribution, contaminated Gaussian distribution, Lorentzian distribution, and Fair function

as a function of error ,.  This figure shows that the influence functions for four distributions have

similar shapes for error less than 1F-2F.  They increase with the increase of error size for

measurements with small (random) errors. However, the shapes of the influence functions for

these four distributions are different for large errors.
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Figure 3.4 The Influent Functions of  Distributions

As discussed in

contaminated Gaussian

distribution method, the joint

distribution function (the

objective function ) of  the

data reconciliation algorithm

can be approximated as a

linear function of measurement errors by the first order Taylor expansion, i.e., P = 3wi (ei -ei
0).

The weight coefficient wi in the joint distribution function is the partial derivative of joint

distribution function with respect to measurement error ei evaluated at the last feasible point ei
0,

and it is the same as the influence function.  Therefore, a joint distribution function (objective

function of data reconciliation algorithm) can be rewritten as a linear function approximately, i.e.,

P =  3 wi ei = 3 IFi ei (3-32)

As shown in Eq. 3-32, the objective function is equal to the sum of products of influence

function and error of measurements.  The influence function of a measurement in the joint

distribution function is a weight of a measurement in the optimization objective (minimization), and

it represents the contribution (or effect) of a measurement on the estimator.  Therefore, it is

optimal that a distribution function has a larger influence function value for measurements with

small (random) errors and has a smaller (or zero) influence value for measurements with large

(gross) errors.  This means that measurements with small (random) errors contribute more on the

estimation of reconciled data than those with large (gross) errors, and the estimation from this



157

type of distribution function is less sensitive to the presence of gross errors when measurements

with both random and gross errors are used to reconcile process data.

The influence function for the normal distribution linearly increases with increasing error.

This indicates that a measurement with a large error has a large contribution on the estimators

based on the definition of influence function.  This is inappropriate, and it gives biased estimation

if measurements with gross errors are used in the data for data reconciliation.  The shape of the

influence function for Fair function is similar to the normal distribution, except that the increase of

its influence function slows and finally stops with the increase of error size for larger (gross)

errors.  Compared with the normal distribution, it is less sensitive to the presence of larger gross

errors and is able to bound the effect of extremely large gross errors.  However, the shape of its

influence function, i.e., a larger error has a larger value of influence function, indicates that a

measurement with a large error contributes more on the estimation of reconciled variables

(estimators) than one with a small error.  This is not appropriate, and it gives biased estimation

when measurements with gross errors are included in the data for data reconciliation.  

For errors size from 2F to 4F, value of influence function for contaminated Gaussian

distribution reduces with the increase of errors and reaches a lowest value at around 4F.  For

error size larger than 4F, its influence function increases linearly with the increase of an error with

a much lower increase rate.  As shown in Figure 3.4, the influence function of the contaminated

Gaussian distribution has a much smaller value for measurements with gross errors (, > 4) than

measurements with random errors (, < 2).  The influence function for contaminated Gaussian

distribution has a better pattern than the normal distribution and Fair function.  However, for
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Figure 3.5 The Distributions of Measurement Error

extremely large gross errors, such as error larger than 50F, the influence function for contaminated

Gaussian distribution still demonstrates the unbounded nature as the normal distribution.  The

influence function of Lorentzian distribution function has the best pattern.  It has a larger value for

measurements with random (small) errors and it decreases with the increase of error size for

errors larger than random errors and eventually goes to zero. 

The relative efficiencies of four distributions (normal, contaminated Gaussian distribution,

Fair function, and Lorentzian distribution) are compared in Figure 3.5.  As shown in Figure 3.5,

the normal distribution

function has the smallest

variation (variance) in all

distributions.  The normal

distribution is a ideal

distribution, and it usually

is used to compare the

efficiency of other

distributions.  Figure 3.5

shows that the variation (or variance) of the contaminated Gaussian distribution is the smallest in

three distribution (contaminated Gaussian distribution, Lorentzian distribution, and Fair function).

The contaminated Gaussian distribution has the highest relative efficiency to the normal distribution

in three distributions based on the definition of relative efficiency.  Therefore, it has higher

accuracy of the estimation when measurement error is normal.  The Fair function has the largest
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variation (variance), hence it  has the lowest efficiency compared with Lorentzian and

contaminated Gaussian distributions.  The relative efficiency for four distributions reduces in order:

normal distribution,  contaminated Gaussian distribution, Lorentzian distribution, and Fair function.

In summary, the evaluation of influence functions of distributions shows that normal

distribution causes significant biased estimation if measurements with gross errors are used to

reconcile data and the degree of bias increases unboundedly with the increase of errors.

Therefore,  a iterative elimination strategy is required to avoid the bias whenever a gross error is

detected.  Both contaminated Gaussian distribution and Lorentzian distribution have higher

relative efficiency to the normality than Fair function and have a better influence function pattern

than normal distribution and Fair function.  The comparisons of influence function and relative

efficiency concluded that both contaminated Gaussian and Lorentzian distributions have a better

combination of influence function (gross error sensitivity) and relative efficiency (estimation

accuracy), and therefore, they will have a better performance when reconciling data with both

random and gross errors.  The contaminated Gaussian distribution will have the best performance

for measurements with moderate size of gross errors among four distribution; and Lorentzian will

be more effective for extremely large gross errors or infinity gross errors.

The discussion above is based on the assumption that the measurement errors in plant

data follow an approximate normal distribution with a few of extreme observations (i.e.,

containing gross errors).  This assumption is close to the actual situation in chemical plants.

However, if this is not the case, the distribution function of the measurement error must be

redeveloped based on the true structure of the errors.  In general, the performance of a
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distribution for estimator strongly relies on the knowledge of the real error structure.  With this

knowledge, the distribution function of measurement errors can describe their behavior patterns,

and the robustness and efficiency of the distribution for the estimator can be evaluated.

Modified Compensation Strategy: The theoretical evaluation above and numerical results

in Chapter V showed that measurement test method results in seriously biased estimation when

some of measurements contain gross errors.  This has been reported in literature (Mah, 1990;

and Crowe, 1994).   Therefore, a strategy to eliminate the biased estimation from the

presence of gross errors is necessary for measurement test.  However, the strategies proposed

in literature require the significant modification of the plant model, which is inefficient and difficult

to implement.  Also, the nodal aggregation to eliminate the measurements with gross errors in the

iterative elimination strategies may not applicable for complex constraints.

From the numerical study of combined gross error detection and data reconciliation

algorithms which is discussed in Chapter V, it was found that a larger gross error tends to cause

the reconciliation algorithms to distribute the error to its neighboring measurements, and it is

particularly serious for measurement test method that uses the normal distribution function.  The

presence of larger gross errors causes significant misrectification, and it can be observed by the

increase number of type I errors.  Therefore, a modified compensation strategy is proposed to

avoid this misrectification based on the factors observed in the computations for the sulfuric acid

plant: 

1. After data reconciliation, a measurement containing a gross error is more likely to have

larger rectification (measurement adjustment), which is the difference between the
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measurement and the reconciled value, ai   = ~xI   - yi, than measurements with random

errors.  

2. After data reconciliation, the error remaining in a variable is small and is in the range of

random errors.

3. A measurement with a gross error only causes misrectification in its neighboring

measurements (measurements in the same unit as this measurements and in the two

adjacent units at its up and down streams); and two measurements with gross errors that

are not located in the same unit or in two adjacent units in a process will not interact with

each other.

The above three factors were found from the numerical study for combined gross error

detection and data reconciliation as described in Chapter V.  The numerical studies in Chapter

V showed that the average relative gross error reductions were 84.3% for measurement test,

96.7% for Tjoa-Biegler’s method, and 93.3% for Lorentzian.  Therefore, it is appropriate to

assume that the reconciled value of an abnormal measurement contains only random error after

data reconciliation.  For example, if a measurement has an error size at 20F, the remaining error

after data reconciliation is 3F for measurement test, 0.6F for Tjoa-Biegler’s method, and 1.3F

for Lorentzian distribution function method.  Also, it was observed that a measurement with a

very large gross error may be detected with a gross error twice in the numerical study for

modified compensation measurement test method.  For instance, if a measurement with gross

error size at 30F, the error reduction for this measurement in the first data reconciliation is 80%,

and the remaining error in this measurement is 6F.  At the second data reconciliation, this
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measurement may have 70% error reduction, and the remaining error of the reconciled value for

this measurement is 1.8F which is in random error range.  In addition, the numerical studies

observed that if two measurements with two gross errors exist in two non-adjacent units, these

two gross errors will not interact with each other.  They are present as two single gross errors.

The modified compensation strategy can be incorporated with a combined gross error

detection and data reconciliation algorithm to improve the misrectification of the algorithm.  In this

research, the modified compensation strategy is incorporated with measurement test method and

was tested with multiple gross errors that is discussed in  Chapter V.  The procedure for modified

compensation measurement test (MCMT) method is illustrated in the following:

Step 1 This step is to classify the neighboring measurements for each measured variable.  For

each measured variable, the measurements that are located in the same unit as this

measured variable or are located in the two adjacent units at its up and down streams are

classified as the neighboring measurements of this measured variable.  A group of

measurements consist of a measured variable and its neighboring measurements, and the

measured variable is the core measurement of this group.  If a process has 40 measured

variables, there are 40 groups of measurements.

Step 2 Solve Eq. 3-4 to reconcile the process data and compute the measurements errors, e.
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Step 3 Compare the standardized measurement error ,i, ,i = ei /Fi,, with the critical values C

based on the test statistic in Eq. 3-5.  If *,i* > C, then denote measurement i as one

suspected of containing a gross error.  All suspected measurement are included in set S.

Step 4 If set S is empty, then no gross error in measurements and proceed to step 5.  Otherwise

replace the measurement corresponding to the largest *,i* in set S with its reconciled

data for each group.  If only one measurement in a group is suspected of containing a

gross error, then replace this measurement with the value from reconciled data and

include it in set G.  Set G includes the measurements that are identified with gross errors.

If two or more measurements containing gross errors belong to the same group, then

replace the measurement that has the largest value of *,i* in the group with its reconciled

value and include it in set G.  Then go back to step 2.

Step 5 Repeat step 2 to 4 until no suspected measurement is identified.  Then the measured

variables in set G are declared containing gross errors.   

The above is the procedure for the modified compensation measurement test method.

Step 1 for group classification should conduct before the computation.  The classification result

can be incorporated with the data reconciliation optimization problem and programmed in GAMS

code to automatically construct a set of compensated measurements for next iterative data

reconciliation.  In this research, this modified compensation strategy is conducted manually with

measurement test method.  This modified compensation strategy can be incorporated with other

gross error detection and data reconciliation algorithms to further improve the performance of the
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algorithms.  Their procedures are the same as MCMT, except that the distribution and test

statistic for reconciling data and identifying gross errors are different for different algorithms.

C-2. Methodology of Simultaneous Data Reconciliation and  Parameter Estimation

To conduct on-line parameter estimation, the important information that must be

determined includes the determination of key parameters, the selection of necessary plant

measurements, the construction of precise constraints among the process variables and

parameters, and the investigation of the algorithms for parameter estimation.  The general rules

for the determination of key parameters and necessary measurements and the construction of

constraints in process model will be discussed in plant model formulation section later.  The

distribution functions that are applicable to combined gross error detection and data reconciliation

can be used for simultaneous data reconciliation and parameter estimation.  These are the normal

distribution for least squares method, the contaminated Gaussian distribution, and robust function

as described and they were evaluated in previous section.

The general methodology of simultaneous data reconciliation and parameter estimation

for the error-in-variables model has a structure similar to data reconciliation.  The difference is

that the parameters in plant model are considered as variables along with process variables in

simultaneous data reconciliation and parameter estimation rather than being constants in data

reconciliation.  Both process variables and parameters are simultaneously estimated through the

optimization of parameter estimation. The general mathematical statement for simultaneous data

reconciliation and parameter estimation is written as:

Maximize: P(y, x) (3-33)
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    x, z, 22
Subject to: f(x, z, 22) = 0

xL # x # xU, zL # z # zU, 22L # 22 # 22U

where P(y, x) represents the joint probability density function to be optimized.  The

equality constraints f denote the plant model which

gives the relationship among the process variables and

parameters.  xL # x # xU, zL # z # zU, and 22L # 22 # 22U represent the bounds on process

variables (x and z) and parameters 22.  The constraints in Eq. 3-33 are the same for different

algorithms of parameter estimation.  However, the objective function can be based on different

distribution functions.  These distributions describe the error structure of measurements that are

used to estimate the parameters and process variables.  The normal distribution (least squares

method), contaminated Gaussian distribution, and Lorentzian distribution,  given by Eq. 3-3, 3-9,

and 3-13 respectively, can be used as the objective function for simultaneous data reconciliation

and parameter estimation.

If the distribution function only describes the random nature of measurement errors, e.g.,

normal distribution, then the measurements used to estimate the process parameters can only

contains random errors.  The plant data from DCS needs to be pre-processed through the

combined gross error detection and data reconciliation step to eliminate or rectify the gross errors

before it can be used for parameter estimation.  This requires two steps to estimate the process

parameters, and it will be described in the following.  If the distribution function takes into account

the distribution pattern for both random and gross errors in the measurements and it is able to

rectify both random and gross errors, then the measurements used to estimate process
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parameters can contain random and/or gross error, and the plant data sampled from DCS can

be used directly for simultaneous data reconciliation and parameter estimation.  This requires only

one step to estimate process parameters.  The contaminated Gaussian distribution and robust

function have this type of the properties, and they will be used to conduct the combined data

validation and parameter estimation.  Then gross error detection, data reconciliation, and

parameter estimation will be combined into one optimization problem.

Two-Step Estimation: As discussed previously, the normal distribution of the least

squares method requires that the measurements used for parameter estimation contain only

random errors.  Therefore, a data pre-processing step is required to eliminate or rectify the gross

errors before the parameter estimation.  This requires two steps to estimate the plant parameters.

Step one uses the contaminated Gaussian distribution to detect and rectify the measurements with

gross errors and then constructs a new set of measurements that only contains random errors.

Step two uses the least squares method to conduct simultaneous data reconciliation and

parameter estimation with the new set of measurements. 

Step one reconciles process data using a combined gross error detection and data

reconciliation algorithm, contaminated Gaussian distribution, and identifies the gross errors based

on reconciled data.  The optimization problem for step one has the mathematical statement as:

(3-34)

 Subject to: f(x, z, 22) = 0
xL # x # xU, zL # z # zU
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where y is the plant measurements sampled from distributed control system for measured

variables and x represents the true values of the measured variables.  z denotes the unmeasured

process variables.   22 is the vector of process parameters, and they are constants in this step.

Solving Eq. 3-34 reconciles all plant data and estimates the values of all process variables.  This

set of reconciled data will maximize the joint probability and satisfies the constraints.  Based on

the reconciled data, the gross errors in the measurements are identified by the test statistic and

a new set of measurements is constructed.  This new set of data is composed of reconciled data

for measurements with gross errors and the original plant data for measurements without gross

errors.  Then this new set of measurements contains only random errors, and it is used in step two

to estimate plant parameters.

Step two uses the least squares method to simultaneously reconcile process variables and

estimate parameters with the new set of measurements generated in step one.  The optimization

problem for step two is stated as:

Minimize: eTEE-1e = (y - x)TE-1(y - x) (3-35)
  x, z, 22

 Subject to: f(x, z, 22) = 0
xL # x # xU, zL # z # zU, 22L # 22 # 22U

where y represents the measurements generated from step one for the measured variables.  The

process variables (x and z) and parameters (22) are variables, and they will be determined

simultaneously by solving this minimization problem. 

The strategy to construct the measurements from step one (combined gross error

detection and data reconciliation) of the two-step estimation avoids the modification of the
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optimization program and the interaction between the two data reconciliation results associated

with gross error detection in step one and with parameter estimation in step two. Although the

elimination of measurements with gross error will completely avoid the effect of gross error on

the estimation, it requires significant modification on the optimization program, such as the

reconstruction of constraints and reclassification of measured and unmeasured variables.  Also,

it may causes the problem of unobservability.  This is inefficient and not appropriate for the

automatic implementation of on-line optimization.  In addition, the gross errors of measurements

are significantly reduced after data reconciliation using contaminated Gaussian distribution

function.  It is appropriate to assume that the reconciled data of measurements with gross errors

contain only random errors and it can be used with other normal plant data to estimate process

parameters.   Therefore, the least squares method is suitable for the simultaneous data

reconciliation and parameter estimation because it has the highest estimation accuracy when the

measurements do not contain gross errors.

    One-Step Estimation: In one-step estimation, the objective function uses a distribution

function that takes into account the error pattern for both random and gross errors.  This type of

distribution function has an ability to ignore the contribution of gross errors on the estimation and

to rectify the gross errors using good measurements through process constraints.  Therefore, this

type of distribution function can be used to estimate the process parameters and variables

simultaneously using the plant data from DCS which may contains both random and gross errors.

The objective function based on contaminated Gaussian distribution or Lorentzian distribution is

this type, and it can be used for simultaneous gross error detection, data reconciliation, and
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parameter estimation.  Therefore, gross error detection, data reconciliation, and parameter

estimation are combined into one nonlinear optimization problem, and this is called one-step

parameter estimation method.

The general mathematical statement for one-step estimation using contaminated Gaussian

distribution is written as:  

(3-36)

 Subject to: f(x, z, 22) = 0
xL # x # xU, zL # z # zU, 22L # 22 # 22U

where y is the plant measurements from distributed control system for measured variables.

Process variables (x and z) and parameters (22) are variables, and they will be determined by

solving the maximization problem.  Solving Eq. 3-36 will simultaneously estimate the process

variables and parameters.  Then, each measurement will be examined by the test statistic based

on the estimated measurement error to determine if it contains a gross error.

Summary: Two strategies are proposed to conduct parameter estimation: one-step

estimation method and two-step estimation method.  The two-step estimation includes step one

that conducts combined gross error detection and data reconciliation to construct a new set of

measurements for next step estimation and step two that conducts simultaneous data

reconciliation and parameter estimation to estimate process parameters and variables.  The one

step estimation combines gross error detection, data reconciliation, and parameter estimation into

one nonlinear optimization problem.  In one-step estimation, the plant data from distributed
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control system is directly used to conduct simultaneous data reconciliation and parameter

estimation, then each measurement is examined to see if containing gross error based on the

reconciled results. 

C-3.  Plant Economic Optimization

The objective of plant economic optimization is to generate a set of optimal operating

setpoints for the distributed control system.  This set of optimal setpoints will maximize the plant

profit, satisfy the current constraints in plant model, and meet the requirement of market

demanding and restriction on pollutant emission.  This optimization can be achieved by maximizing

the economic model subject to the process constraints.  The general mathematical formulation for

plant economic optimization is:

Maximize: P(x) (3-37)
       x, z

Subject to: f(x, z, 22) = 0
g(x, z, 22) # 0
xL # x # xU, zL # z # zU

where P(x) represents the economic model (e.g., profit function).  The equality constraints f are

the same as those in data reconciliation.  The inequality constraints g represent the additional

restrictions for the economic optimization, such as the demand for the main products and by

products, availability of raw materials, maximum and minimum capacities of the equipment, and

restriction on the waste/pollutant emission.  The bounds  xL # x # xU and zL # z # zU represent

the allowable minimum and maximum operating conditions for the process variables and product

quality requirements.
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The economic model in Eq. 3-37 can be different depending on the objectives of the

optimization.  The objectives can be to maximize plant profit, optimize plant configuration for

energy conservation, minimize undesired by-products, minimize the waste/pollutant emission, or

a combination of these objectives.  If the objective is to maximize the plant profit, then a value-

added profit function can be used as the objective function (Zhang, 1993), i.e.,

P(x) = Income from Sale of Products - Cost of Raw Materials (3-38)
- Operating and Maintenance Costs

or it can be mathematically expressed as:

P(x) = sx -cx (3-39)

where s and c are constant vectors representing the sale prices of products and cost of the raw

materials respectively.  For vector s, the elements with respect to the variables of products are

the sale prices of the corresponding products, and other elememts in s are zero.  For vector c,

the elements with respect to the variables of raw materials are the costs of the corresponding raw

materials, and other elememts in c are zero.  In this formulation, the operating and maintenance

costs can be incorporated in the sale prices of the products or taken as constant.

Figure 3.6 gives one of the profit function used for sulfuric acid contact process of IMC

Agrico plant.  The IMC Agrico plant does not sell sulfuric acid on the open market because it is

used in the production of phosphoric acid in an adjacent plant.  Also,  the costs for the labor,

maintenance, and overhead are combined into operating cost, and these costs are included as an

adjustment to the price charged to the phosphoric acid plant for the sulfuric acid product.  As a

results, the operating costs were considered as a fixed adjustment to the acid product price on
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Profit Function:
    f = sF64F64 + sFS8FS8 + sFS14FS14 - cF50F50 - cFS1FS1 - cF65F65

Variable Description Sale and Cost Coefficients
  F64 Acid Product flow rate $21.6/long ton
  FS8 Low pressure steam flow rate $1.55/103 lb
  FS14 High pressure steam flow rate $2.34/103 lb
  F50 Raw sulfur flow rate  $54/long ton
  FS1 Boiler feed water flow rate $0.17/103 lb
  F51 Dilution water flow rate $0.05/103 lb

Figure 3.6  Value Added Profit Function for the Contact Process

a per pound basis.  This adjustment is included in the acid sale price list in Figure 3.6.  The prices

used for this study are provided by the IMC Agrico engineers.  As shown in Figure 3.6, the profit

function is equal to the total value of 

products (sulfuric acid F64, low pressure steam FS8, and high pressure steam FS14) subtracting the

cost of raw materials (sulfur feed rate F50  , boiler feed water FS1  , and dilution water F51).

 The profit function incorporated with plant model as shown in Eq 3-43 is solved to

determine the optimal values for all process variables.  These optimal set point will maximize the

plant profit, satisfy the constraints in process model and the restrictions on the product demand,

raw material availability, equipment capacities, and pollutant emission.

As discussed by Richard (1987) and Zhang (1993), there are three important factors that

can significantly affect the economic picture for sulfuric acid contact process.  First is the cost for

major raw material, sulfur feed.  Thus, the conversion of sulfur into product is economically
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important in this process.  Higher conversion of sulfur to sulfuric acid will have higher profit.

Secondly, the efficient extraction of the heats of combustion and chemical reaction by steam

streams will increase the value of by product (steam) and the conversion rate of SO2 to SO3.

Therefore, it benefits to the conversion of sulfur to sulfuric acid.  Finally, environmental restrictions

must be met.  All these three factors interactively affect the final economic picture of the plant.

C-4. Formulation of Plant Models for On-Line Optimization

As discussed in the previous sections, all optimization problems require the plant model

as constraints.  The performance of these optimization problems strongly relies on both the

objective function (the data reconciliation algorithm or profit function of the optimization problem)

and the constraint equations of the optimization problem (the plant model to describe a process).

A accurate plant model is necessary for on-line optimization.

C-4-1. Formulation of Constraints for Typical Chemical Process Units

The mathematical models to describe the relationship among variables may be classified

in accordance with a number of aspects (Madron, 1992).  For the models based exclusively on

statistical evaluation of measured data, they are referred to as empirical or regression model.

When building these types of models, no prior information about the physical and chemical

attributes of the modeled object is used.  The distribution model of measured data is a empirical

or regression model.  For the models that are built based on the laws of nature, they are called

as mechanistic model since a certain mechanism is assumed.  The process models used in on-line

optimization are belong to the type of mechanistic model, and they are set up based on the
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conservation laws  as well as the knowledge on the physical and chemical attributes of the

modeled object.

The information to build the mechanistic models can be divided into two groups.  The

laws of conservation ( mass and energy) belong to the first group.  In most cases, these law are

valid strictly, and they can be used to verify the validity of other assumptions serving as the basis

for modeling.  The second group includes the other laws of nature, dependencies assessed

empirically, and the like.  The validity of this type of information is not the same as that of

conservation laws; and it has some character of hypotheses.  Typical examples are the models

of chemical phase equilibrium, models of kinetics and stoichiometry of chemical reactions,

chemical engineering correlations, etc.

A chemical plant includes tens to hundreds of process units, such as heat exchangers,

reactors, distillation columns, absorption towers and others.  For each unit, a number of

constraints between input and output streams are imposed based on the conservation laws and

the knowledge on the process.  These constraints describe the relationship among the process

variables and parameters and provide a link of all variables and parameters.  They relate the

individual measurements and provide the resolution for error rectification.  The following gives a

brief discussion of the constraint derivation for some typical chemical process units.
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Heat Exchanger:

For a heat exchanger unit

with multiple components

in one side and single

component in the other

side, its flowsheet

diagram and the

constraints are shown in

Figure 3.7.  This unit

includes two input

streams (F1 and F3) and

two output streams (F2

and F4).  The heat is transferred from hot stream F3 to cold stream F1. The hot streams F3 and

F4 have single component; and cold streams F1 and F2 have c components.   The constraints

for this unit are set up based on the conservation laws and the knowledge on the process.  

As shown in Figure 3.7, Eq. 1 is the species mass balances for cold streams,  F1(i) and

F2(i), where i =1, 2, .., c; and Eq. 2 is the mass balance for hot streams, F3 and F4, where F

represents the mass flowrate.  The total energy balance is shown in Eq. 3, where H represents

the enthalpy of a stream and Qloss denotes the heat loss from this unit.  Eq. 4 represents the heat

transfer equation that gives a restriction on the capacity of the heat exchanger, where U and A

represent the heat transfer coefficient and area of the heat transfer, and )Tm is the mean
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temperature difference between hot and cold streams.  Eqs. 1 to 4 are established based on the

mass and energy conservation laws.  In addition to these four equations, Eq. 5 to 8 are the

enthalpy equations to determine the energy of the streams, and they are empirical equations that

are set up based on the physical and chemical properties of the species in the streams.  Eq. 9 is

an empirical function to determine the logarithm mean of temperature difference between hot and

cold sides.  These nine equations shown in Figure 3.7 simulate the operating behavior of the heat

exchanger and provide link among the variables. 

Reactors: The reactors are the key units of chemical plants.  The performance of this type

of units significantly affects plant operating in economic and environmental aspects.  The

formulation of constraints in this type of units are great important and complicated in regarding

of the various types of reactors and the complex reaction kinetics.  Unlike a heat exchanger

whose constraints are similar regardless of types of equipment, there is a great variation in

deriving the constraints for reactors.  

There are three types of simple reactors for steady state processes: continued stirring tank

reactor (CSTR), plug flow reactor (PFR), and fluidized bed reactor.  For CSTR, the mass and

energy balances are written as algebraic equations.  While the mass and energy balances for PFR

and fluidized bed reactor are differential equations that can be discretized into algebraic equations

with the numerical methods.

The reactions can be classified into single reaction (the simplest case), parallel multiple

reactions, series reactions, and combined parallel and series reactions.  In addition, the reaction

can have rate equations that have simple kinetics, such as the first, second, .., or nth order
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reaction, or the complex reaction rate equations that have a very complicated kinetics and are

complex and nonlinear.

In general, the reaction rate equation should be included in plant model.  Including the

reaction rate equation makes the variables in the reactor observable by the measurements at the

up and down stream units.  Also, it can reduce the number of necessary flow rate measurements.

If the reaction rate is available, and it is determined by the measurable variables, e.g., component

flow rate, temperature, and/or pressure, then the generation of species in mass balance equation

can be determined by the reaction rate equation that are observable by the measurable variables.

However, if the reaction rate equation is not available, then the generation of species in mass

balance equation must be determined by the conversion of certain reactant.  This conversion can

not be considered as a parameter because the conversion of reactant is not a time varying

constant as catalyst activity coefficient, and it changes with changes in operating conditions.  Also,

the conversion can not be determined by other measured variables as the reaction rate equation.

Therefore, using conversion of a reactant in the mass balances for a reactor unit increases the

unobservability of unmeasured variables in this unit.

Figure 3.8 shows the flowsheet diagram and the constrains for a PFR (sulfur dioxide

convertor).  This unit includes one input stream F1 and one output stream F2, and each stream

has c components.  As shown in Figure 3.8, Eq. 1 is the species mass balances for c

components, and the reaction rate for component i, r(i), is determined by the basic reaction rate,

r = r(i)/si, and the stoichiometric coefficient of the reaction for component i, si.  Eq. 2 is the total

energy balance.  Both mass and energy balances are established based on conservation laws.



178

Eq. 3 is the enthalpy

equation to determine

the energy of streams by

f l o w  r a t e s  a n d

temperatures.  Eq. 4 is

the basic reaction rate

for the reaction r, and

the basic reaction rate is

determined by kinetics

of the reaction.  The

reaction rate for

individual chemical species can be determined by the basic reaction rate r, and the stoichiometric

coefficients as given in Eq. 5.  In addition, A and L are the cross section area and the length of

reactor.  Ef is the reaction effectiveness factor, and it is a process parameter.  Also, the boundary

condition given in Figure 3.8 used to obtain the solution of the differential equations for the

reactor.

Distillation and Absorption Columns: The distillation and absorption columns are the

important units that can be found in most of chemical plants and refinery processes.  They serve

as feed preparation units for raw material going to reactor and as product purification units for

streams from the reactor.  Their performance plays an important role in energy saving, product

quality, and environmental control.
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T h e

constraints for

distillation and

absorption columns

are similar.  They

can be as simple as

only including the

mass and energy

balances for the column, if no parameter need to be estimated.  Or they can include more detail

information, such as the tray-by-tray equilibrium relation between phases.  Figure 3.9 shows the

flowsheet diagram of an absorption column and the constraints that include species mass balances

and the energy balance over the column.  In Figure 3.9, Eq. 1 is the species mass balances for

c components, and Eq. 2 is the overall energy balance where )H is the heat of absorption.  Both

Eq. 1 and  2 are based on conservation laws of mass and energy.  Eq 3 through 6 are the

enthalpy equation  to determine the energy of the respect streams, and they are based on the

physical and chemical properties of the species in the streams.

C-4-2. Classification of Variables and Determination of the Parameters 

After the constraints in plant model are constructed, the variables in the model are divided

into two groups of variables, measured variables and unmeasured variables.  It is desired to have

as many measured variables as possible.  In general, more measurements will give a more
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accurate estimation of the reconciled data.  However, in an industrial process,  some of

measurable variables are not measured.  

For a process, the measured variables are the variables that have measurements from the

distributed controlled system (DCS) and the plant control laboratory.  The remaining  variables

in the process model are unmeasured variables.  Some additional measurements may be required

after the examination of observability and redundancy which will be discussed in the following

section.  If some more redundant  measurements are needed, then additional instruments must be

added to provide additional measurements.  

There are two types of parameters in the process model.  One type is a permanent

constant parameter, such as reaction activity energy, stoichiometry of chemical reactions, and the

like.  This type of parameters is constant all the time.  They are constants in the process model

and do not need to be estimated on-line.  The other type of parameters is time-varying

parameters, such as heat transfer coefficients, reaction effectiveness factors, tray efficiency, and

the like.   This type of parameters varies slowly with time, e.g., 25% change for a month.  The

values of this type of parameters are determined by the characteristics of the equipment and

physical properties of materials but are not strongly relate to the operating condition.  The

presence of parameters in a plant model usually serves as the restrictions on the capacity of the

equipment, and their values provide the information about equipment performance.

For a set of equations to describe a unit or a process, the quantities in the equations can

be classified as variables (measured and unmeasured), parameters, and fixed constants as shown

in Figure 3.10.  The measured variables can be redundant or nonredundant, and the unmeasured
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variables and parameters can be observable or unobservable dependent on the numbers of

measured variables, unmeasured variables, parameters, and equations.  For the heat exchanger

shown in Figure 3.7, the stream flow rates and temperatures are measured variables.  The

enthalpies are unmeasured variables.  The overall heat transfer coefficient is process parameter,

and it must be updated on-line to have the model match the plant performace.  The heat

exchanger area is a constant. 

C-4-3. Examination of Observability and Redundancy  

The plant model is used as constraints in data reconciliation to adjust the measurements

for measured variables to satisfy the material and energy balances and to compute the values of

unmeasured variables and parameters.  In economic optimization, plant model is the constraints

of the optimization problem to describe the process, and it is used to determine the set points for

DCS.  To conduct data reconciliation, redundant measurements are required to rectify the errors

in measurements.  Also, unmeasured variables and parameters must be observable to obtain a
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unique solution.  The following discusses the examination of observability and redundancy for a

plant model.

The definition of observability is given by Crowe (1989) as:

“An unmeasured quantity at steady state is observable if and only if it can be uniquely

determined from a fixed set of values, corresponding to the measured variables, which

are consistent with all of the given constraints.  Any unmeasured quantity which is not so

determinable is unobservable.”

The definition of redundancy is given by Crowe (1989) as:

“A measured quantity is redundant if and only if it would be observable if that quantity

was not measured.  Otherwise, the measured quantity is non-redundant.”

The method to examine the observability and redundancy based on these definitions was given

by Crowe (1989) using the coefficient matrices of constraint equations as discussed in Chapter

II, and it is applicable to linear constraints.

In the following, the method to examine observability and redundancy is proposed based

on the concept of degree of freedom.  For a set of m equations that includes n variables, in which

n1 variables are measured, and p parameters, the unmeasured variables and parameters are

observable if the number of measured variables n1 is larger than or equal to the number of degree

of freedom for this set of equations.  The number of degree of freedom for a set of equations is

the number of variables and parameters subtracted by the number of equation, i.e., n+p-m.  For

a set of m equations that includes n variables, in which n1 variables are measured, and p

parameters, the measurements have redundancy if the number of measured variables n1 is larger
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than the number of degree freedom of this set of equations, n+p-m.  Also, the number of

redundancy of measurements is equal to n1-(n+p-m).

The examination of observability and redundancy can be conducted for each unit or each

balance node or for entire process (multiple units).  If it is conducted for each unit, then the

examination result is called local observability and redundancy.  If it is conducted for entire

process, then the examination result is called global observability and redundancy.  

For a set of constraint equations of a unit, it is said that the unmeasured variables and

parameters are local observable, if the number of measured variables is larger than or equal to

the degree of freedom of this set of equations, which is the number of variables (measured and

unmeasured) and parameters subtracted by the number of equations.  In local observability and

redundancy examination, the classification of measured variables and unmeasured variables is

slightly different from the definition given above.  A class of dummy measured variables is

intrduced in local examination to represent the unmeasured flow rate variables that can be directly

determined by available measured variables at the up or down stream.  The number of measured

variables equal the sum of the numbers of measured variables and dummy measured variables in

the equations, and the number of unmeasured variables equal the number of unmeasured variables

subtracted by number of dummy measured variables. 

For a set of constraint equations of a unit, it is said that the measured variables have local

redundancy if the number of measured variables is larger than the degree of freedom of this set

of equations, and the number of local redundancy of measurements equals the number of

measured variables subtracted by the number of degree of freedom.  For individual measured
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variables, it is said that a

measured variable is redundant

if all unmeasured variables and

parameters are observable after

the measured variable is

changed to a unmeasured

variable.  Otherwise, the

measured variable is not redundant.

Figure 3.11 shows a process flow diagram with three units, and these three units are heat

exchanger (HEX1), flasher, and heat exchanger (HEX2).  In streams S1, S2, S3, S4, and S5,

there are two components A and B.  If  variables f1a, f1b, T1, P1, f5a, f5b, T5, and P5 are

measured variables and other are unmeasured variables, then the unmeasured variables f2a, f2b,

f4a, and f4b are dummy measured variables in flasher unit examination.  Because f2a, f2b, f4a,

and f4b can be directly determined by measured variables f1a, f1b, f5a, and f5b respectively

through the component mass balances.  Howerver, T2 and T4 are not dummy measured variables

because they can not be directly determined by available measured variables.

For a heat exchanger shown in Figure 3.7, this unit has nine equations which involved 13

variables (F1, F2, F3, F4, T1, T2, T3, T4, H1, H2, H3, H4, and )Tm) and two parameters (U

and Qloss) if both cold and hot streams have single components.  The degree of freedom for this

set of equations and variables are six.  Therefore, six variables must be measured variables or



185

(3-41)

(3-43)

dummy measured variables to satisfy the observability, and more than six variables must be

measured or dummy measured variables to provided redundancy for error rectification. 

After the unit by unit examination of observability and redundancy, the global

observability and redundancy are examined for entire process based on the number of measured

variables and degree of freedom for the entire process.  In global observability and redundancy

examination, all dummy measured variables belong to unmeasured variables.

If the measured variables are not correctly selected, some of unmeasured variables or

parameters may be unobservable even though the number of measurements is larger than the

degree of freedom. In order to avoid the incorrect selection of measured variables, a coefficient

matrix of linearized constraints is used to further examine the observability for entire process

based on Crowe’s method.  In this step, the nonlinear constraints are linearized using a set of

feasible solution of the constraint equations that is close to the normal operating condition.  Then

this linearized constraints are rearranged as:

Ax + Bz + E22= 0 (3-40)

or

where A, B, and E are the linearized constraint coefficient matrices with respect to measured

variables x, unmeasured variables z and parameters 22.  Eq. 3-40 or Eq. 3-41 can be rearranged

as:

Bz + E22 = - Ax (3-42)

or
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A lemma given by Crowe in Chapter II is used to determine the observability.  If there

exists a nonzero vector t such that (BE) t = 0, then each unmeasured variable or parameter

corresponding to a nonzero element of t is unobservable.  Therefore, the solution of t from

equation (BE) t = 0 identifies the unobservable unmeasured variables or parameters.  More

discussion on this lemma was given in Chapter II.

Based on the discussion above, a general method to examine the observability and

redundancy of process models is given as:

1. Examine the local observability and redundancy unit by unit based on the criteria given

above, i.e., the number of measured variables must be larger than or equal to the degree

of freedom.  All unmeasured variables and parameters must be observable for each unit.

It is not required that every unit has redundancy in measurements.  However, at least one

degree of freedom is recommended for the unit with parameters to be estimated.

2. Examine the global observability and redundancy for entire process based on the criteria

given above.  The number of measured variables must be larger than the degree of

freedom of the plant model.  The number of redundancy in measurements equal the

number of measured variables subtracted by the degree of freedom of the plant model.

3. Linearize the nonlinear constraints in plant model using a set of feasible solution of the

constraint equations that is close to the normal operating condition and rearrange the

linearized constraints as Eq. 3-43.  Solve the equation (B E) t = 0 for the solution t.  If

the solution of t is a zero vector, then all unmeasured variables z and parameters 22 are

observable; If some elements of t is nonzero, then the variables corresponding to the
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nonzero elements are unobservable.  This step is to avoid  the incorrect selection of

measured variables.

This is the general procedure to examine the observability and redundancy of the plant

model.  In case of unobservability or non-redundancy exists, then plant model must be modified

to satisfy the requirement of observability and redundancy.  The strategies to improve the

observability and to provide more redundancy of plant model is given in the following:

1. Change the unobservable unmeasured variables into measured variables, if it is

measurable.

2. Combine the unobservable variable with other observable unmeasured variable,

i.e., combining two unmeasured variables into one, if possible; and recheck the

observability of the new unmeasured variable.

3. Add additional constraints on the unobservable variables and recheck the

observability of the unmeasured variables.

4. Adjust some of parameters as constants, if their values do not vary significantly

or their variations do not significantly affect the accuracy of the plant model.  Or

divide the parameters into two or more subsets and estimate them alternately in

the sequence of on-line optimization.

5. Add repeated measurements for the non-redundant measured variables.

To have a better result from the optimization and to ensure the validity of the optimization

result when multiple gross errors exist, excessive measured variables in additional to the necessary
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measurements are needed.  It is recommend to incorporate as many measurements as possible

in data reconciliation and parameter estimation of on-line optimization.

C-4-4. Summary on Plant Model Formulation 

After the plant model is completely formulated and the process variables are correctly

classified into measured variables (x), unmeasured variables (z), and parameters (22), the

accuracy of the plant model must be examined.  To assess precision of the plant model, the

simulation results predicted by the plant model must be compared with the true data of the plant,

such as the consistent and complete plant design data to ensure that the constraint equations are

correctly describing the processes.  This can be done by designating some of plant design values

as measured data.  Then this data is used to estimate the values of the unmeasured variables and

the plant parameters, and the estimated parameters and process variables are compared with the

plant design data.  If the predicted results are very close to the design data with a less than 1%

relative difference, then it is said that the plant model precisely simulates the plant.

Above is the brief discussion on the development and examination of plant model.  The

following gives the general procedure to formulate a plant model:

1. Derive the process constraints according to the conservation laws and other

knowledge about the process.

2. Select plant parameters (22) to be updated by on-line optimization.  Classify the

variables in plant model into measured variables (x) and unmeasured variables
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(z) according to the measurability and/or available measurements for variables.

Incorporate as much measurement information as possible.

3. Examine the observability of unmeasured variables z and parameters 22 and the

redundancy of measured variables x by the proposed method.  All unmeasured

variables and parameters must be observable and excessive degree of

redundancy is required to have more accurate estimation.

4. Evaluate the precision of the process model by comparing the plant model  with

the true information, such as the plant design data. 

Above are the necessary steps for formulating an effective and precise plant model for

on-line optimization. 

D. Summary

On-line optimization involves three steps: eliminating or rectifying gross errors in data

sampled from the DCS, estimating parameter values to update the process simulation, and

conducting economic optimization to generate a set of optimal set point for the DCS of the plant.

Based on the nature of chemical process models, only the combined gross error detection and

data reconciliation algorithms are applicable for identifying and rectifying gross errors, and the

simultaneous data reconciliation and parameter estimation methods are suitable for estimating

process parameters.  Therefore, two procedures to conduct on-line optimization are proposed

as discussed previously in this chapter.  

There are several methods that can be used to reconcile process data for gross error

detection and parameter estimation.  These methods are measurement test method (or least
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squares method) using the normal distribution function, Tjoa-Biegler’s method using contaminated

Gaussian distribution, and robust method using Lorentzian distribution or Fair function.  Based

on the comparison of influence function and relative efficiency for these distributions, the

theoretical evaluation concluded that both contaminated Gaussian distribution and Lorentzian

distribution will have a better performance than the normal distribution in effectively bounding the

effect of gross errors and than Fair function in a higher relative efficiency and less sensitive to the

presence of gross errors.  The normal distribution has the highest estimate accuracy when the

measurements contain only random error.  

As mentioned above, precise and accurate process simulation model is essential for on-

line optimization.  The process model serves as constraints in the nonlinear optimization problems

for gross error detection, data reconciliation, parameter estimation, and economic optimization.

The general procedure to formulate a process model and the method to examine the observability

and redundancy of a plant model have been proposed.  Also, some consideration has been given

to improve the performance of process simulation model based on the computation results and

statistics.  

In subsequential chapters, the process model for sulfuric acid process will be formulated

and its accuracy will be evaluated.  The performance of the normal distribution, contaminated

Gaussian distribution, and Lorentzian distribution will be evaluated by the numerical study based

on the gross error detected rates, number of type I error, and error reduction.  Also, both two-

step and one-step estimation will be conducted and compared based on the computation

efficiency and accuracy.  Finally, plant economic optimization will be conducted using a values
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added objective function with different economic scenarios and environmental restrictions to study

the economic improvements from on-line optimization. 
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CHAPTER IV  PLANT MODEL FORMULATION

The methodology and procedure to perform on-line optimization has been outlined in

previous chapter.  This chapter deals with the development of process simulation model for the

Monsanto’s designed sulfuric acid process of IMC Agrico Company.  The process will first be

described.  Then, the detail material and energy balances and reaction rate equation in this model

will be established, and the process model will be validated.

A. Description of the Contact Sulfuric Acid Process

The sulfuric acid process used in this study is the IMC Agrico Company's Uncle Sam plant

in Convent, Louisiana.  Both design and actual plant data was collected for the purpose of model

validation and implementation of on-line optimization.  The Uncle Sam plant's "E" train is a 3200

TPD 93 mole% sulfuric acid plant designed by the Monsanto Envio-Chem System, Inc. which

began to operate in March, 1992.  The overall conversion of elemental sulfur to sulfuric acid is

about 99.7%.  It represents the state-of-art technology of the contact process.  The contact

process is a three step process that produces sulfuric acid and steam from air, molten sulfur and

water.  The process flow diagram is shown in Figure 4.1, and the process consists of three sections

which are the feed preparation section, the reactor section, and the absorber section.

In the feed preparation section, molten sulfur feed is combusted with dry air in the sulfur

burner. The reaction is:

S + O2 ==> SO2 + Heat

The reaction is exothermic and goes to completion. The gas leaving the burner is composed of

sulfur dioxide, nitrogen, and unreacted oxygen at approximately 1400oK.



Figure 4.1 The Contact Process for Sulfuric Acid Formation
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The equipment used in this section include an air filter, drying tower, a main compressor

and a sulfur burner.  The compressor is steam driven turbine with an efficiency of about 65%.

It is a five stage, polytropic turbine on steam side and a centrifugal blower on the gas side.  The

pump takes in approximately 150,000 cfm of ambient air at -3 inches water and discharges it at

about 160 inches of water and 230oF under normal operation.  The compressor turbine speed

is adjusted to change the production rate for each  train.  The drying tower removes ambient

moisture from the intake air with 98 wt% sulfuric acid flowing at a rate of about 3600 gpm.

In the sulfur burner, the dry compressed air discharged from the turbine is reacted with

molten sulfur to produce sulfur dioxide.  The sulfur dioxide, along with nitrogen and unreacted

oxygen enters waste heat boiler.  The waste heat boiler is equipped with a hot gas bypass so that

the temperature of the gases entering the first catalyst bed can be controlled to 788oF.  This boiler

is a shell and tube type supplied with water from the economizers.  The boiler produces saturated

steam at about 500oF and 670 psig and utilizes about 9% blowdown.  The rest of the steam is

passed to superheater to produce superheated steam at about 750oF. 

The second section of the contact process plant is the reactor or converter section.  The

reactor consists of four beds packed with two different types of vanadium pentoxide catalyst.

In this part the gas mixture from the feed preparation section is further reacted in the fixed catalyst

beds to produce sulfur trioxide and heat according to the reaction: 

2SO2 + O2 º 2SO3 + Heat
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Figure 4.2 Temperature-Conversion of SO2 for Sulfuric Acid Plant

The reaction is exothermic and the equilibrium conversion decreases with the increase in

reaction temperature.  For this reason, the process uses four packed beds, and heat exchangers

between each bed remove the produced energy to reduce the temperature.  As shown in Figure

4.2, the equilibrium conversion of sulfur dioxide decreases with the increase in operating

temperature.  Removing reaction heat from each reactor increases the conversion of sulfur dioxide

to sulfur trioxide and this removed heat is used to produce steam.  Also, the equilibrium

conversion increases by decreasing the concentration of sulfur
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trioxide, and an inter-pass tower is used to absorb and remove sulfur trioxide from the gas stream

between the third and the fourth catalyst beds.  This design ensures the high conversion.

As shown in Figure 4.1, the superheater (SH) is used to cool the exit gas from the first

bed by the saturated steam from waste heat boiler (BLR).  It produces superheated steam at

about 750oF and 630 psig.  The hot inter-pass heat exchanger (H) is used to cool the gases from

the second catalyst bed.  The cold inter-pass heat exchanger (C) and economizer (E) are used

to cool the gases from the third catalyst bed before these gases pass to the inter-pass tower.  The

hot and cold inter-pass heat exchangers are used also to heat the unabsorbed gases from the

inter-pass tower while cooling the gases from the second and the third bed respectively.  The

gases from the fourth bed consist of sulfur trioxide, nitrogen, oxygen and a small amount of sulfur

dioxide, and they are cooled by the superheater (SH’) and economizers (E’) before passing to

the final tower for absorption of sulfur trioxide.  The superheated steam is used to drive the

compressor turbine, and the excess steam is one of the plant products.

The final section of the contact process plant is the absorber section.  In this section the

SO3 is absorbed from the reaction gas mixture into 98 wt% sulfuric acid to produce a more

concentrated acid.  Also, heat is produced according to the equation:

SO3 + H2O => H2SO4 + Heat

As shown in Figure 4.1, the equipments in this section include the final acid absorption

tower, inter-pass absorption tower, acid pump tank, dilution acid tank and three heat exchangers.

These two absorption towers use 98 wt% acid to produce more concentrated acid.  Water is

added to the two tanks to keep the sulfuric acid strength at 93 wt% in acid dilution tank and
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98 wt% in acid tower pump tank.  The exit gases from the final absorption tower are discharged

to the air with less than 4 lb of SO2 per ton of sulfuric acid produced.

The boiler feed water is pre-heated to 500oF at 670 psig by the economizers (E and E’).

It then passes to the waste heat boiler (BLR) to produce steam.  Then, superheated steam is

generated in the superheater (SH).  The superheated steam is used to drive the turbine and the

excess steam is one of the products, which is used in an adjacent plant.

This concludes the brief description of the contact sulfuric acid process.  Further process

details are given in the discussion of process model that follows.

B. Process Model

As discussed previously, the process model has to be written as the open form equation

based model for on-line optimization.  Therefore, the process simulation model will be formulated

in an open form format; and it is formed based on the conservation laws, rate equations, and

equilibrium relations.  These equations in the plant model are the constraints of the nonlinear

optimization problems in on-line optimization.  The optimization problems will be solved using a

optimization modeling language, GAMS (general algebraic modeling system).  This section

discusses the detail plant simulation, i.e., the material and energy balances, the physical and

thermodynamic properties, and reaction rate equations, required for on-line optimization.

The open form equation based process model is different from close form sequential

modular model developed by the flowsheeting simulation systems.  In the open form format, the

equations can be written implicitly as f(x, z) = 0 or explicitly as x = g(z).  The solution for all

variables (x and z) are obtained simultaneously.  However, in the close form sequential model,
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the equations can only be written explicitly as x = g(z).  The solution of the close form model is

sequential, i.e., the solution of variable x is determined by the value (solution) of z.  If the

constraints are highly nonlinear and an explicit expression is not available for some of the

variables, then an iterative procedure is required to search for the solution  for the close form

process model. 

The plant model expressions for open form model are a set of constraint equations which

describe the process behavior and represent the relationship of process variables and parameters.

For a chemical process, this set of constraint equations include the material and energy balances,

chemical reaction rate equations, heat transfer equations, and vapor-liquid equilibrium equations.

The plant model for the sulfuric acid contact processes includes the constraint equations for the

sulfur burner, four catalytic convertors, two gas-to-gas heat exchangers, three economizers, a

superheater, a waste heat boiler, and final and inter-pass absorption towers.  A flowsheet

diagram with stream and unit names used in model equations is shown in Figure 4.3, and Table

4-1 gives a description of these streams.  The constraint equations are established in following

section and they are programmed in GAMS language and used to reconcile plant measurements,

estimate plant parameters, optimize the plant profit, and minimize emissions from the plant.

Heat Exchanger Network:  As shown in Figure 4.3, the heat exchanger network in

sulfuric acid plant includes two gas-to-gas hot and cold inter-pass heat exchangers (HEX066 and

HEX065), three gas-to-compressed-water economizers (economizer 3B, 4CD, and 4A), 



Figure 4.3 Flowsheet Diagram for the Sulfuric Acid Plant 
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Table 4-1 Description of Process Streams (Refer to Figure 4.3, 
        the Process Flow Diagram for the Sulfuric Acid Process)

Name of
Stream Description



199

S03
S04
S05
S06
S07
S08
S09

S10
S11

S12

S13

S14

S15

S16
S17
S19
S20
S21
S50
S51
SS1
SS2
SS3

SS4
SS5
SS6
SS7
SS70
SS8
SS14
S58
S59
S60
S61
S64

Dry air to compressor (Fan)
Dry air from compressor to sulfur burner
Gas stream exiting from sulfur burner to waster boiler
Gas stream exiting from waste boiler to the first convertor
Gas stream exiting from convertor I to superheater 1B (HEX067)
Gas stream exiting from superheater 1B to the second convertor
Gas stream exiting from the second convertor to hot inter-pass heat exchanger
(HEX066)
Gas stream exiting from hot inter-pass heat exchanger to the third convertor
Gas stream exiting from the third convertor to cold inter-pass heat exchanger
(HEX065)
Gas stream exiting from cold inter-pass heat exchanger to economizer 3B
(HEX068)
Gas stream exiting from economizer 3B to inter-pass absorption tower (TWR040)
Gas stream exiting from inter-pass absorption tower to cold inter-pass heat
exchanger
Gas stream exiting from cold inter-pass heat exchanger to hot inter-pass heat
exchanger
Gas stream exiting from hot inter-pass heat exchanger to the fourth convertor
Gas stream exiting from the fourth convertor to economizer 4CD (HEX069)
Gas stream exiting from economizer 4CD to economizer 4A (HEX069)
Gas stream exiting from economizer 4A to final absorption tower
Gas stream exiting from final absorption tower and discharging to atmosphere
Sulfur feed stream to Sulfur Burner
dilution water that is added to acid tower pump tank and acid dilute tank 
Compressed water stream to economizer 4A (HEX069)
Compressed water stream from economizer 4A to economizer 3B (HEX068)
Compressed water stream from economizer 3B to economizer 4CD (HEX(069)
Saturated water stream from economizer 4CD to waste boiler (BLR011)
Steam stream from waste boiler to superheater (HEX067)
Blowdown stream from waste boiler
Superheated steam streams from superheater
High pressure steam to turbine which is split from stream SS7
Low pressure steam exiting from the turbine of compressor (Fan)
High pressure steam split from stream SS7
Sulfuric acid stream to inter-pass absorption tower
Sulfuric acid stream exiting from inter-pass absorption tower
Sulfuric acid stream to final absorption tower
Sulfuric acid stream exiting from final absorption tower
Sulfuric acid product

a gas-to-superheated-steam superheater (superheater 1B), and a gas-to-vapor waste heat boiler

(BLR011).  In these units, there is no mass transfer or chemical reaction. The inlet component
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flow rates are equal to their outlet component flow rates for both sides.  The energy balance

states that the decrease of the enthalpy in the hot side is equal to the increase of enthalpy in cold

side plus the heat loss, i.e., (Hinlet - Houtlet)hot = (Houtlet - Hinlet)cold + Qloss.  For the hot inter-pass

heat exchanger (HEX066),                                                                    and                           

                                .  The heat transferred in an exchanger is proportional to heat transfer area

A, overall heat transfer coefficient U, and the mean logarithm temperature difference between two

sides )Tlm, i.e., Q = UA)Tlm, where Q is the enthalpy change on cold side, i.e.,

The material and energy balances as well as heat transfer equations are similar for all units

in heat exchanger network.  Table 4-2 gives the constraint equations for the hot inter-pass heat

exchanger as an example of process constraint equations for all heat exchanger units.  They are

written in an open form format, and the molar flow rate is used in mass balance equations.  The

enthalpy equations for gases, compressed water, and superheated steam are developed in

Appendix C.

Figure 4.3 shows that the hot IP heat exchanger (HEX066) involves the heat exchange

between hot stream S09 from second catalyst bed and cold stream S15 from cold IP heat

exchanger.  The constraint equations (material and energy balances and heat transfer equation)

for this unit are given in Table 4-2.  The two rows of the table under material balance give the

overall mass balance and all species mass balances.  The overall mass balance is the summation

of all species mass balances, and this is true for all processe units.
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Table 4-2 The Constraint Equations for Hot Inter-Pass Heat Exchanger 

Material Balances

Overall

Species

Energy Balances

Overall

where

Heat
Transfer
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Therefore, if all species mass balances are used to describe the process, then the overall mass

balance does not need to be included.  The species mass balances are used to describe the

relationship of the input and output flow rate variables.  The two rows in Table 4-2 under energy

balances give the overall energy balance and heat transfer equation.  In addition, each species

enthalpy, h(T), is expressed as a polynomial function of the stream temperature given in the table.

In the constraints of Tables 4-2, F denotes the component molar flow rate, kmol/sec, and

its superscript i and subscript k denote the component names and stream numbers respectively.

h’s in the equations represent the species enthalpies of streams, MMJ/kmol, and Qloss is the heat

loss from the exchanger.  T is the stream temperature, and )Tlm is the logarithm mean

temperature difference between hot and cold sides of the exchanger.  In the heat transfer

equation, U and A are the overall heat transfer coefficient and heat transfer area respectively.  In

these equations, the total flow rates, species flow rates (or composition), and temperatures of

streams are the measurable variables.  Species enthalpies and the mean temperature difference

are the unmeasurable variables.  The heat transfer coefficient and heat loss are the process

parameters to be estimated or constants depending on the character of exchangers and

processes.  Others such as heat transfer area and coefficients in enthalpy equations are constants.

Reactor System:  The reactor system in this plant includes a sulfur burner and four

catalytic convertors.  The following describes the constraint equations for sulfur burner and the

first convertor.  The constraint equations for the other convertors are developed in the same way

as the first convertor.
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When a chemical reaction is involved in the process, it is convenient to use the mole

material balance to describe relationship of input and output flow rates of a unit for a component.

Also, the overall material balance is obtained from the component material balances, i.e.,

summation of component material balances gives the overall material balance.  The sulfuric acid

process involves three reactions, i.e,  reaction of sulfur to sulfur dioxide, reaction of sulfur dioxide

to sulfur trioxide, and absorption reaction of sulfur trioxide to sulfuric acid.  It is decided to use

the mole balance to describe the material balances of the units in the process, i.e, all material

balance equations for the sulfuric acid process are written with mole balance relations.  Moles are

conserved when there are no reaction, and the change of the number of molar for a component

is determined by the reaction rate and stoichiometric coefficient when there are reactions.

As shown in Figure 4.3, the inputs of sulfur burner are dry air stream, S04 from main

compressor, and liquid sulfur stream, S50.  The dry air reacts with molten sulfur to produce sulfur

dioxide and heat in the burner.  The sulfur dioxide, along with nitrogen and unreacted oxygen

enters the waste heat boiler.  At the design operating temperature of the sulfur burner, all of the

sulfur is converted to sulfur dioxide and some sulfur trioxide is formed from sulfur dioxide.  Under

the design operating conditions, the equilibrium conversion of SO2 to SO3 is 3.8% ( mol) of the

total produced SO2.  However, the plant measurements have shown that 2 % (mol) of the SO2

is converted into SO3 in this unit, and this value is incorporated in the mass and energy balances

of this unit. 

The material and energy balance equations for this unit are given in Table 4-3.  The two

rows of this table under material balance give the overall mole balance and component mole
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(4-2)

balances.  The mole balance for each component is established based on the conservation law.

The steady state mole balance for a component is written as:

Fin(i) - Fout(i) + Fgen(i) = 0 (4-1)

where i represents the names of components.  Fin(i), Fout(i), and Fgen(i) are input flow rate

F04(i), output flow rate F05(i), and generation rates of components from reaction, r(i).  The

overall mole balance is the summation of all component mole balance.  

Two reactions take place in this unit, i.e., reaction one of sulfur to sulfur dioxide and

reaction two of sulfur dioxide to sulfur trioxide.  All of the sulfur is completely converted to sulfur

dioxide, and 2% (mol) of the produced sulfur dioxide is further converted to sulfur trioxide in this

unit.  Therefore, the reaction (generation) rate for each component is related to the input flow rate

of sulfur F50 and the stoichiometrical coefficient of a component in the reaction.  Also, the

reaction rate of a product component has a positive value and the reaction rate of a reactant

component has a negative value.  For example, the component mole balance for sulfur dioxide

is:

where F04SO2 and F05SO2 are the input and output flow rates of sulfur dioxide, and 0.98F50 is

the generation rate of sulfur dioxide.  For reaction one (complete conversion of sulfur to sulfur

dioxide), sulfur dioxide is a product with stoichiometric coefficient of one.  In reaction two, sulfur

dioxide is a reactant with stoichiometric coefficient of one.  Therefore,  the total reaction rate for

sulfur dioxide in two reaction is F50-0.02F50 = 0.98F50. 
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Table 4-3 The Process Constraint Equations for Sulfur Burner

Material Balances
Overall

Species

Energy Balances

Overall

Enthalpy
Function
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(4-4)

The steady state overall energy balance is established based on the first law of

thermodynamics.  Neglecting changes in kinetic and potential energy, this equation is (Felder and

Roussleu, 1986):

- )H + Q - W = 0 (4-3)

where )H is the change in enthalpy between input and output streams, i.e., )H = Hout - Hin, and

                                                                 . Here nAR is the number of moles of reactant A that

is reacted, and vA is the stoichiometric coefficient of reactant A in the reaction.  Here the

reference conditions are the reactant and product species at 2980K and 1.0 atmosphere as

described in Appendix C.  Q is the heat added to the system and W is the amount of work done

by the system.  The energy equation for sulfur burner unit is written as:

where the first and second terms represent the energy for input streams S50 and S04.  The third

and fourth terms in this equation denote the generated rates of heat for reaction one and two.  The

fifth and sixth terms are the energy for output stream S05 and heat loss from this unit.   

In Table 4-3, F denotes stream species flow rate, kmol/sec, and h presents species

enthalpy, MMJ/kmol.  )hrxn
SO2 and )hrxn

SO3 are the heats of reaction of sulfur oxidation and SO2

oxidation reactions at the temperature of the burner.  Qloss in energy equation denotes the heat

loss from sulfur burner.  The heat of reaction for sulfur oxidation is calculated from the enthalpies

of components at reaction temperature:

)hrxn
SO2 = h(T)S + h(T)O2 - h(T)SO2 (4-5)
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where the enthalpies are calculated by the regression equations from NASA Technical Manual

4513C (McBride et al., 1993).  The detail enthalpy regression functions for all components are

given in Appendix C.  The enthalpy function used in Eq. 4-5 is slightly different from enthalpy

functions for determining the sensible heat.  In the process model, all enthalpy functions for gas

streams use sensible enthalpy function except the enthalpy function in Eq. 4-5.  The reference

state for sensible enthalpy function is 298.15 K and 1Bar for species or elements, and enthalpies

for O2, N2, SO2, SO3 at the reference state (298.15 K and 1 Bar) is zero.  In Eq. 4-5,  the

enthalpy functions are not substrated by the enthalpies of the species or elements at 298.15 K.

Therefore, the enthalpy for species (e.g., SO2) at reference sate is the heat of formation for the

species, and the enthalpy for elements (e.g., O2, S) at reference state is zero.  The heat of

reaction for sulfur dioxide oxidation to sulfur trioxide is calculated from an empirical formula, a

function of  reaction temperature, which is given in the kinetic model section of Appendix D.

The four catalytic reactors are adiabatic, plug flow reactors.  In these convertors, sulfur

dioxide is converted to sulfur trioxide in an exothermic chemical reaction.  The kinetic model for

this catalytic reaction was given by Harris and Norman (1972).  Harris and Norman developed

an empirical function to determine the intrinsic rate for the oxidation reaction of sulfur dioxide

which is discussed in Appendix D.  The intrinsic reaction rate equation is given in Figure 4.4. The

real reaction rate of SO2 (rSO3) is calculated by intrinsic rate multiplying by the reaction

effectiveness factor Ef, i.e., rSO3 = rSO2Ef.  This reaction effectiveness factor is a lump parameter

that combines all of the mismatches in the kinetic model, and this includes current bulk density and

current activity of the catalyst, variation 
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Figure 4.4 Rate Equation for the Catalytic Oxidation of SO2 to SO3 Using Type LP-110
and LP-120 Vanadium Pentoxide Catalyst 
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of real wet surface of catalyst.  Also, the heat of SO2 oxidation reaction is determined from an

empirical function discussed in Appendix D (Harris and Norman, 1972), which is given with the

function (Eq. D-6) to determine the temperature difference between bulk gas and catalyst pellet

(in Bulk Gas to Pellet Temperature Gradient section of Appendix D).  The empirical function for

heat of SO2 oxidation reaction is:

)hrxn
SO3 = 1.827×(-24,097-0.26T+1.69×10-3T2+1.5×105/T), Btu/lb-mole (4-6)

The four reactors are assumed to be perfect plug flow reactor.  Therefore, the material

and energy balance equations are differential equations for these four packed bed reactors, and

they are established based on the conservation laws.  The following gives a discussion on the

formulation of constraint equations for Convertor I, and the material and energy balance equations

for this reactor are given in Table 4-4.  The constraints for other three convertors are similar to

those for Convertor I.

From Figure 4.3, the input to Convertor I is the gas from the waste heat boiler (S06) and

the output goes to superheater 1B (S07).  In Table 4-4, the two rows under material balances

give overall and species material balances.  The two rows under energy balances give the overall

energy balance and the enthalpy function for each species.  In these equations, rI
so2 and   r I

 so3 are

the intrinsic reaction rate and the actual rection rate for Convertor I.  The intrinsic reaction rate,

rI
so2, is determined by an empirical equation given in Figure 4.4, and the actual reaction rate of

SO2 oxidation, rI
so3, is the product of intrinsic reaction rate and the reaction effectiveness factor

Ef
I for Convertor I.  In Table 4-4, DI

B is the bulk density of catalyst in lb/ft3, and A is the cross
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section area of convertors.  )hrxn
SO3 is the heat of the reaction, and it is determined by an

empirical function and temperature 
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Table 4-4 The Process Constraint Equations for Convertor I 

Material Balances

Overall

Species

Energy Balances

Overall

)Hrxn
SO3 = 1.827×(-24,097-0.26T+1.69×10-3T2+1.5×105/T), Btu/lb-mole
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Enthalpy
Function

given in Eq. 4-6.  FI and HI are the molar flow rate in kmol/sec and enthalpy in MMJ/sec for

Convertor I.  Also, the boundary conditions for these differential equations are required to

connect the variables in these equations to the variables in the input and output streams.  These

boundary conditions are given with the equations as shown in Table 4-4.  

In the constraint equations for this unit, total flow rates, composition (or species flow

rates), and temperatures are measurable variables.  The reaction rates and species enthalpies are

unmeasurable variables.  Ef
I is the process parameter to be estimated.  The others, such as cross

section area of convertor, bulk density of catalyst, and coefficients in enthalpy equations are

constants.  

The ordinary differential equations for material and energy balances in this unit are

discretized into the algebraic difference equations using improved Euler’s method  (Carnahan, et

al., 1969).  These algebraic difference equations are written in GAMS program and solved with

the other constraints in the plant model.  The boundary conditions of the algebraic difference

equations are the input and output conditions of the packed beds. 

Absorption Tower Section:  This section includes an inter-pass absorption tower and a

final absorption tower.  These units involve mass transfer of SO3 from gas phase to liquid phase,

i.e., the absorption reaction of sulfur trioxide.  For both towers, it is assumed that SO3 in gas
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stream is completely absorbed by sulfuric acid solution, and all other gases are considered as inert

gases.  Also, the total molar flow rate for sulfuric acid stream is counted as the sum of molar flow

rates of SO3 and water in the acid stream.  Based on these assumptions, the mole flow rate of

water in acid stream should remain unchanged between input and output at the absorption tower.

The difference between output and input for both SO3 and total molar flow rates in acid stream

is equal to the molar flow rate of SO3 in gas stream.  The detail material and energy balance

equations for final absorption tower are given in Table 4-5 where sulfuric acid stream (S60)

absorbs the SO3 from the gas stream S20.  The constraint equations for inter-pass absorption

tower are similar to the equations in Table 4-5.

In Table 4-5, the three rows under material balances give the overall mole balances,

relations for stack concentrations of sulfur dioxide and oxygen to relate the emission

concentrations of sulfur dioxide and oxygen to species flow rates in this unit, and component mole

balances.  The first row under energy balances gives the overall energy balance of final

absorption.  In the overall energy equation, )hrxn is the heat of reaction for sulfur trioxide

absorption. The heat of sulfur trioxide absorption at 298 K is given by (Smith and Van Ness,

1987)

SO3(g) + H2O(l) Y H2SO4(l) +  132.4 MMJ/kmol (4-7)

In these two absorption towers, the operating temperature range is  82-118oC.  The variation of

the heat of reaction in this temperature range is less than 5% of the heat of reaction.  Hence, the

heat of this reaction was taken as a constant, 132.4 MMJ/kmol.  The enthalpy functions for the
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gases and sulfuric acid are given in the second row under energy balances, and the derivation of

enthalpy equation for sulfuric acid solution is given in Appendix C.  

In the constraint equations of Table 4-5, stream flow rates F, temperatures T, and

concentrations of O2 and SO2 (CO2 and CSO2) are measurable variables.  Species enthalpies, h,

are unmeasurable variables, and the coefficients in enthalpy functions are constants.
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Table 4-5 The Process Constraint Equations for Final Absorption Tower 

Material Balances

Overall

Stack O2

and SO2

Species

Energy Balances

Overall

Species  

 
      hk = - 145.8407C + 9.738664e-3T+ 8.023897e-3TC+ 83.61468C2

             + 60.19207, Kcal/gmol, k=60,61 for sulfuric acid solution 
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(4-10)

Overall Material Balance: The overall material balance relates the flow rates of raw

materials to the production of products and wastes.  For the sulfuric acid process, the production

rate of sulfuric acid (F64, lb/sec) can be determined by either the use of sulfur feed rate (F50,

kmol/sec) or the absorption rates in inter-pass and final towers.  These two constraints are:

(F64 C64)/2.204/98.02 = F50 x (4-8)

and

(F64 C64)/2.204/98.02) = [( F61 - F60 ) +  ( F59 - F58 )] (4-9)

where x is the conversion of sulfur to sulfuric acid and C64 is the mass fraction of sulfuric acid

for the product stream F64.  The unit of production rate of sulfuric acid (F64) is lb/sec and the

other flow rates (F50, F58, F59, F60, and F61) are kmol/sec.  The constant, 2.204 is a

conversion, 2.204 lb/kg.  The constant 98.02 is the molecular weight of sulfuric acid.  These two

constants are used to converted the unit of F64 from lb/sec to kmol/sec to be consistent with the

unit of other flow rates.

The  overall conversion rate of sulfur (x) is determined by:

where F50 and F21
SO2 are the flow rates of sulfur and the unconverted SO2 to be discharged.

The dilution water flow rate F51 (kmol/sec) is used for both acid tower pump tank and

acid dilution tank.  It is used to adjust the acid strength.  The amount of dilution water is

determined by the production rate of sulfuric acid (F64) and product concentration (C64), i.e,

F51 = F64 (1-C64)/(2.204×18.02) + F64 C64/(2.204×98.02) (4-11)
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(4-12)

In Eq. 4-11, F64 (1-C64)/(2.204×18.02) is the amount of water in sulfuric acid solution and  F64

C64/(2.204×98.02) is the amount of water that is used to react with sulfur trioxide to produce

sulfuric acid.  Constants, 18.02 and 98.02, are the molecular weight for water and sulfuric acid.

The conversion, 2.204 lb/kg, and molecular weight constants are used to converted the flow rate

of F64 from lb/sec to kmol/sec for F51.

The constraint for the ratio of oxygen to nitrogen in the air is:

The steam from superheater SS7 is splitted into two streams SS70 and SS14.  SS70 is

used for the turbine of the compressor (Fan in Figure 4.3) and SS8 is the output of steam from

the turbine.  The flow rate of SS8 is the same as SS70, and the enthalpy of SS70 is reduced after

passing the energy to the turbine.  Therefore, SS8 is called lower pressure steam stream, and the

stream SS14 is the high pressure steam stream.  The flow rates for lower and high pressure steam

streams are  FS8 and FS14 in kmol/sec.   The production rates of lower and high pressure steams

are determined by:

FS7 = FS8 + FS14 (4-13)

and

FS8(hS70 - hS8) = Wturbine = F04(P04 - P03)/D04/0P /0M (4-14)

where the flowrates for steam streams SS70 and SS8 are the same, i.e., FS70 = FS8 Eq. 4-13 is

a mole balance over the split of the stream SS7.  Eq. 4-14 is the energy balance on the

compressor to determine the amount of steam required by the turbine.  In these two equations,

F is the flow rates of steam in kmol/sec, and h is the steam enthalpy in MMJ/kmol.  P03 and P04
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is the inlet and discharged pressure of the compressor (Fan in Figure 4.3) for gas streams in

kg/m2, and D is the density of gas stream in kg/m3.  0P and 0M are the compressor efficiency and

mechanical efficiency.  They are 0.65 and 0.9 respectively (Zhang, 1993). 

Inequality Constraints: In plant profit (economic) optimization, a number of inequality

constraints are imposed on the optimization based on the equipment capacities, raw material

availability, product quality requirements, operation condition restrictions, and environmental

concerns.  Without these types of restrictions, the optimal operation conditions from economic

optimization may be infeasible.

For sulfuric acid process, the inequality constraints that will bound the optimal solution

in the feasible operation region are given in Table 4-6.  The first restriction is the air flow rate from

compressor which affects the gas concentrations in the reactor train, the conversion of sulfur

dioxide, the turbine steam usage and the emission of sulfur dioxide.   The upper bound represents

the maximum capacity of the compressor.  The second restriction is the sulfur feed flow rate

(F50) which is adjusted to meet the sulfur dioxide emission environmental requirement and is

limited by the capacities of sulfur burner and the convertors.  The third restriction is that the SO2

emission must be lower than the maximum allowable discharge rate required from EPA regulation,

which is 4.0 pounds of SO2 per ton of sulfuric acid produced.  The remained eight restrictions

are the temperatures of the inlet and outlet streams of four convertors.  The selection of the lower

limit for four packed-bed reactors is the minimum temperature requirement below which there

is insufficient energy for autoignition (Doering, 1976 and Richard, 1987).  The upper limit

imposed on reactor temperatures is to prevent catalyst deactivation.
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Table 4-6 Inequality Constraints of Sulfuric Acid Process for Profit Optimization

Descriptions Inequality Constraints Design Data

Inlet air flow rate, kmol/sec 2.0 # F04 # 4.0 xxxx

Sulfur Feed, lb/min F50 # 1600 1460

SO2 emission, lb SO2/ ton H2SO4 F21SO2/F64# 4 4.0

1st bed inlet temperature, F 780 # T06 # 1150 788

1st bed outlet temperature, F 780 # T07 # 1150 1143

2nd bed inlet temperature, F 780 # T08 # 1150 824

2nd bed outlet temperature, F 780 # T09 # 1150 967

3rd bed inlet temperature, F 780 # T10 # 1150 824

3rd bed outlet temperature, F 780 # T10 # 1150 869

4th bed inlet temperature, F 780 # T16 # 1150 797

4th bed outlet temperature, F 780 # T16 # 1150 835

Summary: The development of constraint equations for the plant model was discussed

above.  The physical properties of streams are given in Appendix C.  The detail kinetic model for

SO2 oxidation  reaction is described in Appendix D.  In the following section, this plant model

will be validated by comparing the results from the GAMS simulation with plant design data.

C. Validation of Process Model

Based on the method proposed in previous chapter, the process variables are classified

as measured variables and unmeasured variables according to the availability of measurements

from plant distributed control system, as well as the observability and redundancy of the plant
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model.  Also, the heat transfer coefficients and reaction effectiveness factors for four convertors

are classified as process parameters because they are time varying and do not change with the

operation conditions.

The process variables that are classified as measured variables are given in Tables 4-7,

and process parameters are given in Tables 4-8.  In Table 4-7, the names, brief descriptions, and

the design values for the measured variables are given.  The process parameters include seven

heat transfer coefficients and four reaction effectiveness factor. The names, description, and

design values of these parameters are given in Table 4-8.  The values of parameters given in

Table 4-8 were determined by the simultaneous data reconciliation and parameter estimation

using the design data for measured variables given in Table 4-7.  In total, the process model for

sulfuric acid plant has 43 measured variables, 732 unmeasured variables, and 761 linear and

nonlinear equality constraints.  The inequality constraints given in Table 4-6 are incorporated as

bounds for the corresponding variables in the program.

The accuracy and validity of the process model are examined by comparing the simulation

results from the process model with the plant design data for the sulfuric acid plant.  First, the

process constraint equations for entire plant are examined unit by unit using Fortran programs.

The constraint equations for each unit are written in a Fortran program to calculate the parameters

and operating conditions in the unit.  The predicted results by these Fortran programs are

compared with the plant design data to verify the material and energy balance equations for each

unit.  Then, the constraint equations for the entire plant are written in a GAMS program to

conduct simultaneous data reconciliation and parameter
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Table 4-7  The Plant Design Data of Measured Variables for the Sulfuric Acid Plant

Measurement           Description
Plant design

data
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T04
T05
T06
T07
T08
T09
T10
T11
T13
T14
T15
T16
T17
T19
T20
T21
T58
T59
T60
T61
TS1
TS2
TS3
TS4
TS7
F04
F05
F14
F20
F50
F58
F59
F60
F61
FS1
FS5
PS5
PS7
X

CSO2

CO2

C58
C60

Temperature of gas stream S04, 0K
Temperature of gas stream S05, 0K
Temperature of gas stream S06, 0K 
Temperature of gas stream S07, 0K
Temperature of gas stream S08, 0K
Temperature of gas stream S09, 0K
Temperature of gas stream S10, 0K
Temperature of gas stream S11, 0K
Temperature of gas stream S13, 0K
Temperature of gas stream S14, 0K
Temperature of gas stream S15, 0K
Temperature of gas stream S16, 0K
Temperature of gas stream S17, 0K
Temperature of gas stream S19, 0K
Temperature of gas stream S20, 0K
Temperature of gas stream S21, 0K
Temperature of sulfuric acid stream S58, 0C
Temperature of sulfuric acid stream S59, 0C Temperature
of sulfuric acid stream S60, 0C
Temperature of sulfuric acid stream S61, 0C
Temperature of compressed water stream SS1, F
Temperature of compressed water stream SS2, F
Temperature of compressed water stream SS3, F
Temperature of compressed water stream SS4, F
Temperature of superheated steam stream SS7, F
Total molar flow rate of gas stream S04, kmol/sec
Total molar flow rate of gas stream S05, kmol/sec
Total molar flow rate of gas stream S14, kmol/sec
Total molar flow rate of gas stream S20, kmol/sec
Total molar flow rate of sulfur stream S50, kmol/sec
Total molar flow rate of H2SO4 stream S58, kmol/sec
Total molar flow rate of H2SO4 stream S59, kmol/sec
Total molar flow rate of H2SO4 stream S60, kmol/sec
Total molar flow rate of H2SO4 stream S61, kmol/sec
Molar flow rate of steam stream SS1, kmol/sec
Molar flow rate of steam stream SS5, kmol/sec
Pressure of steam stream SS5, psia
Pressure of steam stream SS7, psia
Total conversion of SO2 to SO3

Molar fraction of SO2, 100 PPM
Molar fraction of O2

Concentration of H2SO4 (wt. fraction) at steam S58
Concentration of H2SO4 (wt. fraction) at steam S60

383.15
1396.15
693.15
890.15
713.15
792.15
714.15
738.15
438.15
355.15
594.15
698.15
719.15
546.15
405.15
355.15
82.00

118.00
82.00
93.00

220.00
310.00
403.00
500.00
750.00

xxxx
xxxx
xxxx
xxxx

0.3445
14.591
14.917
6.953
6.970
xxxx
xxxx

684.7
654.7
0.997
4.153
0.045
0.980
0.980

Table 4-8 Process Parameters for the Sulfuric Acid Process Model
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Parameters Descriptions Values
Ef

I (EFFI) Reaction effectiveness factor for convertor I 0.241

Ef
II (EFFII) Reaction effectiveness factor for convertor II 0.161

Ef
III (EFFIII) Reaction effectiveness factor for convertor III 0.109

Ef
IV (EFFIV) Reaction effectiveness factor for convertor IV 0.035

Uboiler(BLRU) Heat transfer coefficient of
waste boiler

xxxx

Uex65 (EX65U) Heat transfer coefficient of
cold IP heat exchanger

xxxx

Uex66 (EX66U) Heat transfer coefficient of
hot IP heat exchanger

xxxx

Uex67 (EX67U) Heat transfer coefficient of
superheater

xxxx

Uex68 (EX68U) Heat transfer coefficient of
economizer 3B

xxxx

Uex69

(EX69CDU)
Heat transfer coefficient of
economizer 4CD

xxxx

Uex69A

(EX69AU)
Heat transfer coefficient of
economizer 4A

xxxx

estimation for evaluating the performance of this plant model using the least squares method as

given in Eq. 3-34. 

The procedure of the simulation with GAMS is shown in Figure 4.5.  First, the plant

design data for measured variables listed in Table 4-7 is included in the GAMS program and is

treated as measurements for data reconciliation.  This plant design data is considered as

measurements which are necessary for reconciling process data and estimating process

parameters.  Solving this data reconciliation problem will simultaneously reconcile the plant design

data listed in Table 4-7 for measured variables and estimate the process parameters in Table 4-8

and all unmeasured variables in the plant model.  The reconciled plant design data and estimated
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Figure 4.5 Procedure of GAMS Simulation       
 to Evaluate Sulfuric Acid Plant Model

parameter from GAMS simulation are

compared with plant design data.  The

reconciled data should agree closely with the

plant design data since it is accurate and

consistent.  Also, the parameters estimated

by this procedure should essentially the same

as those used for the plant design.

The reconciled values for the

measured variables are compared with the

original plant design data for the same

measured variables shown in Table 4-9.  It showed the reconciled measurements are close to the

part of design data that was selected to be treated as measured variables, and the largest

difference is only  0.991% of the design data.  This means that the constraint equations in the

plant model are precise and agree with the consistent plant design data.  Otherwise, the

reconciled data for these measured variables would not be close to the plant design data.  Also,

this result agrees with the fact that no errors exist in the plant design data.  The detail simulation

results for the sulfuric acid plant from simultaneous data reconciliation and parameter estimation

are compared with the plant design data for evaluating the performance of the plant model in the

following paragraphs.

Heat Exchanger Network:  The important criteria for evaluating the performance of

constraint equations for heat exchangers are the predicted heat duty, heat loss and heat transfer
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coefficient.  Table 4-10 gives the comparison of heat duties, heat losses, and heat transfer

coefficients between plant design data and GAMS simulation for the units in heat 
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Table 4-9 Comparison of Reconciled Values and Design Data for Measured Variables    

Measurement Design Data Reconciled Data Relative Difference
T04    oK 383.15 383.15 0.000%
T05    oK 1396.15 1396.17 0.001%
T06    oK 693.15 692.47 0.098%
T07    oK 890.15 890.86 0.080%
T08    oK 713.15 712.49 0.093%
T09    oK 792.15 792.84 0.087%
T10    oK 713.15 712.48 0.094%
T11    oK 738.15 738.82 0.091%
T13    oK 438.15 438.16 0.002%
T14    oK 355.15 355.16 0.003%
T15    oK 594.15 594.15 0.000%
T16    oK 698.15 697.94 0.030%
T17    oK 719.15 719.36 0.029%
T19    oK 546.15 546.15 0.000%
T20    oK 405.15 405.15 0.000%
T21    oK 355.15 355.14 0.003%
T58    oC 82.00 81.36 0.780%
T59    oC 118.00 119.17 0.991%
T60    oC 82.00 82.10 0.129%
T61    oC 93.00 92.90 0.107%
TS1    oF 220.0 219.99 0.005%
TS2     oF 310.0 310.00 0.000%
TS3    oF 403.0 403.00 0.000%
TS4    oF 500.0 500.01 0.002%
TS7    oF 750.0 750.01 0.001%
F04 kmol/sec xxxx xxxx 0.007%
F05 kmol/sec xxxx xxxx 0.017%
F14 kmol/sec xxxx xxxx 0.008%
F20 kmol/sec xxxx xxxx 0.020%
F50 kmol/sec 0.3445 0.3340.145%
F58  kmol/sec 14.591 14.595 0.027%
F59  kmol/sec 14.917 14.920 0.020%
F60 kmol/sec 6.953 6.953 0.000%
F61  kmol/sec 6.970 6.970 0.000%
FS1 kmol/sec xxxx xxxx 0.000%
FS5 kmol/sec xxxx xxxx 0.000%
PS5   psia 684.7 684.71 0.001%
PS7   psia 654.7 654.70 0.000%
X 0.997 0.997 0.000%
CSO2 100 ppm 4.153 4.153 0.000%
CO2 mole fraction 0.045 0.045 0.000%
C58 weight fraction 0.98 0.980 0.000%
C60 weight fraction 0.98 0.980 0.000%
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Table 4-10 Comparisons of the Model Predictions and Plant Design Data
for Heat Exchanger Networks                               

Plant Design
Data

Model
Prediction

Percent
Difference

Cold IP Heat
Exchanger

EX65

Heat Duty, MMJ/sec. 18.31 18.13 1.0%

Heat Loss, MMJ/sec. 0.428 0.296 30.8%

Trans. Coef., J/sec.-ft2-K xxxx xxxx 2.9%

Hot IP Heat
Exchanger

EX66

Heat Duty, MMJ/sec. 8.22 8.20 0.2%

Heat Loss, MMJ/sec. 0.216 0.217 0.4%

Trans. Coef., J/sec.-ft2-K xxxx xxxx 1.5%

Superheater
EX67

Heat Duty, MMJ/sec. 18.41 18.36 0.3%

Heat Loss, MMJ/sec. 0.484 0.33 31.8%

Trans. Coef., J/sec.-ft2-K xxxx xxxx 1.5%

Economizer
3B

EX68

Heat Duty, MMJ/sec. 11.30 11.26 0.4%

Heat Loss, MMJ/sec. 0.297 0.296 0.3%

Trans. Coef., J/sec.-ft2-K xxxx xxxx 35.6%

Economizer
4CD

EX69CD

Heat Duty, MMJ/sec. 13.27 13.29 0.2%

Heat Loss, MMJ/sec. 0.349 1.047 200.0%

Trans. Coef., J/sec.-ft2-K xxxx xxxx 7.5%

Economizer
4A

EX69A

Heat Duty, MMJ/sec. 10.55 10.52 0.3%

Heat Loss, MMJ/sec. 0.277 0.242 12.6%

Trans. Coef., J/sec.-ft2-K xxxx xxxx 1.5%

Waste Boiler
BLR001

Heat Duty, MMJ/sec. 74.31 74.94 0.8%

Heat Loss, MMJ/sec. 1.95 1.95 0.0%

UA*, J/sec.-K xxxx xxxx 1.6%

 * The heat transfer coefficient for waste boiler is not available from design data, hence
the product of heat transfer coefficient and area is compared here.
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exchanger network.  In addition, Table 4-11 compares the reconciled input and output

temperatures from model prediction with plant design data.

 As shown in Table 4-10 , the difference of heat duties between the simulation and plant

design data are within 1.0% for all units in the heat exchanger network.  The largest difference

among all units is 1.0% of the design data for cold inter-pass heat exchanger, and the average

difference of heat duties for all units is 0.46% of their design data.

Table 4-10 shows that the difference between the prediction by the simulation and plant

design data for heat transfer coefficient is within 3% of plant design data for all units except for

Economizer 3B and 4CD.  The largest and average differences of heat transfer coefficients

excluding for Economizer 3B and 4CD are 2.9% and 1.8% of the plant design data respectively.

However, the predicted heat transfer coefficients for Economizer 3B and 4CD are

different from the plant design data, and the differences are 35.6% and 7.5% of design data

respectively.  The reason for the difference is that the steam stream flow for these two units in the

original design is different from that in present operation which is simulated by the present plant

model.  In the plant now, the steam stream SS2 goes to economizer 3B and then to economizer

4C in serial.  In the original design, the steam stream SS2 was splitted into two streams SS2' and

SS2", where SS2' went to economizer 3B and SS2" went to economizer 4C.  Then, the output

steam streams of economizer 3B and 4C were combined together as SS3 and went to

economizer 4D.  The output temperature of steam stream of economizer 3B and the input
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temperature of steam stream of Economizer 4CD in original design were different from that in

present simulation shown in Table 4-10, and the predicted 

Table 4-11 Comparison of the Reconciled Temperatures from Model Prediction  
and the Plant Design Data for Heat Exchanger Networks

Plant Design
Data

Model
Predictions

Percent
Differences

Cold IP Heat
Exchanger

EX65

Hot Side: Input, F
            Output, F

869.4
541.6

870.2
541.6

0.09%
0.00%

Cold Side: Input F
              Output F

180.0
609.7

179.6
609.7

0.22%
0.00%

Hot IP Heat
Exchanger

EX66

Hot Side: Input, F
            Output, F

967.1
824.0

967.4
823.0

0.03%
0.12%

Cold Side: Input F
              Output F

609.7
797.0

609.8
796.6

0.02%
0.05%

Superheater
EX67

Hot Side: Input, F
            Output, F

1142.9
824.0

1143.9
822.9

0.09%
0.13%

Cold Side: Input F
              Output F

498.2
750.1

500.0
750.0

0.36%
0.13%

Economizer 3B
EX68

Hot Side: Input, F
            Output, F

541.6
330.0

541.6
329.0

0.00%
0.30%

Cold Side: Input F
              Output F

310.0
430.0

310.0
403.0

0.00%
-

Economizer 4CD
EX69CD

Hot Side: Input, F
            Output, F

835.2
524.3

835.2
523.4

0.00%
0.17%

Cold Side: Input F

Output F

4C: 310.0
4D: 430.0
4C: 430.0
 4D: 499.0

403.0

500.0

-

0.20%

Economizer 4A
EX69A

Hot Side: Input, F
            Output, F

524.3
270.0

523.4
269.6

0.17%
0.15%
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Cold Side: Input F
 Output F

220.0
310.0

220.0
310.0

0.00%
0.00%

Waste Boiler
BLR001

Hot Side: Input, F
            Output, F

2054.0
788.41

2054.0
788.0

0.00%
0.05%

Cold Side: Input F
              Output F

500.0
500.0

500.0
500.0

0.00%
0.00%

mean temperature differences for these two units do not match plant design data.  This mismatch

directly affects the values of heat transfer coefficients for these two units.  However, this will give

an accurate prediction of plant operations when data from the distributed control system is used.

The differences between predicted heat losses from the simulation and the design data

vary and are as much as 200 % of design data for Economizer 4CD, 30.8% of the design data

for cold IP heat exchanger, and 31.8% of design data for superheater 1B as shown in Table 4-

10.  The reason for this is that the magnitude of heat loss values is small compared with the heat

duties and that they are very sensitive to the variation of stream temperatures.  Even 0.5 K

difference of a reconciled stream temperatures from design data will significantly change the

percent error of estimated heat loss, but does not change much the relative difference of heat duty

between its predicted value and the design data.  In addition,  small amount of water in steam

stream SS4 has been vaporized in economizer 4D in actual operating.  While stream SS4 is

considered as saturated water in present plant model, which makes the simulated heat duty of

economizer 4D is slightly less than the actual operation data.  This results in larger heat loss in

model prediction for economizer 4CD than the plant design data.

Table 4-10 shows that the average difference of reconciled stream temperatures between

model prediction and the plant design data is 0.09% excluding the steam streams for Economizer
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3B and 4CD for which the data can not be used to compared (the stream configuration of these

two units for present plant is different from one for the design).  The largest and average

differences of temperatures between prediction of model simulation and plant design data are 1.8

oF and 0.37 oF respectively, for all of stream temperatures excluding the output stream of steam

of Economizer 3B and input stream of steam of Economizer 4CD.  The differences of steam

stream temperatures for Economizer 3B and 4CD between the reconciled and the plant design

data are caused by the different configuration of steam stream flow as discussed above.

In summary, the comparisons show that the predicted heat duties and transfer coefficients

for the units in heat exchanger network are close to the plant design data with  0.46% and 1.8%

of the average differences of the plant design data respectively.  This results indicate the material

and energy balance equations in the plant model accurately describe the process operations.  The

differences for heat losses between model prediction and design data varies for different units.

The average difference for all units excluding Economizer 4CD is 12.65% of their design data.

Reactor System: As shown in Figure 4.3, the reactor system in the sulfuric acid plant

consists of sulfur burner for the sulfur oxidation reaction and four packed bed chemical reactors

for the SO2 oxidation reaction.  The constraint equations for these units include material and

energy balance equation as well as reaction rate equations.  The comparisons of GAMS

simulation and plant design data for these units are given in the following paragraphs.

In sulfur burner, sulfur is completely converted into SO2, and 2.0% of the produced SO2

is further converted into SO3.  The model prediction agrees with plant design data as shown in

Table 4-12.  The reconciled component flow rates of gas streams and sulfur flow rate are the
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same as the plant design data, and the stream temperatures from the model and the plant design

data are the same.  The data for heat loss in sulfur burner was not available from the plant design

data.  The model predicted 5.272 MMJ/sec. (or 5.1% of the total heat duty) for the heat loss in

sulfur burner.  The value of heat loss in sulfur burner predicted by the plant model is reasonable

compared with the data of heat losses in heat exchangers.  The operating temperature in this unit

is as high as 1396 K, and a larger amount of heat loss is expected as compared with the heat

exchangers.

Table 4-12  The Comparison of Model Prediction and Plant Design Data
for Sulfur Burner                                               

Design Data Model Prediction

F04SO2-F05SO2, Kmol/sec. 0.0 - xxxx 0.0 - xxxx

F04SO3-F05O3 , Kmol/sec 0.0 - xxxx 0.0 - xxxx

F04O2-F05O2 , Kmol/sec xxxx - xxxx xxxx- xxxx

F04N2-F05N2 , Kmol/sec xxxx - xxxx xxxx - xxxx

Temp. (S04 -S05), K 383.2 - 1396.2 383.2 - 1396.2

Heat loss, MMJ/sec. - 5.272

For four packed-bed reactors, the reconciled gas component flow rates and stream

temperatures from model prediction are compared with plant design data, and they are shown

in Table 4-13 through 4-16.  These four tables show that all component flow rates predicted by

the plant model are the same as the plant design data and the differences of stream temperatures

between the reconciled and plant design data are less than 0.7 K.  
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The GAMS simulation predicts the effectiveness factors of the SO2 oxidation reaction

as 0.241, 0.161, 0.109, 0.035 for convertors I, II, III, and IV.  These effectiveness factors are

parameters in the plant model.  As discussed previously, the effectiveness factors 

Table 4-13 The Comparison of Model Prediction and Plant Design Data
for Convertor I                                                  

Design Data Model Prediction

FSO2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FSO3  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FO2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FN2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

Conversion of SO2 62.5% 62.5%

Temp. (S06 - S07), K 693.2 - 890.2 692.5 - 890.9

Effectiveness factor - 0.241

Table 4-14  The Comparison of Model Prediction and Plant Design Data
for Convertor II                                                

Design Data Model Prediction

FSO2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FSO3  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FO2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FN2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

Conversion of SO2 86.9% 86.9%

Temp. (S08-S09), K 713.2 - 792.2 712.5 - 792.8

Effectiveness factor - 0.161
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Table 4-15  The Comparison of Model Prediction and Plant Design Data
for Convertor III                                               

Design Data Model Prediction

FSO2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FSO3  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FO2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FN2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

Conversion of SO2 94.8% 94.8%

Temp. (S10 - S11) 713.2 - 738.2 712.5 - 738.8

Effectiveness factor - 0.109

Table 4-16  The Comparison of Model Prediction with Plant Design Data
for Convertor IV                                                

Design Data Model Prediction

FSO2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FSO3  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FO2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

FN2  (In-Out), Kmol/sec xxxx - xxxx xxxx - xxxx

Conversion of SO2 99.7% 99.7%

SO2 emission, PPM 400 400

Temp. (S16-S17 ), K 698.2 - 719.2 697.9 - 719.4

Effectiveness factor - 0.035
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are lump parameters that combine all of the mismatches in the kinetic model.  This includes

current bulk density and current activity of the catalyst, variation of real wet surface of catalyst.

The definition of these reaction effectiveness factor parameters are slightly different from the

original definition in kinetic theory.  In kinetic theory, the reaction effectiveness factor is defined

as the ratio of intrinsic reaction rate that is measured under no other mass transfer limitation to the

real reaction rate that is measured with mass transfer limitation.  Therefore, the reaction

effectiveness factor under this definition only reflects the effect of mass transfer rates.  The

reaction effectiveness factor defined in the present model is a lump parameter which incorporates

more mismatch information in the process.  Although there is no data for reaction effectiveness

factors available from plant design data for comparison, agreement between the plant model

prediction and plant design data for component flow rates and conversions of sulfur dioxide

indicates that the values of these parameters are accurate.   The reactor effectiveness factors were

originally determined from the empirical formulas with the  assumption of pseudo first order

reaction.  The modification of the reaction effectiveness factors to plant parameters provides

better simulations of the plant.

The step size is an important parameter in discretizing the differential equations to have

an accurate solution.  The differential balance equations for four convertors were discretized as

algebraic difference equations using improved Euler’s method.  A comparison of the solutions for

various step sizes is presented in Tables 4-17 and 4-18 for SO2 flow rate and total flow rate in

Convertors I and IV.  Tables 4-17 and 4-18 show the total flow rate and SO2 flow rate as a

function of step size through the Convertors I and IV.  Step number 



239

Table 4-17 Comparison of Various Step Sizes for Improved Euler’s 
Method for Convertor I                                

Position
Z/L

Total flow rate of gas stream in Convertor I

5 steps 10 steps 50 steps 100 steps 200 steps

0.0 2.99700 2.99700 2.99700 2.99700 2.99700

0.2 2.97966 2.97960 2.97963 2.97964 2.97964
0.4 2.95668 2.95629 2.95621 2.95620 2.95620

0.6 2.93018 2.92926 2.92898 2.92897 2.92897

0.8 2.90901 2.90697 2.90642 2.90641 2.90640

1.0 2.89791 2.89479 2.89412 2.89410 2.89410

Position
Z/L

SO2 flow rate of gas stream in Convertor I

5 steps 10 steps 50 steps 100 steps 200 step

0.0 .33700 .33700 .33700 .33700 .33700
0.2 .30231 .30220 .30227 .30228 .30228

0.4 .25636 .25557 .25541 .25541 .25541

0.6 .20335 .20152 .20096 .20094 .20094

0.8 .16103 .15695 .15585 .15581 .15580

1.0.0 .13882 .13257 .13124 .13121 .13120

Table 4-18 Comparison of Various Step Sizes for Improved Euler’s 
Method for Convertor IV                              

Position
Z/L

Total flow rate of gas stream SO2 flow rate of gas stream 

5 steps 10 steps 50 steps 100 steps 5 steps 10 steps 50 steps 100 steps

0.0 2.51100 2.51100 2.51100 2.51100 .01800 .01800 .01800 .01800 

0.2 2.50942  2.50943 2.50942 2.50940 .01485 .01487 .01485 .01480 

0.4 2.50779 2.50780  2.50779 2.50772 .01158 .01161 .01159 .01144

0.6 2.50609 2.50610 2.50609  2.50597 .00818 .00819 .00817 .00795

0.8 2.50434 2.50434 2.50433 2.50419 .00467 .00468 .00466 .00438

1.0 2.50282  2.50271 2.50267 2.50255 .00163  .00143  .00134 .00111
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of 5, 10, 50, 100, and 200

were used.  Also, the total

flow rate and SO2 flow rate

profiles are shown in Figure

4.6 for Convertor IV.

Comparison result of

Convertor I shows that

there was two significant

figures of accuracy for the

flow rate of sulfur dioxide and four significant figures of accuracy for the total flow rate for step

number of 10.  For step number of 100, there was six significant figure of accuracy for the total

flow rate.   The comparison result of Convertor IV shows that there was two significant figures

of accuracy for the flow rate of sulfur dioxide and four significant figures of accuracy for the total

flow rate for step number of 5.  Since concentration of SO2 is very small in Convertor IV, the

reaction rate is very small, and it became zero or a negative value for step number larger than

100.  This may be caused by round off and truncation errors.  An interval size of five steps was

used in this model for Convertors I to IV.  Based on the comparison results of step sizes, it is

recommended that  50 steps be used for Convertors I and II and 10 steps be used for

Convertors III and IV.  

Summary: The plant model for the sulfuric acid plant written in GAMS program

accurately predicts the conversion from sulfur to sulfuric acid product and the extraction of heat
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generated in the processes to produce steam as a by-product.  The simulation results agree with

plant design data with a overall average difference of 1% from the design data. Particularly, this

simulation successfully predicted the steam production, overall sulfur conversion and SO2

emission which are very important factors in terms of plant’s economics and emissions to

environment.
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CHAPTER V  OPTIMAL IMPLEMENTATION OF ON-LINE OPTIMIZATION

A. Introduction

In this chapter, the current operating data for sulfuric acid plant is used to conduct on-line

optimization.  This includes rectifying gross errors of plant data sampled from distributed control

system using combined gross error detection and data reconciliation method, estimating process

parameters and reconciling plant data using simultaneous data reconciliation and parameter

estimation method, optimizing plant operating set points using the updated process and economic

models.  Also, a number of cases that can be encountered in plant operations are investigated to

demonstrate how on-line optimization improves the plant profit and reduces the emission.  

The measurement test method and the methods based on Tjoa-Biegler’s contaminated

Gaussian distribution and Lorentzian distribution are used to conduct combined gross error

detection and data reconciliation; and their performances on various magnitudes of gross errors

and multiple gross errors are evaluated based on the numerical results.  Also, the proposed

modified compensation strategy is incorporated with measurement test method, which is called

modified compensation measurement test (MCMT) method.  It is to demonstrate how this

strategy improves the misrectification of data that occurs in data reconciliation from the presence

of large gross errors.  This strategy has a significant  advantage in terms of the method of solutions

and computation efficiency compared with the modified iterative elimination strategy, which was

incorporated in measurement test method and known as MIMT method.

Both two-step and one-step methods are used to estimate parameters in the plant model

for on-line optimization using the simulated plant data.  The results from these two strategies are
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evaluated to determine the best way to conduct parameter estimation based on the accuracy and

computation efficiency of the methods.  For the two-step method, a strategy to construct the new

set of measurements from step one has been proposed to avoid the interaction of both data

reconciliation in step one (combined gross error detection and data reconciliation) and in step two

(simultaneous data reconciliation and parameter estimation) in Chapter III, and it is incorporated

in the two-step method.  In addition, how process model formulations affects the results of gross

error detection, data reconciliation, parameter estimation is discussed based on computation

results.  This provides guidelines for the best way to formulate process models.  

Based on the results of this research, the optimal way to conduct on-line optimization is

proposed, and this is tested with the sulfuric acid plant of IMC Agrico Company.  Moreover, an

interactive on-line optimization system is developed to alleviate engineer’s effort of applying on-

line optimization.  This program incorporates the results of this research.  Finally, the main results

from this research are summarized, and a comparison with the research of other investigators is

given.

B. Results of On-Line Optimization Using Current Plant Data from DCS

As discussed in Chapter III, on-line optimization takes plant data (measurements) from

distributed control system and solves three optimization problems in sequence to provide optimal

set points for distributed control system.  The following paragraphs will discuss results from

conducting on-line optimization using data from the distributed control system of the sulfuric acid

plant. 
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The process measurements are taking from the Baily distributed control system of sulfuric

acid plant.  The distributed control system provides the direct measurements for all of

temperatures, pressures, and compositions and some of flow rates required for on-line

optimization.  However, the direct measurements of flow rates for gas streams (air from

compressor F04, gases from sulfur burner F05, gases from inter-pass absorption tower F14, and

gases from economizer 4A F20) are not available.  Therefore, these measurements are obtained

using the discharge pressure and speed of compressor (Fan).  The flow rate of stream S04 (F04)

is determined by the discharge pressure and speed of the compressor with the compressor

performance chart.  Then the flow rates of F05, F14, and F20 are determined by the flow rate

F04 and assuming 2%, 94.8%, and 99.7% (99.7% is a direct measurement) of SO2 conversion

at the corresponding streams.  Also, the standard deviations of the measured variables are

needed for on-line optimization, and these values are listed in Table 5-1 along with the names,

descriptions, and plant design data.  The standard deviations were determined from plant data,

and they were given by Zhang (Zhang, 1993).  In addition, two sets of plant data from DCS are

used to conduct on-line optimization, and they are given with the optimal solutions in the

subsequent tables.

The three optimization problems of on-line optimization for two-step method are

combined gross error detection and data reconciliation (data validation) using Tjoa-Bigeler’s

contaminated Gaussian distribution given in Eq. 3-33, simultaneous data 
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Table 5-1 Plant Design Data of Measured Variables for Sulfuric Acid Plant

Measured
variables Definition Design Data Standard

deviation

T04, K
T05, K
T06, K
T07, K
T08, K
T09, K
T10, K
T11, K
T13, K
T14, K
T15, K
T16, K
T17, K
T19, K
T20, K
T21, K
T58, C
T59, C
T60, C
T61, C
TS1, F
TS2, F
TS3, F
TS4, F
TS7, F
F04, kmol/s
F05, kmol/s
F14, kmol/s
F20, kmol/s
F50, kmol/s
F58, kmol/s
F59, kmol/s
F60, kmol/s
F61, kmol/s
FS1, kmol/s 
FS5, kmol/s
PS5, psia
PS7, psia
X, mol%
CSO2,100ppm
CO2, mol%
C58, wt%
C60, wt%

Temperature of gas stream S04,
Temperature of gas stream S05,
Temperature of gas stream S06,
Temperature of gas stream S07,
Temperature of gas stream S08,
Temperature of gas stream S09,
Temperature of gas stream S10,
Temperature of gas stream S11,
Temperature of gas stream S13,
Temperature of gas stream S14,
Temperature of gas stream S15,
Temperature of gas stream S16,
Temperature of gas stream S17,
Temperature of gas stream S19,
Temperature of gas stream S20,
Temperature of gas stream S21,
Temperature of acid stream S58,
Temperature of acid stream S59,
Temperature of acid stream S60,
Temperature of acid stream S61,
Temperature of steam stream SS1,
Temperature of steam stream SS2,
Temperature of steam stream SS3,
Temperature of steam stream SS4,
Temperature of steam stream SS7,
Mole flow rate of gas stream S04,
Mole flow rate of gas stream S05,
Mole flow rate of gas stream S14,
Mole flow rate of gas stream S20,
Mole flow rate of sulfur stream S50,
Mole flow rate of acid stream S58,
Mole flow rate of acid stream S59,
Mole flow rate of acid stream S60,
Mole flow rate of acid stream S61,
Mole flow rate of steam stream SS1,
Mole flow rate of steam stream SS5,
Pressure of steam stream SS5,
Pressure of steam stream SS7,
Total conversion of SO2 to SO3,
Mole fraction of SO2 in gas stream S21,
Mole fraction of O2 in gas stream S21,
Weight concentration of H2SO4 in stream S58
Weight concentration of H2SO4 in stream S60

    383.150
  1396.176
    692.538
    890.787
    712.554
    792.732
    712.585
    738.712
    438.083
    355.202
    594.156
    697.632
    719.628
    546.184
    405.192
    355.136
      80.857
    119.173
      82.095
      92.904
    219.957
    310.003
    402.934
    500.128
    749.997
      xxxx
      xxxx
      xxxx
      xxxx
        0.344
      14.595
      14.920
        6.953
        6.970
       xxxx
       xxxx      
   680.704
    654.701
        0.997
        4.153
        0.045
        0.980
        0.980

   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   3.6
   0.04
   0.04
   0.04
   0.04

   0.00557
   0.1637
   0.1637
   0.07385
   0.07385
   0.03843
   0.05438

   10.0
   10.0
   0.001
   0.1

   0.001
   0.001
   0.001
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 Figure 5.1 Procedure for On-Line Optimization

reconciliation and parameter estimation using least squares method given in Eq. 3-34, and the

plant economic optimization given in Eq. 3-37.  The objective functions in these three optimization

problems are specified in Eq. 3-34, 3-35, and 3-37 respectively.  The equality constraints are

the same for these optimization problems, and they were given in Chapter IV.  In addition, the

inequality constraints given in Chapter IV are included in plant economic optimization problem.

These three optimization problems were written as three GAMS programs (DataVali.gms,

ParaEsti.gms, and EconOpti.gms), and they were solved by GAMS.  These three programs are

given in Appendix F.

 The procedure to conduct on-line optimization and the program communication are

shown in Figure 5.1.  As shown in Figure 5.1, first the plant data file (pdt6-12p.dat) from the

DCS and parameter file (pdt6-10p.pe2) from the last sequent of on-line optimization are included

in the data validation program,

DataVali.gms.  DataVali.gms is executed

to construct plant data file, pdt6-12p.dv.

This data file is used in parameter

estimation  program, ParaEsti.gms, to

estimate process parameters and variables.

Executing ParaEsti.gms generates two data

files.  One is the estimated process

parameters, pdt6-12p.pe2, and this data

file is used in plant economic optimization next and in data validation for the next sequent of on-
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line optimization.  The other data file is the reconciled plant measurements, pdt6-12p.pe1.  After

parameters are updated, the plant economic optimization program, EconOpti.gms is executed to

generate a data file, pdt6-12p.eo1.  This data file contains the optimal set points, and it is sent to

distributed control system.  In addition, GAMS generates a comprehensive corresponding output

file for each optimization program, and they are DataVali.lst, ParaEsti.lst, and EconOpti.lst.

These files contain detail information about the solutions.  All of these files (three GAMS

programs, three corresponding output files, and five data files) are given in Appendix F with the

same file names. 

B-1. On-Line Optimization Cycle

When on-line optimization is conducted at the first time, the parameter values for current

operating conditions are not available.  However, these values must be given in the plant model

for combined gross error detection and data reconciliation if two-step method is used to estimate

plant parameters.  Therefore, the one-step method (simultaneous gross error detection, data

reconciliation, and parameter estimation) is conducted to estimate the values of plant parameters,

and these estimated values were used as the parameter values in the plant model for combined

gross error detection and data reconciliation in the first sequence of on-line optimization cycle for

two-step method.  After the first sequence of on-line optimization, the procedure to conduct on-

line optimization as well as data generation and exchange among on-line optimization programs

are the same as described in Figure 5.1.

The results of on-line optimization given in the following were based on the plant data on

June 10, 1997, 3PM (6-10-97) and June 12, 1997, 3PM (6-12-97).  The plant data on June
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10, 1997 was used to conduct on-line optimization for the first cycle, and plant data on June 12,

1997 was used to conduct on-line optimization for the second cycle.  The values of parameters

estimated from simultaneous data reconciliation and parameter estimation of the first cycle were

used in the plant model for combined gross error detection and data reconciliation of the second

cycle.  Table 5-2 lists the reconciled operation conditions on 6-10-97, 3PM and 6-12-97, 3PM

and the corresponding optimal set points.  In this table, the first and second columns list the names

and cost coefficients of process variables in the profit function.  The third and fourth columns are

the current reconciled operating data and the optimal set points from on-line optimization for the

plant data on 6-10-97, 3PM, and the fifth and six columns are the current reconciled operating

data and the optimal set points from on-line optimization for the plant data on 6-12-97, 3PM.

As shown in Table 5-2, on-line optimization gave a 2.3% (or $313,000/year) and 3.1% (or

$410,000/year) profit improvement over current operating condition on 6-10-97 and 6-12-97

respectively if the optimal setpoints were sent back to DCS as control targets.  This is typical of

the improvement on profit obtained from on-line optimization, and it leads to pay back periods

of six months to one year according to Ayala (1997).
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Table 5-2 The Comparison of Plant Operation and Optimal Solution 
from Plant Profit Optimization                           

                           

Variables
Cost
coefficients

Plant data
6-10-97, 3PM

Plant data
 6-12-97, 3PM Plant

design
conditionsOperating

data
Optimal
set points

Operating
data

Optimal
set points

F50, kmol/sec $1.70/kmol 0.373 0.379 0.370 0.380 0.345

FS1,  kmol/sec $0.00675/kmol xxxx xxxx xxxx xxxx xxxx

F51, lb/sec $0.00005/lb 20.83 21.15 20.64 21.21 19.15

F64, lb/sec $0.0097/lb 86.43 87.88 85.67 88.04 79.5

FS8, kmol/sec $0.0616/kmol xxxx xxxx xxxx xxxx xxxx

FS14, kmol/sec $0.103/kmol xxxx xxxx xxxx xxxx xxxx

Emission, lb SO2/ Ton H2SO4 4.2 4.0 4.1 4.0 4.0

Profit, $/second 0.4316 0.4415 0.4281 0.4411 0.3917
Profit Improvements 2.3%,  3.1%,   $410,000/year

The parameters in the plant model include seven heat transfer coefficients and four

reaction effectiveness factors for four convertors.  Table 5-3 gives the estimated values of

parameters using some of plant design data as measurements in column two, the estimated values

of parameters with one-step method using plant data on 6-10-97 in column three, and the

estimated values of parameters from on-line optimization with two-step method using the plant

operating data on 6-10-97 and 6-12-97 in columns four and five respectively.  As shown in

columns two and three of Table 5-3, the values of parameters estimated by current operating

conditions are larger than the design parameter values.  The reason is the estimated values of
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parameters are determined by the operating conditions, such as flow rates and temperatures.  If

the plant was running with a production rate that is higher than the plant design production rate,

then the current operating flow rates and/or temperature differences between the input and output

of heat exchangers may be larger than those from plant design data.  As shown in Table 5-2, the

sulfur feed rate (F50), steam flow rate (FS1), and sulfuric acid flow rate (F64) of the two sets

of current operating data are greater than those of plant design conditions.   This gave larger

estimated values of the parameters. 



243

Table 5-3 The Estimated Parameters from On-Line Optimization

Parameters
Names

Estimated
values using
plant design

data

Estimated values
with one-step

method using 6-
10-97 plant  data

Estimated values with
two-step method

using 6-10-97 plant
data

Estimated values
with two-step

method using 6-
12-97  plant data

Uboiler, BLRU xxxx xxxx xxxx xxxx

Uex65, EX65U xxxx xxxx xxxx xxxx

Uex66, EX66U xxxx xxxx xxxx xxxx

Uex67, EX67U xxxx xxxx xxxx xxxx

Uex68, EX68U xxxx xxxx xxxx xxxx

Uex69, EX69CDU xxxx xxxx xxxx xxxx

Uex69A, EX69AU xxxx xxxx xxxx xxxx

Ef
I, EFFI 0.24011 0.2923 0.2881 0.2789

Ef
II, EFFII 0.1597 0.1471 0.1372 0.1426

Ef
III, EFFIII 0.1071 0.1113 0.1111 0.1044

Ef
IV, EFFIV 0.03605 0.0367 0.0396 0.0418

Tables 5-4 and 5-5 list the plant data from DCS, constructed data from data validation,

reconciled data from data reconciliation and parameter estimation, and optimal set points from

plant optimization using plant data on 6-10-97 and 6-12-97.  In Tables 5-4 and 5-5, the

measurements that were detected as containing gross errors are shown in underline under

reconstructed data column, and the values of these measurements were replaced by the

reconciled data from data validation.  Six and ten measurements were identified containing gross

errors in plant data on 6-10-97 and 6-12-97 respectively.  The same six measurements (T07,
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T20, TS3, TS7, FS1, and CO2) in two sets of plant data were identified with gross errors.  In

these six measurements, T07 and T20 are the temperatures
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Table 5-4 The Reconciled Data and Optimal Solution from On-Line 
  Optimization Using Plant Data on 6-10-97, 3PM

Measured
variables Plant data

Reconstructed data
from DataVali.gms

Reconciled data
from ParaEsti.gms

Optimal solution from
EconOpti.gms

T04 394.8 394.8 394.4 393.2
T05 1382.0 1382.0 1381.8 1404.1
T06 681.5 681.5 681.1 692.0
T07 873.2 888.8 885.2 895.0
T08 725.4 725.4 728.8 740.0
T09 796.0 796.0 795.0 807.7
T10 709.0 709.0 710.8 731.0
T11 737.0 737.0 736.3 758.4
T13 450.4 450.4 451.8 455.4
T14 355.4 355.4 354.3 397.7
T15 591.5 591.5 591.3 622.4
T16 699.8 699.8 699.4 721.0
T17 722.0 722.0 721.3 747.8
T19 533.2 533.2 536.0 548.4
T20 425.9 412.2 412.3 407.2
T21 356.5 356.5 356.3 378.2
T58 83.3 83.3 80.6 80.9
T59 119.4 119.4 122.2 123.0
T60 85.6 85.6 86.6 82.1
T61 100.6 100.6 99.5 92.9
TS1 233.0 233.0 233.2 219.2
TS2 315.0 315.0 312.7 308.1
TS3 430.0 395.4 393.3 410.0
TS4 500.0 500.0 500.0 520.8
TS7 734.0 709.0 711.8 740.0
F04 xxxx xxxx xxxx xxxx
F05 xxxx xxxx xxxx xxxx
F14 xxxx xxxx xxxx xxxx
F20 xxxx xxxx xxxx xxxx
F50 0.3624 0.3624 0.3732 0.3790
F58 14.99 14.99 14.99 13.90
F59 15.33 15.33 15.34 14.25
F60 7.02 7.02 7.02 6.200
F61 7.04 7.04 7.04 6.224
FS1 xxxx xxxx xxxx xxxx
FS5 xxxx xxxx xxxx xxxx
PS5 689.7 689.7 694.4 675.7
PS7 654.7 654.7 652.9 640.0
X 0.997 0.997 0.9969 0.997

CSO2 4.13 4.13 4.129 4.059
CO2 0.0453 0.0497 0.0509 0.0457
C58 0.986 0.986 0.986 0.98
C60 0.986 0.986 0.986 0.98
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Table 5-5 The Reconciled Data and Optimal Solution from On-Line 
Optimization Using Plant Data on 6-12-97, 3PM

Measured
variables Plant data Reconstructed data

from DataVali.gms
Reconciled data

from ParaEsti.gms
Optimal solution from

EconOpti.gms
T04 395.9 395.9 396.0 393.2
T05 1382.0 1382.0 1382.2 1402.8
T06 679.3 679.3 679.0 694.6
T07 868.2 883.0 881.2 895.0
T08 723.2 723.2 724.9 739.2
T09 794.8 794.8 793.5 809.1
T10 708.2 708.2 709.5 731.1
T11 735.9 735.9 733.6 757.6
T13 448.7 448.7 450.6 453.1
T14 355.4 355.4 353.9 392.2
T15 589.8 589.8 590.5 619.6
T16 698.2 698.2 698.3 719.8
T17 721.5 721.5 721.3 747.6
T19 533.2 533.2 536.0 549.3
T20 424.3 412.5 411.0 404.3
T21 357.0 357.0 356.8 379.8
T58 82.8 82.8 80.6 80.9
T59 118.9 118.9 121.2 123.2
T60 86.1 86.1 87.4 82.1
T61 101.1 101.1 99.8 92.4
TS1 232.0 232.0 234.6 215.1
TS2 320.0 320.0 314.7 307.1
TS3 440.0 393.0 393.9 408.9
TS4 500.0 500.0 500.2 519.9
TS7 730.0 710.0 712.0 740.0
F04 xxxx xxxx xxxx xxxx
F05 xxxx xxxx xxxx xxxx
F14 xxxx xxxx xxxx xxxx
F20 xxxx xxxx xxxx xxxx
F50 0.3663 0.3663 0.3699 0.3801
F58 15.16 15.16 15.17 13.90
F59 15.51 15.51 15.51 14.25
F60 7.23 7.23 7.23 6.200
F61 7.25 7.25 7.25 6.225
FS1 xxxx xxxx xxxx xxxx
FS5 xxxx xxxx xxxx xxxx
PS5 689.7 689.7 692.1 680.4
PS7 654.7 654.7 655.0 640.0
X 0.997 0.997 0.9970 0.997

CSO2 4.06 4.06 4.06 4.050
CO2 0.046 0.051 0.0511 0.0460
C58 0.986 0.986 0.986 0.98
C60 0.986 0.986 0.986 0.98
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of gases exiting from convertor I and exiting from final absorption tower.  TS3 and TS7 are the

temperatures of steam exiting from Economizer 3B and exiting from superheater.  FS1 and CO2

are the flow rate of steam input to Economic 4A and the concentration of O2 in gas stream exiting

final absorption tower.  The errors in these measurements are from instrument measuring errors.

In addition, four flow rates (F04, F05, F14, and F20) in the plant data on 6-12-97 were

detected containing gross errors.  The reason that four flow rates were detected as containing

gross errors in the same set of plant data was that all four flow rates were calibrated from the

same measurement sources, the discharge pressure of compressor and the speed of turbine.

Therefore, the measuring error in either/both discharge pressure of the compressor or/and speed

of the turbine would cause gross errors in these four flow rates.   

B-2. Plant Economic Optimization

In this section, the economic benefit from on-line optimization is studied for plant  design

data cases and current operating data cases.  For plant design data cases, the parameter values

estimated by plant design data for measured variables in Table 5-1 were used in the plant model

for economic optimization, and the optimal profit from economic optimization is compared with

the plant profit under the plant design operation conditions.  For current operation data cases, the

parameter values estimated by the plant data on 6-12-97 were used in the plant model for

economic optimization, and the optimal profit from economic optimization is compared with the

plant profit under operating conditions on 6-12-97.  Also, a number of cases that can be

encountered in plant operation are simulated to show how plant optimization improves the plant

profit and reduces the emission.
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Plant Optimization for Plant Design Cases:  In this section, the parameter values

determined by plant design data were used in plant economic optimization.  Table 5-6 lists the

optimization cases and compares them with plant design data.  Table 5-7 lists the operation

conditions for the corresponding cases in Table 5-6.  In Table 5-6, the first and second columns

list the names and cost coefficients of process variables in the profit function.  The third through

sixth columns list the corresponding optimal values of the process variables, the optimal profits

and the improvement over design data for design case and cases 1 to 3.  In Table 5-7, the first

column lists the names of the important process 

Table 5-6 The Basic Economic Cases for the Sulfuric Acid Process

Var. Cost Coefficients Design data Case 1 Case 2 Case 3

F50 $1.7/kmol 0.3450 0.3456 0.3420 0.3447

FS1 $0.00675/kmol xxxx xxxx xxxx xxxx

F51 $0.00005/lb 19.15 19.29 19.13 19.25

F64 $0.0097/lb 79.50 80.04 79.41 79.89

FS8 $0.0616/kmol xxxx xxxx xxxx xxxx

FS14 $0.1030/kmol xxxx xxxx xxxx xxxx

Plant profit, $/sec 0.3917 0.4032 0.3791 0.4009

Profit improvement
- 2.9%

-3.2% and
80% emission

reduction

2.3% and
25% emission

reduction

SO2 emission:
    lb SO2/ ton H2SO4

4.04 4.00 0.742 3.00

Optimization objective
maximize

profit
maximize

profit
minimize emission

maximize profit with
emission less than 3
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Table 5-7  Operation Conditions of Basic Economic Cases for the Sulfuric Acid Process

Names of
Variables

Design
data

Case 1 Case 2 Case 3
Lower
bound

Upper
bound

T04, K 383.2 393.0 373.0 393.0 373 393
T05, K 1396.2 1428.8 1318.3 1417.7 1296 1496
T06, K 693.2 696.2 704.3 696.8 688 895

T07, K 890.2 895.0 895.0 895.0 688 895
T08, K 713.2 713.9 727.3 714.9 688 895
T09, K 792.2 796.4 801.1 796.6 688 895
T10, K 713.2 725.3 713.3 723.6 688 895
T11, K 738.2 752.6 735.5 750.3 688 895

T12, K 556.2 584.3 550.9 580.0 500 650
T13, K 438.2 431.5 443.0 432.6 388 488
T14, K 355.2 400.8 337.2 393.3 305 405
T15, K 594.2 621.8 575.5 616.6 534 654
T16, K 698.2 713.5 688.0 710.7 688 895

T17, K 719.2 739.9 702.8 735.4 688 895
T19, K 546.2 552.6 552.0 552.1 496 596
T20, K 405.2 394.4 406.4 395.5 355 455
TS1, Fo 220.0 200.0 200.0 200.0 200 220
TS2, Fo 310.0 296.2 309.0 297.1 260 360

TS3, Fo 403.0 411.5 406.5 410.3 352 452
TS4, Fo 500.0 510.7 504.0 509.2 450 550
TS7, Fo 750.0 751.1 772.5 752.2 740 800
F04, kmol/s xxxx xxxx xxxx xxxx 0.0 4.0
F05, kmol/s xxxx xxxx xxxx xxxx 0.0 4.0

F14, kmol/s xxxx xxxx xxxx xxxx 0.7 3.3
F20, kmol/s xxxx xxxx xxxx xxxx 0.7 3.3
F50, kmol/s 0.345 0.3456 0.3420 0.3447 0.0 0.354
F05SO3, kmol/s xxxx xxxx xxxx xxxx 0.0 1.0
F07SO3, kmol/s xxxx xxxx xxxx xxxx 0.001 4.0

F09SO3, kmol/s xxxx xxxx xxxx xxxx 0.001 4.0
F11S03, kmol/s xxxx xxxx xxxx xxxx 0.01 4.0
F17SO3, kmol/s xxxx xxxx xxxx xxxx 0.0001 4.0
F20SO2, kmol/s xxxx xxxx xxxx xxxx 0.00005 1.0
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x 0.9970 0.9970 0.9995 0.9978 0.0 1.0

variables, and the second through fifth columns give the corresponding values of these variables for

design and case 1 to case 3.  The sixth and seventh columns list the lower and upper bounds of

these variables which were imposed in the GAMS program for economic optimization.

Case 1 was to maximize the profit of the sulfuric acid plant with the profit function given

in Figure 3.6.  The emission restriction is that the amount of SO2 emission should be less than four

lb when a ton of sulfuric acid is produced, and it was added to the economic optimization problem.

As shown in Table 5-6, the plant profit of case 1 was a 2.9%  improvement in profit over the

design case.  It can be seen from Table 5-7, the operating of gas streams for sulfur burner and four

convertors (T04 to T11 and T16 to T17) given by economic optimization were higher than the

design temperatures, which were an average of 10 degree higher.  This higher operating

temperatures gave higher reaction rates, and therefore, it allowed a 0.0006 kmol/second higher

sulfur feed rate from case 1 than design data.  Hence, case 1 gave a 2.9% profit improvement over

design data, which is $370,000/year of profit improvement.  

Case 2 was to investigate the limitation of reducing SO2 emission.  The objective in this

case was to minimize the amount of SO2 discharge for per ton of sulfuric acid, i.e., F21SO2/F64.

In this objective function, F21SO2 is the component flow rate of SO2 in the stack and F64 is the

rate of sulfuric acid product.  The optimization solution showed the minimum emission for sulfuric

acid plant was 0.74 lb SO2/ton H2SO4.  In this optimization, minimizing F21SO2/F64 was the main

driving force for determining the operation conditions.  To achieve this, the optimization solution
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reduced 0.005 kmol/sec. sulfur feed rate (F50), increased 0.231 kmol/sec. air feed rate (F04), and

reduced operating temperature at convertor four to the lower limit, 688 K.  These changes gave

a lower equilibrium concentration of SO2 and higher sulfur conversion.  The optimal solution from

case 2 showed that the sulfuric acid process is able to reduce the emission to 0.74 lb SO2/ton

H2SO4 and achieved a 99.95% sulfur conversion.

Case 3 was to maximize the plant profit at a lower SO2 emission restriction, i.e.,

F21SO2/F64 < 3 lb SO  2/ton H  2SO  4.  The optimization solution gave a 2.3% of profit

improvement over design data and 25% lower SO2 emission.  Under the optimal operating

condition, the sulfur conversion was increased about 0.08% compared with design data and this

resulted in a lower emission rate and 2.3% higher profit.

This section is to investigate the effect of the product prices on the optimal operation

conditions of the plant and to show the improvement of plant profit under optimal operation

conditions over the design profit of the sulfuric acid plant.  Table 5-8 summarizes the optimal

operation conditions under various prices of products and the corresponding plant profits.  In Table

5-8, the first and second columns list the names and the units of cost coefficients of the process

variables in the profit function, and the third column lists the plant design conditions with respect

to the raw materials and products.  Table 5-8 shows four different economic cases and the

respective optimal operation conditions from plant economic optimization. 

In Table 5-8, cases 4 and 5 were to show the effect of change in steam or sulfuric acid

prices on the optimal profit.  The objective of case 4 is to maximize the plant profit function 



Table 5-8 Impacts of Parameters in the Economic Model on Plant Profits for the Sulfuric Acid Process

Name of
variables   (see
Table 4-1 for
description)

Unit of
cost
coef.

Plant design
data

Case 4 Case 5 Case 6 Case 7

Cost coef. Optimal
values Cost coef. Optimal

values Cost coef. Optimal
values Cost coef. Optimal

values

F50,  kmol/sec $/kmol 0.345 1.70 0.3453 1.70 0.3466 0.3414 0.3492

FS1,  kmol/sec $/kmol xxxx 0.00675 xxxx 0.00675 xxxx xxxx xxxx

F51, lb/sec $/lb 19.15 0.00005 19.27 0.00005 19.34 19.05 19.49

F64, lb/sec $/lb 79.5 0.0097 79.97 0.01358 80.27 79.07 0.0097 80.87

FS8, kmol/sec $/kmol xxxx 0.0862 xxxx 0.0616 xxxx 0.0616 xxxx xxxx

FS14, kmol/sec $/kmol xxxx 0.144 xxxx 0.103 xxxx 0.103 xxxx xxxx

Optimal profit $0.4963/sec $0.7142/sec  $0.2346/sec $0.7844/sec

Plant design profit $0.4817/sec. $0.7001/sec $0.2261/sec $0.7712/sec

Profit improvement over current
Plant operation conditions 3.3% 2.0% 3.8% 1.7%
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given in Figure 3.6 with a 40% of price increase for both high and low pressure steams. Under

this objective, the economic optimization gave the optimal operating conditions that could

achieved 3.3% profit improvement over the plant design conditions.  The objective of case 5 is

to maximize the plant profit function given in Figure 3.6 with a 40% of price increase for sulfuric

acid.  Under this objective, the economic optimization gave optimal operating conditions that

could achieved 2.0% profit improvement over the plant design conditions.

Cases 6 and 7 were to investigate how plant optimization improves the plant economics

for some special cases, such as plant must run under reduced rate for certain products.  Case 6

assumed that the production rate of the sulfuric acid was more than the market demand; and

therefore, the operating objective was to produce more steams only, i.e., P = FS8 SFS8 + FS14

SFS14.  The objective of case 6 was to maximize the profit from steam only.  Under this objective,

the economic optimization gave the optimal operating conditions that could achieved 3.8% profit

improvement on steam products over the plant design conditions.  Case 7 assumed that the

production rate of steam was more than the market demand; and therefore, the operating

objective was to produce more sulfuric acid only, i.e, P = F64 SF64.  The objective of case 7 was

to maximize the profit of sulfuric acid only.  Under this objective, the economic optimization gave

the optimal operating conditions that could achieved 1.7% profit improvement on sulfuric acid

product over the plant design conditions.

Profit Sensitivity to Parameters:  The impact of the variations of plant parameters on the

optimal profit was studied using the plant design data.  Table 5-9 shows the impacts of these

parameters on the plant profits for cases 8 through 10.  In case 8, it was assumed that the catalyst
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in convertor III was replaced with other shape of catalyst; and therefore, the reaction

effectiveness factors in this convertor increases from 0.11 to 0.13.  In case 9, it was assumed that

the catalyst in convertor IV was replaced with other shape of catalyst; and therefore, the reaction

effectiveness factors in this convertor increases from 0.036 to 0.055.  Under these new

conditions for the plant, the optimization for both cases adjusted the optimal operation conditions

to have a higher sulfur feed rate, and this resulted in a higher sulfuric acid and steam production

rates and high optimal plant profit.  The profit improvement under the optimal operation

conditions over the design profit was 4.4% for case 8 and 5.2% for case 9.

 Table 5-9 Impacts of Parameters in the Plant Model on Plant 
         Profits for the Sulfuric Acid Process          

Name of Var. Cost coef.
Plant design

data
Case 8 Case 9 Case 10

F50,  kmol/sec $1.7/kmol 0.345 0.3504 0.354 0.356

FS1,  kmol/sec $0.00675/kmol xxxx xxxx xxxx xxxx

F51, lb/sec $0.00005/lb 19.15 19.56 19.76 19.87

F64, lb/sec $0.0097/lb 79.50 81.16 81.99 82.45

FS8, kmol/sec $0.616/kmol xxxx xxxx xxxx xxxx

FS14, kmol/sec $0.103/kmol xxxx xxxx xxxx xxxx

Plant parameter change Increase
capacity in
Convertor

III

Increase
capacity in
Convertor

IV

Increase
capacity in

Convertor IV
and sulfur feed

Profit, $/sec 0.3917 0.4089 0.4121 0.4137

Profit improvement over current
plant operation conditions

4.4% 5.2% 5.6%
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In case 10, the conditions of the plant was the same as case 9.  The additional change

in this case was that the sulfur feed rate limit was increased.  Under this condition, the optimal

optimization solution increases the sulfur feed rate by 0.002kmol/sec. compared with case 9.  The

profit improvement of case 10 over plant design profit was 5.6% or $727,000/year.

Plant Optimization for Current Operation: In this section, the parameters in the plant

model were estimated using plant data on 6-12-97, 3PM.  These parameters values were used

in the plant model for plant economic optimization.  Also, the reconciled values of plant data on

6-12-97, 3PM were used to determine the plant operating profit for various profit functions and

to compared with the results of plant economic optimization.

Table 5-10 lists the optimal solutions from plant economic optimization for four special

operation cases, case 11 to case 14.  In Table 5-10, the first to third columns list the names of

variables in the profit function, the cost coefficients, and the reconciled operation conditions of

plant data on 6-12-97, 3PM.  The fourth to seventh columns list the optimal solutions from

economic optimization for four special operation cases.

Cases 11 and 12 assumed that the plant must run under a reduced rate for steam

production.  Therefore, the objective function of the plant economic optimization was changed

to maximize the sulfuric acid profit with a lower cost for case 11 and to maximize the production

of sulfuric acid only for case 12.  Cases 11 and 12 showed that plant 



Table 5-10 The Optimal Solutions from Plant Economic Optimization for the Special Operation Cases 

Variables Cost coefficient Operating
data

Case 11 - cut steam
production rate

Case 12 - cut steam
production rate

Case 13 - cut H2SO4
production rate

Case 14 - reduce 10%
of SO2 emission

F50, kmol/sec $1.70/kmol 0.370 0.484 0.385 0.377 0.3790

FS1,  kmol/sec $0.00675/kmol xxxx xxxx xxxx xxxx xxxx

F51, lb/sec $0.00005/lb 20.64 21.44 21.47 21.04 21.16

F64, lb/sec $0.0097/lb 85.67 89.00 89.09 87.31 87.80

FS8, kmol/sec $0.0616/kmol xxxx xxxx xxxx xxxx xxxx

FS14, kmol/sec $0.103/kmol xxxx xxxx xxxx xxxx xxxx

Profit function = SF64 F64-CF50

F50
  -CFS1FS1-CF51

F51

 = SF64 F64
=SFS8 FS8 + SFS14 FS14
  - CF50 F50- CFS1 FS1
  - CF51 F51

= SF64 F64 + SFS8 FS8
  +SFS14 FS14 -CF50

F50
  - CFS1 FS1 -CF51 F51

Current plant profit, $/second 0.1809 0.8310 0.2472 0.4281

Optimal profit, $/second 0.1899 0.8642 $0.2554/sec $0.4397/sec

Profit Improvements 5.0% 4.0% 3.3%, 2.7%

SO2 Emission, lb SO2/ Ton sulfuric acid 4.0 4.0 4.0 3.6
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optimization gave 5.0% and 4.0% profit improvements over the operating conditions on 6-12-97,

3PM respectively.  Case 13 assumed that plant must run under a reduced rate of sulfuric acid

product.  Therefore, the objective function of plant economic optimization was changed to

maximize the production rate of steam only.  The plant optimization for case 13 gave 3.3% profit

improvement over the current operation condition if the plant must run under a reduced rate of

sulfuric acid product.  Case 14 was to optimize the plant operation conditions with a 10% lower

emission restriction, 3.6 lb SO2 emission for per ton of produced sulfuric acid.  The plant

optimization for case 14 adjusted the operation conditions to have 2.7 profit improvement and

10% emission reduction compared with current operation conditions.

Summary: Plant economic optimization demonstrated a potential in improving the plant

profits and reducing pollutant emission.  The plant economic optimization showed 3% profit

improvement or 2.3% profit improvement and 25% emission reduction over the design conditions

for the sulfuric acid process at IMC Agrico Company’s plant.  On-line optimization using current

operating data demonstrated that plant economic optimization gave 2.3% ($313,000/year) and

3.1% ($410,000/year) profit improvement over the plant operation conditions on 6-10-97 and

6-12-97.  Also, plant economic optimization was able to achieve up to 5% profit improvements

over the current plant operation conditions for some special operating cases, such as plant must

run under cut rate of certain product.  Moreover, plant optimization could assign the operation

set points that reduced the SO2 emission and still achieved 2.7% profit improvement over current

operation condition.  

B-3. Gross Error Detection and Data Reconciliation for Current Plant Operating Data
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In this section, the current plant operating data given in Table 5-4 and 5-5 are used to

conduct combined gross error detection and data reconciliation using three methods.  These three

methods are Tjoa-Biegler’s contaminated Gaussian distribution method, measurement test

method, and robust method using Lorentzian distribution function.  The mathematical statement

for these three methods were given in Eq.3-4 for measurement test method, Eq. 3-10 for

contaminated Gaussian distribution method, and Eq. 3-14 for Lorentzian distribution method

respectively.  These three optimization problems were written in GAMS programs, and they were

solved by GAMS.  These three GAMS programs are given in Appendix F.  The gross error

detection results from these three methods are summarized in Table 5-11 and 5-12 for the plant

data on 6-10-97 and 6-12-97.

Table 5-11 lists the plant data on 6-10-97 and the constructed plant data from Tjoa-

Biegler’s method, measurement test method, and robust method.  In the table, the measurements

that were identified with gross errors are showed underline.  As shown in Table 5-11, Tjoa-

Biegler’s method detected six gross errors (T07, T20, TS3, TS7, FS1, and CO2), measurement

test method detected three gross errors (T07, TS3, FS1), and robust method detected fourteen

gross errors (T04, T07, T14, T15, T16, T17, T20, TS3, TS4, TS7, F58, F59, FS1, and CO2)

among 43 measurements.

Table 5-12 lists the plant data on 6-12-97 and the reconstructed plant data from Tjoa-

Biegler’s method, measurement test method, and robust method.  In this table, measurements that

were identified with gross errors were marked underline.  As shown in Table 5-12, Tjoa-
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Biegler’s method detected ten gross errors (T07, T20, TS3, TS7, F04, F05, F14, F20, FS1, and

CO2), measurement test method detected three gross errors (T07, 
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Table 5-11 Comparison of the Reconstructed Data from Plant Data
 on 6-10-97, 3PM for the Three Methods       

Measured
variables

Plant data T-B method
Measurement test

method
Robust method

T04 394.8 394.8 394.8 417.8
T05 1382.0 1382.0 1382.0 1382.0
T06 681.5 681.5 681.5 681.5
T07 873.2 888.8 890.2 888.4
T08 725.4 725.4 725.4 725.4
T09 796.0 796.0 796.0 796.0
T10 709.0 709.0 709.0 709.0
T11 737.0 737.0 737.0 737.0
T13 450.4 450.4 450.4 450.4
T14 355.4 355.4 355.4 336.7
T15 591.5 591.5 591.5 572.4
T16 699.8 699.8 699.8 688.2
T17 722.0 722.0 722.0 705.0
T19 533.2 533.2 533.2 533.2
T20 425.9 412.2 425.9 413.9
T21 356.5 356.5 356.5 356.5
T58 83.3 83.3 83.3 83.3
T59 119.4 119.4 119.4 119.4
T60 85.6 85.6 85.6 85.6
T61 100.6 100.6 100.6 100.6
TS1 233.0 233.0 233.0 233.0
TS2 315.0 315.0 315.0 315.0
TS3 430.0 395.4 401.8 388.7
TS4 500.0 500.0 500.0 488.4
TS7 734.0 709.0 734.0 698.9
F04 xxxx xxxx xxxx xxxx
F05 xxxx xxxx xxxx xxxx
F14 xxxx xxxx xxxx xxxx
F20 xxxx xxxx xxxx xxxx
F50 0.3624 0.3624 0.3624 0.3624
F58 14.99 14.99 14.99 17.73
F59 15.33 15.33 15.33 18.08
F60 7.02 7.02 7.02 7.02
F61 7.04 7.04 7.04 7.04
FS1 xxxx xxxx xxxx xxxx
FS5 xxxx xxxx xxxx xxxx
PS5 689.7 689.7 689.7 689.7
PS7 654.7 654.7 654.7 654.7
X 0.997 0.997 0.997 0.997

CSO2 4.13 4.13 4.13 4.13
CO2 0.0453 0.0497 0.0453 0.0547
C58 0.986 0.986 0.986 0.986
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C60 0.986 0.986 0.986 0.986

Table 5-12 Comparison of the Reconstructed Data from Plant Data 
on 6-12-97, 3PM for the Three Methods      

Measured
Var.

Plant data T-B method
Measurement test

method
Robust method

T04 395.9 395.9 395.9 447.7
T05 1382.0 1382.0 1382.0 1382.0
T06 679.3 679.3 679.3 692.7
T07 868.2 883.0 889.4 890.5
T08 723.2 723.2 723.2 723.2
T09 794.8 794.8 794.8 794.8
T10 708.2 708.2 708.2 708.2
T11 735.9 735.9 735.9 735.9
T13 448.7 448.7 448.7 448.7
T14 355.4 355.4 355.4 320.7
T15 589.8 589.8 589.8 564.0
T16 698.2 698.2 698.2 681.0
T17 721.5 721.5 721.5 695.0
T19 533.2 533.2 533.2 533.2
T20 424.3 412.5 424.3 424.3
T21 357.0 357.0 357.0 357.0
T58 82.8 82.8 82.8 82.8
T59 118.9 118.9 118.9 118.9
T60 86.1 86.1 86.1 86.1
T61 101.1 101.1 101.1 101.1
TS1 232.0 232.0 232.0 244.4
TS2 320.0 320.0 320.0 320.0
TS3 440.0 393.0 399.5 389.7
TS4 500.0 500.0 500.0 484.6
TS7 730.0 710.0 730.0 696.5
F04 xxxx xxxx xxxx xxxx
F05 xxxx xxxx xxxx xxxx
F14 xxxx xxxx xxxx xxxx
F20 xxxx xxxx xxxx xxxx
F50 0.3663 0.3663 0.3663 0.3663
F58 15.16 15.16 15.16 18.53
F59 15.51 15.51 15.51 18.88
F60 7.23 7.23 7.23 7.23
F61 7.25 7.25 7.25 7.25
FS1 xxxx xxxx xxxx xxxx
FS5 xxxx xxxx xxxx xxxx
PS5 689.7 689.7 689.7 689.7
PS7 654.7 654.7 654.7 654.7
X 0.997 0.997 0.997 0.997

CSO2 4.06 4.06 4.06 4.06
CO2 0.046 0.051 0.046 0.060
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C58 0.986 0.986 0.986 0.986
C60 0.986 0.986 0.986 0.986

F14, FS1), and robust method detected fifteen gross errors (T04, T07, T08, T14, T15, T16,

T17, TS1, TS3, TS4, TS7, F58, F59, FS1, and CO2) among 43 measurements.

The results from these three methods for gross error detection and data reconciliation

showed that Tjoa-Biegler’s method and measurement test method gave better result than robust

method.  Although the true gross error information was not available for comparison, a 10% to

20% gross errors in measurements is the common case in the plant sampled data.  Tjoa-Biegler’s

method identified that 18% of measurements contain gross errors, measurement test method

identified that 7% of measurements contain gross errors, and robust method identified that 34%

of measurements contain gross errors.

As discussed in Chapter III for the comparison of relative efficiencies of distributions,

variation of Lorentzian distribution is larger than the contaminated Gaussian distribution and

normal distribution; and therefore it has a lower relative efficiency (or low accuracy) when

measurements do no have very larger gross errors.  The numerical studies of gross error

detection, which will be discussed in Section D of this chapter, showed that Lorentzian committed

a larger number of type I errors (i.e., misidentify a normal measurement as one with a gross error)

than Tjoa-Biegler’s method and measurement test method when the gross errors in measurements

are less than 20F (as shown in Figure 5.5 and Figure 5.6).  Therefore, it is reasonable to

conclude that robust method using Lorentzian distribution function committed some type I errors

in identifying gross errors for the plant data on 6-10-97 and 6-12-97, and some of measurements

that did not have gross errors were misidentified with gross errors.
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B-4. Sensitivity of Results for Combined Gross Error Detection and Data Reconciliation to
Parameter Values in the Plant Model

In this section, the effect of parameter values in the plant model on the result of combined

gross error detection and data reconciliation is given.  In Chapter III, it was proposed that

parameter values from previous parameter estimation be used in the plant model for combined

gross error detection and data reconciliation to construct a set of measurements from the data

sampled by DCS for estimating current plant parameters.  In this section, two sets of parameter

values were used in the plant model for combined gross error detection and data reconciliation

to construct a set of  measurements in the first sequent of on-line optimization.  These two sets

of starting parameters are plant design parameters and one-step estimated parameters using

current plant data.  Then the constructed measurements were used to estimate current values of

parameters.  The estimated current values of parameters were compared for these two sets of

starting parameters to show how sensitive the results of the on-line parameter estimation is to the

starting parameter values in the plant model for combined gross error detection and data

reconciliation.

Table 5-13 lists the estimated parameter values using plant operating data for two

different cases.  For case of plant design parameters, the plant parameters estimated by plant

design data, which are listed in column two (Set A), were used in plant model for data validation

at the first sequence of on-line optimization.  The parameters estimated sequence 



Table 5-13 Estimated Parameters Using Measurements Reconstructed from Plant Operating
Data for Cases of Plant Design Data and One-Step Estimated Data   

Parameters
Names

Plant design parameter case One-step estimated parameter case

Set A:
Design
parameters

 Set B:
Estimated values
using 6-10-97
plant data

Set C:
Estimated values
using 6-12-97
plant data

Set D:
One-step estimated
Parameters using 6-
10-97 plant data

Set E:
Estimated values
using 6-10-97
plant data

Set F:
Estimated values
using 6-12-97
plant data

BLRU xxxx xxxx xxxx xxxx xxxx xxxx

EX65U xxxx xxxx xxxx xxxx xxxx xxxx

EX66U xxxx xxxx xxxx xxxx xxxx xxxx

EX67U xxxx xxxx xxxx xxxx xxxx xxxx

EX68U xxxx xxxx xxxx xxxx xxxx xxxx

EX69CDU xxxx xxxx xxxx xxxx xxxx xxxx

EX69AU xxxx xxxx xxxx xxxx xxxx xxxx

EFFI 0.24011 0.2591 0.2627 0.2923 0.2881 0.2789

EFFII 0.1597 0.1400 0.1369 0.1471 0.1372 0.1426

EFFIII 0.1071 0.1208 0.1123 0.1113 0.1111 0.1044

EFFIV 0.03605 0.03520 0.0390 0.0367 0.0396 0.0418
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was that first the plant design parameters shown in column two (Set A) were used in the data

validation of plant data on 6-10-97.  Then the reconstructed plant measurements were 

used to estimated plant parameters, and the estimated values are shown in column three (Set B).

The parameters in set B were used in the data validation of plant data on 6-12-97.  Then the

reconstructed plant measurements were used to estimated plant parameters, and the estimated

values are given in column four (Set C).  For the case of one-step estimated parameters, first the

plant data on 6-10-97 was used to estimate plant parameters using one step method

(simultaneous gross error detection, data reconciliation, and parameter estimation), and the

estimated parameter values were given in column five (Set D).  These parameters (Set D) were

used in data validation of plant data on 6-10-97 (step one of two-step method) to construct the

plant measurements for next step of parameter estimation.  The constructed plant data was used

to estimate plant parameters in step two of two-step method, and the values of the estimated

parameters are shown in column six (Set E).  Then, the parameters in set E were used in data

validation of plant data on 6-12-97, and the reconstructed plant data on 6-12-97 was used to

estimate plant parameters as shown in column seven (Set F).  

As shown in Table 5-13, the values of parameters in Set B and Set C are closer to those

in Set A than to Set D, and the values of parameters in Set E and Set F are closer to those in Set

D than to Set A.  This means that the estimated values of parameters in step two are sensitive to

the values of parameters used in the plant model of step one (combined gross error detection and

data reconciliation).  This also can be seen by the comparison of the estimated parameters using
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plant design parameters and one-step estimated parameters in the plant model of the first sequent

data validation for plant data on 6-10-97 and on 6-12-97.  

Table 5-14 shows the difference of estimated parameters between plant design parameter

case and one-step method case.  In Table 5-14, fractional differences of estimated parameters

between plant design case (Set B) and one-step estimated case (Set E) for plant data on 6-10-97

are listed in column two, and fractional differences of estimated parameters between plant design

case (Set C) and one-step estimated case (Set F) for plant data on 6-12-97 are listed in column

three.  The average percentage differences are 9.6% for plant data on 6-10-97 and 10.4% for

plant data on 6-12-97.  The comparison in Table 5-14 shows Table 5-14 The Fractional Difference of Estimated Parameters Using Plant Design Data
                and One-Step Estimated Data in the Reconstruction of Plant Measurements
  

Parameters Names
* Set E - Set B* / Set B

Using plant data on 6-10-97
* Set F - Set C* / Set C

Using plant data on 6-12-97

BLRU 0.118 0.134

EX65U 0.102 0.102

EX66U 0.047 0.049

EX67U 0.090 0.071

EX68U 0.115 0.075

EX69CDU 0.178 0.234

EX69AU 0.087 0.231

EFFI 0.101 0.062

EFFII 0.020 0.042

EFFIII 0.087 0.070

EFFIV 0.111 0.072

Average 0.096 0.104
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that the accuracy of the estimated parameters from simultaneous data reconciliation and

parameter estimation is sensitive to parameter values in plant model for data validation.  

The parameters used for the data validation should be close to the current operating parameter

values.  The proposed strategy that using the parameter values estimated from the last sequent

on-line optimization in the plant model for combined gross error detection and data reconciliation

is appropriate.  The reasons are that these values are the most current values of parameters

available, and that they are close to the true values.

C. Theoretical Evaluation Results

The performance of algorithms and plant models for on-line optimization have been

theoretically evaluated in Chapter III.  It was determined that measurement test method,  Tjoa-

Biegler’s method, and robust distribution method are applicable for conducting the combined

gross error detection and data reconciliation and the simultaneous data reconciliation and

parameter estimation.  

In Chapter III, the comparison of influence function and relative efficience showed

theoretically that Tjoa-Biegler’s contaminated Gaussian distribution and Lorentzian distribution

(robust function) methods have better performance in terms of less sensitive to the presence of

gross errors and higher relative efficiency when measurements contain both random and gross

errors.  Tjoa-Biegler’s  method is more effective for moderate size of gross errors, while

Lorentzian distribution method is more effective when a gross error is extremely large.   Normal

distribution of measurement test method has the highest relative efficiency (estimation accuracy)

when measurements only contain random errors.
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In general, two separate steps are required to estimate process parameters, i.e., step one

to conduct gross error detection and data reconciliation to generate a set of measurements that

only contains random errors; and step two to conduct simultaneous data reconciliation and

parameter estimation using the set of measurements generated in step one.  This is the two-step

estimation.  Based on the fact that both contaminated Gaussian distribution and Lorentzian

distribution methods have the ability to automatically rectify both random and gross errors in

measurements, it was proposed in Chapter III that gross error detection, data reconciliation, and

parameter estimation can be conducted simultaneously using the plant data from distributed

control system.  This is the one-step estimation.  

As discussed in Chapter III, precise and accurate process model is essential for on-line

optimization.  The process model serves as constraints in the nonlinear optimization problems for

data reconciliation, parameter estimation, and economic optimization.  In addition, the process

model used for data reconciliation optimization problems must satisfy the observability and

redundancy.  The general procedure to formulate a process model and the method to examine

the observability and redundancy of a plant model have been proposed in Chapter III, and it was

applied to sulfuric acid process which will be described in later section. 

In Chapter IV, the plant model for the sulfuric acid plant was formulated as a set of open

form equations based on the conservation laws and the engineering knowledge.  The parameters

in the plant model were selected, and they include seven heat transfer coefficients for seven heat

exchangers and four reaction effectiveness factors for four packed-bed reactors given in Table

4-8.  The plant required 43 measured variables to satisfy the observability and redundancy, and
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these measured variables were given in Table 5-1 with the plant design values for these variables.

In total, the sulfuric acid plant model has 775 process variables, among which 43 variables are

measured variables and 732 are unmeasured variables, 761 linear and nonlinear equality

constraints, and 11 parameters.

D. Numerical Evaluation of Combined Gross Error Detection and Data Reconciliation Methods
Using Sulfuric Acid Plant

In this section, the measurements test, contaminated Gaussian distribution, and Lorentzian

distribution methods are used to conduct the combined gross error detection and data

reconciliation using simulated plant data.  The nonlinear optimization problem statements for these

methods were given in Eq. 3-4 for measurement test (or least squares) method, Eq. 3-10 for

contaminated Gaussian distribution method, and Eq. 3-14 for Lorentzian distribution method

respectively.  For the contaminated Gaussian distribution, the equal prior probability for random

and gross errors is assumed, which is 0 = 0.5 in the distribution function.  Also, two values (10

and 20) are used for parameter b in the distribution function to evaluate how the shapes of the

contaminated distribution affect the performance of the algorithm.  Parameter b is the ratio of the

standard deviation for gross error to the one for random error in the distribution.  The terms

TB10 and TB20 will be used to represent the contaminated Gaussian distribution with parameter

b equal to 10 and 20 respectively.

Although the objective functions are different for these three methods, the constraints of

the plant model in Eq. 3-4, 3-10, and 3-14 for these methods are the same.  These constraints

were described in the plant model formulation chapter.  The detail plant model includes 761 linear
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and nonlinear constraints and 775 process variables of which 43 variables are measured.  The

true values and standard deviations of these measured variables are given in Tables 5-1

previously.  The plant design data for the measured variables was used as the true values and the

standard deviations were determined by the plant operation data from distributed control system

which were provided by IMC Agrico Company and reported in Zhang’ thesis (Zhang, 1993).

 

In order to compare and evaluate the performance of combined gross error detection and

data reconciliation algorithms, the true measurement errors must be known and the same

measurements must be used for these methods.  Therefore, a number of sets of measurements

with known random and gross errors were constructed and used to conduct combined gross

error detection and data reconciliation.  Each set of measurements was constructed by adding

random errors e and gross errors a**  to the true values of measured variables, x, i.e.,

y =  x + e + a**  (5-1)

where y represents the simulated plant measurements and x denotes the true values of measured

variables.  a**  represents the gross errors added to true values of measured variables.  The

elements in vector **  will be one for the measured variables with gross errors and will be zero for

other measurements.  “a” represents the magnitude of a gross error.

The random errors e were generated by pseudo random generator in GAMS with a

function NORMAL, i.e.,

e(i) = NORMAL( 0, F(i) ) (5-2)
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The random errors generated by Eq. 5-2 will possess the normal distribution character with zero

mean and F2 variance, and these random errors are added to the true values of all measured

variables.  

The generation of simulated plant data was incorporated in the GAMS program.  For

each run, the seed number for random errors and the location and magnitude of gross errors were

specified; and a set of new measurements was automatically generated to conduct data

reconciliation.

The performances of these algorithms were evaluated based on the correct gross error

detection rate, type I error, type II error, and the error reductions of measurements from the

results.  The gross error detection rate is the ratio of number of  gross errors that are correctly

detected to the number of total gross errors simulated in measurements.  It was called overall

power by Narasimhan and Mah (1987).  This criterion indicates how successful an algorithm

detects gross errors and qualitatively reflects the accuracy of the rectification from an algorithm.

Higher gross error detection rate means better performance by the algorithm.  Type I and II

errors reflect faulty decision by the test statistic.  If the null hypothesis is true for a measurement

(i.e., a measurement does not contain gross error) and the test rejects the null hypothesis (i.e., the

test misidentifies the measurement as having a gross error), then this is called a type I error.  The

number of type I errors indicates qualitatively the degree of the misrectification by an algorithm.

If the null hypothesis is not true for a measurement (i.e., a measurement contains gross error) and

the test accepts the null hypothesis (i.e., the test misidentifies the measurement as not having a
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Figure 5.2 Procedure of GAMS
Implementation

gross error), then this is called a type II error.  The number of type II error represents the number

of gross errors that are not detected. 

The both random and gross error reductions of a set of measurements after data

reconciliation are important criteria to evaluate the performance of a data reconciliation algorithm.

They quantitatively indicate the accuracy of error rectification from the data reconciliation.  The

relative error reduction after data reconciliation for each measurement, >i, is determined by:

>i = (emi - eri ) / emi (5-3)

where emi is the true measurement error and is the absolute difference between a measurement

yi and its true value xi, i.e.,

emi = *yi - xi* (5-4)

eri is the remaining error of the reconciled value for a measured variable after data reconciliation

and it is the absolute difference between the reconciled value ~xi and the true value xi for a

measured variable, i.e.,

eri = *~xi - xi* (5-5)

The optimization problem of Eq. 3-4 for

measurement test, Eq. 3-10 for Tjoa-Biegler’s

contaminated Gaussian distribution method, or Eq.

3-14 for Lorentzian distribution method was

written as a GAMS input code and solved by

GAMS.  The  procedure is shown in Figure 5.2.

First, the simulated plant data is generated with
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Eq.5-1, and then this set of measurements is used in the optimization problem to reconcile the

process variables by solving the optimization problem.  Based on the reconciled data,

measurement errors are determined and compared with the test statistic to determine if a

measurement contains gross error.

The results from the optimization solution of combined gross error detection and data

reconciliation algorithms were compared with the true information to determine the evaluation

criteria: gross error detection rate, number of type I errors, and relative error reductions, which

are the indication of algorithm performance in rectifying random and gross errors and are a

function of the magnitudes and numbers of gross errors in a set of measurements.  Then, the

performance of these algorithms was evaluated based on these criteria.  First, the cases of the

single gross error with various error magnitudes were conducted to investigate the ability of

detecting gross error and rectifying the errors by these algorithms.  Then, the cases of  multiple

gross errors were examined to see how multiple gross errors affected the rectification results.

Also, the proposed modified compensation strategy was incorporated with measurement test to

demonstrate the improvements in the misrectification from the presence of larger gross errors.

D-1. Comparison of Algorithm Performances for the Single Gross Error Cases

The objective of this section is to compare the performance for data reconciliation by

these methods and to show how the distribution functions affect the results.  For this purpose,

each set of the simulated plant data was generated by adding one gross error to one of the

measured variables and random errors to the true values of all measured variables as stated in Eq.

5-1 with one element in **  being one and others being zero.  The magnitude of a gross error was
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         Figure5.3 Comparison of Detection Rates for one Gross Error Added to one
Measurement in the Intermediate Streams

set from 3F to 30F.  Then the normal distribution for measurement test, contaminated Gaussian

distribution for Tjoa-Biegler’s method, and Lorentzian distribution for robust method were used

to reconcile the data using the simulated plant data.  The performance of these algorithms was

compared based on the data reconciliation and gross error detection results.  The same 645 sets

of simulated plant data were used for each algorithm.  Each set of simulated plant data contained

only one gross error.  In these 645 sets of data, each 45 sets of data had the gross error in the

same measured variable (one of 43 measurements)with gross error magnitudes in 3F, 5F, 10F,

20F, and 30F and three different random seed numbers. 

The statistical results from 2580 runs for the gross error detection rate, number of type

I errors, and error reductions of these algorithms were summarized as functions of gross error

magnitudes, and they are shown in the following figures.  In these figures, the legends, MT, TB,

and LD are for measurement test method, Tjoa-Biegler’s method and Lorentzian distribution

methods respectively.
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Gross Error Detection Rate and Number of Type I Errors: Figures 5.3 and 5.4 compare

the gross error detection rates for the cases that one gross error was added to one measured

variable in the intermediate streams of the process and for the cases that one gross error was

added to one measured variable in any streams of the process.   Figure 5.3 is to show how well

the algorithms rectify the gross error when this gross error exists in the measured variable in an

intermediate stream of the process.  In the plant model, these types 
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 Figure5 .4 Comparison of Detection Rates for One Gross Error Added to one
measurement in any stream in the Process

of measured variables are in constraint equations for a process unit as defined in Chapter IV, and

the reconciled values of these types of measured variables must satiafy more balance equations

than those of measured variables in the input or output stream of the process.  

For all algorithms, Figure 5.3 shows that the gross error detection rate increases with the

increase in the size of gross errors.  All methods have essentially the same detection rates of 95%

for the gross error magnitude larger than 5F.  Summarized over 645 runs’ results, all of three

algorithms are able to correctly detect over 95% of the gross error that was added to the

measured variables in the intermediate streams and whose size was larger than 5F.  For gross

error size from 3F to 5F, Tjoa-Biegler’s method (TB) has better performance than measurement

test (MT) method and Lorentzian distribution (LB).  For gross error size at 3F, the measurement

test method was not able to detect the gross error at all.  The reason is that the critical value

determined by Eq. 2-23 (Mah and Tamhane, 1982) for normal distribution with 95% confidential

level is about 3.2, which is larger than the simulated gross error size , 3.  As discussed in literature
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review, it has been reported that the criterion to determine the individual significant level proposed

by Mah and the coworkers is too conservative, and this results in larger numbers of type II errors

for small gross errors.

In Figure 5.4, gross error detection rates of the algorithms are compared for the cases

that one gross error was added to a measured variable in either intermediate streams or in the

beginning or ending streams.  The figure shows that the patterns of detection rates versus gross

error size are similar to ones in Figure 5.3 for the case that one gross error was added to the

measured variable in the intermediate streams.  The detection rates increase with the increase in

size of a gross error for the error less than 5F, and they remain at the uniform and higher level for

a gross error above 5F.  However, the detection rates for all ranges of a gross error are about

25% less than the case where a gross error was added only to the measured variables in the

intermediate streams.  The pattern of gross error detection rates versus error size for TB and LD

is the same as the cases that a gross error was added to the measured variable in the intermediate

streams with 20%-30% lower error detection rates.  The measurement test method has higher

gross error detection rates than TB and LD method for a standardized error greater than 10.

Figures 5.5 and 5.6 show the dependency of numbers of type I errors on the size of the

gross error.  The patterns of curves in the figures show that measurement test method is very

sensitive to the magnitude of the gross error; the number of  type I errors increases exponentially

with the increase of magnitudes.  Tjoa-Biegler’s method has a very small number of type I errors

for standardized errors less than 20.  However, the number of type I errors committed by TB
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Figure5.5 Comparison of TYPE I Errors for One Gross Error Added to one
measurement in the Intermediate Streams over 390 runs

increases with a pattern similar to MT for a larger gross error.  This agrees with the prediction

from theoretical evaluation as discussed in Chapter III.  The contaminated Gaussian distribution

has the functional form of the normal distribution and it is not able to bound the effect of a

extremely large gross error.  Lorentzian distribution method has a very uniform number of type

I errors for all ranges of a gross error size.  It is able to bound the effect of a larger or even infinite

gross error as discussed in theoretical evaluation of Chapter III.  It is not sensitive to the

magnitude of a gross error.

As shown in Figures 5.3 to 5.6, the gross error detection rates and numbers of type I

errors from TB10 and TB20 are similar.  TB10 and TB20 do not have significantly different

performance.  It is concluded that small variation of parameter b in contaminated Gaussian

distribution does not have significant impact on the performance of this algorithm.  However, it
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is expect that the increase of parameter b shifts the performance of this algorithm from normal

distribution to robust function.

Random and Gross Error Reductions: The relative random error reduction and relative

gross error reduction after data reconciliation are given as a function of gross error size in Figure

5.7 and 5.8 respectively for the algorithms.  Figure 5.7 compares the results for relative random

error reductions defined in Eq. 5-3 after data reconciliation averaged over 645 runs’ results for

each algorithm.  Tjoa-Biegler’s method with b=10 has the highest relative random error reduction

among the three algorithms, which is 66.1% reduction of the original measurement errors in

average.  Measurement test method has the lowest random error reduction, 44.0% reduction of

the original measurement errors.  Also, the relative random error reduction for the measurement

test method is reduced with the increase in size of gross errors.  As discussed in theoretical

evaluation, the normal distribution function is not able to bound the effect of gross errors and

larger gross error will cause larger biased estimation.  The decrease of the average error

reduction from MT was caused by the misrectification from the presence of larger gross errors.

Also, the figures show that the random error reductions from TB and LD are less sensitive to the

variations of error sizes than one from MT.
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 Figure5.6 Comparison Type I Errors for one Gross Error Added one
Measurement in any stream Over 645 runs
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Figure 5.7 Comparison Relative Random Error Reductions for One Gross Error  in simulated
Plant Data Over 645 runs

Figure 5.8 Comparison of Relative Gross  Error Reduction for One Gross Error in
Simulated Plant Data over 645 runs



282

Figure 5.8 compares the relative gross error reduction after data reconciliation averaged

over 645 runs’ results for each algorithm.  The gross error reduction is determined by Eq. 5-3

as the random error reduction.  However, this reduction was summarized only on the

measurements with gross errors.  The gross error reductions from TB and LD increase with the

increase of error sizes.  TB and LD have the comparable performance in gross error reduction.

Tjoa-Biegler’s method has the highest average gross error reduction as 97% of the original gross

errors.  Measurement test method has the lowest gross error reduction as 84.2% of the original

gross errors.  Measurement test method has higher gross error reduction at 10F of gross error

size, and then the gross error reduction decreases with the increase in size of gross errors.  The

reason for this probably is the method is based on the normal distribution function where gross

errors are not allowed, and it is not able to rectify larger gross errors.  This method is not effective

in rectify the gross errors larger than 10F, and this may cause the reduced gross error reduction.

 Summary:  Figures 5.3 and 5.4 show that Tjoa-Biegler’s method has highest gross error

detection rates for the gross errors ranging in 3F to 30F.  As mentioned earlier, the test statistic

of measurement test is too conservative (the critical value is 3.2F for the model of sulfuric acid

process if 95% confidential level is used).  Therefore, it was unable to detect the gross errors at

3F and the smaller.  For size of gross errors larger than 5F, all algorithms have almost perfect

error detection rates for the case that a gross error was added to the measured variable in the

intermediate streams.  
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The patterns of number of type I errors, relative random and gross error reductions

versus gross error sizes shown in Figures 5.6, 5.7, and 5.8 indicate that the performance of

measurement test method is sensitive to the magnitudes of gross errors and its performance

decays with the increase of error sizes.  Both Tjoa-Biegler’s method and Lorentzian distribution

have more uniform performances over a wide range of gross error magnitudes compared with

measurement test method.  The number of type I errors for gross error size from 3F to 30F

increased 259 for measurement test method, 86 for Tjoa-Biegler’s method, and 90 for Lorentzian

distribution method.  The relative random error reduction for gross error size from 5F to 20F

reduced 18.9% for measurement test method that had an averaged 44.0% reduction and 7.2%

for Tjoa-Biegler’s method that had an averaged 66.1% reduction.  The relative random reduction

increased 7.2% for Lorentzian distribution method that had an averaged 53.7% reduction.  The

relative gross error reduction for gross error size from 5F to 20F reduced 16.3% for

measurement test method that had an averaged 84.2% reduction.  The relative gross error

reduction increased 3.8% for Tjoa-Biegler’s method that had an averaged 96.7% reduction and

8.1% for Lorentzian distribution method that had an averaged 93.3% reduction.  

In average, Tjoa-Biegler’s method gave highest gross error detection rate, smallest

number of type I errors, highest random and gross error reduction for the gross error size from

3F to 30F.  Tjoa-Biegler’s method has the best performance for these gross error sizes.  The

results in Figures 5.7 and 5.8 also showed that Lorentzian demonstrated an better performance

improvement than Tjoa-Biegler’s method when the size of gross error goes to larger.  This

indicates a trend that Lorentzian distribution will perform better than contaminated Gaussian
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distribution when the gross error is larger than 30 times the standard deviation.  It agrees with the

conclusion from the theoretical evaluation that Lorentzian distribution is more effective for larger

gross errors. 

The overall performance of the algorithms is summarized in Table 5-15.  The second row

in the table lists the average gross error detection rates over the gross error sizes from 3F to

30F.  The detection rates are 78.2% for measurements test, 97.4% for Tjoa-Biegler’s method,

and 89.7% for Lorentzian distribution.  The third row in Table 5-2 gives the average relative

random error reductions, which are 44.0% for measurement test method, 66.1% for Tjoa-

Biegler’s method, and 53.7% for Lorentzian distribution respectively.  The fourth row of the table

shows the average relative gross error reductions that are 84.2% for measurement test, 96.7%

for Tjoa-Biegler’s method, and 93.3% for Lorentzian distribution.  The comparison for single

gross error cases concluded that Tjoa-Biegler’s method has the best performance in error

reductions and gross error identification for the errors ranging from 3F to 30F.

Table 5-15 Summary of the Overall Performances of Algorithms for One Gross Error

Measurement Test
Method

Tjoa-Biegler’s
Method

Lorentzian
Distribution

Average gross error
detection rate

78.2% 97.4% 89.7%

Relative random
error reduction, > 44.0% 66.1% 53.7%

Relative gross error
reduction,> 84.2% 96.7% 93.3%

D-2. Comparison of Performance of Algorithms for Multiple Gross Errors
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The objective of this section is to investigate the effects of multiple gross errors on the

reconciliation results for the algorithms.  Therefore, a set of simulated plant data is generated by

adding one, two, three, or four gross errors to the measured variables and random noises to all

measured variables.  Then, the normal distribution, contaminated Gaussian distribution, and

Lorentzian distribution were used to reconcile the process variables using the same simulated data

with one, two, three, or four gross errors ranging from 5F to 20F.  In this section, the gross error

size of 3F and 30F was not conducted.  The reason was that the results from the one gross error

case for the gross error ranges from 5F to 20F was able to demonstrate the important characters

of gross error detection results.  In addition, the  modified compensation strategy was

incorporated with measurement test, i.e., modified compensation measurement test (MCMT),

to demonstrate how it improves the misrectification.

The statistical results for gross error detection rates and numbers of type I errors were

summarized based on the 640 runs for each algorithm and they are listed in Tables 5-16 and 5-

17.  As shown in these two tables, the gross error detection rates decrease and numbers of type

I errors increase when the number of gross errors in a set of measurements increases for all

algorithms.  The reason is that the algorithms are more difficult to judge if measurements contain

gross errors or not when more gross errors are present in a close neighborhood (e.g., two or

more gross errors are present in one unit or two adjacent units). Therefore, the rectification

accuracy reduces.  However, if two abnormal measurements located in two non-adjacent units,

these two gross errors will act like individual gross errors, and they will not interact.
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Table 5-16 The Comparison of Gross Error Detection Rates for Multiple Gross Errors

Algorithms

Gross error detection rate

Sizes of
gross error

One gross
error

Two gross
errors

Three gross
errors

Four gross
errors

Tjoa - Biegler’s
method

5F 1.0 0.878 0.867 0.789

10F 1.0 0.956 0.845 0.778

20F 0.987 0.922 0.867 0.867

Lorentzian
distribution

5F 0.962 0.922 0.830 0.817

10F 0.974 0.933 0.859 0.806

20F 1.0 0.933 0.852 0.872

Measurement
test method

5F 0.923 0.878 0.733 0.739

10F 1.0 0.989 0.918 0.944

20F 1.0 1.0 0.948 0.967

Modified
compensation
measurement
test method

5F 0.923 0.856 0.726 0.733

10F 0.987 0.989 0.889 0.917

20F 1.0 0.989 0.933 0.950
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Table 5-17 The Comparison of Numbers of Type I Errors for Multiple Gross Errors

Algorithms

Number of type I errors

Sizes of
gross error

One gross
error

Two gross
errors

Three gross
errors

Four gross
errors

Tjoa - Biegler’s
method

5F 2 13 18 41

10F 5 12 41 79

20F 3 54 47 79

Lorentzian
distribution

5F 65 58 70 74

10F 74 70 80 155

20F 78 107 164 167

Measurement
test method

5F 0 0 4 2

10F 3 13 57 85

20F 53 145 258 396

Modified
compensation
measurement
test method

5F 0 0 1 1

10F 0 1 9 9

20F 0 0 33 39
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Figure 5.9 Effects of Numbers of Gross Errors on Gross Error Detection Rates of
Algorithms for Errors Ranging form 5F to 20F

Figure 5.10 Effects of Errors on Magnitudes of Gross Error Detection Rates of Algorithms for
Multiple Gross Errors
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Figure 5.9 compares the effects of numbers of gross errors on gross error detection rates,

and Figure 5.10 shows the effects of gross error magnitudes on the gross error detection rates

for multiple gross error cases.  As shown in Figure 5.9, the patterns of gross error detection rate

versus number of gross errors are similar for four algorithms.  The gross error detection rates

reduce with the increase of number of gross errors.  The reduced gross error detection rates are

probably caused by the increase possibility of multiple gross errors existing in a close

neighborhood (e.g., more than two gross errors exist in one unit or two adjacent units) when

number of gross errors in a set of measurements increases.  As seen in Figure 5.10, the pattern

of gross error detection rate versus gross error sizes for multiple gross errors is similar to those

for single gross error cases shown in Figure 5.4.  In general, gross error detection rates increase

with the increase of gross error sizes. However, the variations of the detection rates for Tjoa-

Biegler’s method and Lorentzian distribution are insignificant.  These two algorithms are not

sensitive to the variation of gross error sizes.

Figures 5.11 and 5.12 compare the effect of number of gross errors and gross error

magnitude on number of type I errors for four algorithms.  It is seen from these two figures that

the increase of gross error numbers and magnitudes tends to cause larger numbers of type I

errors which indicates a higher misrectification.  This situation is particularly serious for

measurement test method.  The increase of numbers of type I error from one gross error to four

gross errors is 427 for measurement test, 49 for MCMT, 189 for Tjoa-Biegler’s method, and

179 for Lorentzian distribution.  The increase of numbers of type I error from 5F to 20F for
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multiple gross errors is 846 for maturement test, 70 for MCMT, 320 for Tjoa-Biegler’s method,

and 249 for Lorentzian distribution.

 



291

Figure 5.11 Effects of Numbers of Gross Errors on Type I Errors of Algorithms for
Multiple Gross Errors

Figure 5.12 Effects of Error Magnitudes of Type I Errors of Algorithms for
Multiple Gross Errors
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The comparisons in Figures 5.11 and 5.12 show that the modified compensation strategy

significantly reduces the misrectification in measurement test method for the cases of multiple

gross errors and larger size of gross errors.  In the four algorithms, the modified compensation

measurement test has the best performance, and measurement test method has the worst

performance.  Also, the numerical results for both single and multiple gross error cases show that

Tjoa-Biegler’s method and Lorentzian distribution committed small number of type I errors.  This

suggests that this modified compensation strategy be incorporated with Tjoa-Biegler’s method

and robust method to further improve their performance. This strategy is easy to implement

without requiring the modification of main program of the optimization problem.  It only requires

replacing the input plant data with the reconstructed plant data from the last run’s solution as

discussed in the previous chapter.  It can be automatically conducted by the computer program.

Based on the location of detected gross errors, the built-in program determines which

measurements need to be compensated with the reconciled data and updates the values of these

measurements for next data reconciliation automatically.  This strategy is easy to incorporated in

on-line optimization implementation.

D-3. Summary

The numerical study for both single and multiple gross errors concluded that Tjoa-

Biegler’s method has the best performance for moderate gross error size (3F - 30F) in

simultaneously rectifying both random and gross errors.  Lorentzian distribution demonstrates the

tendency to exceed the performance of Tjoa-Biegler’s method when gross errors are larger than

30 times the standard deviation.  The measurement test method results in significant biased
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estimation in reconciling measurements containing both random and gross errors.  Also, the results

showed that Lorentzian distribution is the least sensitive to the variations of the gross error size,

and measurement test method is the most sensitive to the variations of the gross error size.  

The numerical results from modified compensation measurement test demonstrated that

the modified compensation strategy significantly reduced the biased estimation in measurement

test method.  This was observed by significantly reduced number of type I errors committed by

MCMT compared with measurement test method.  Also, a small number of type I errors from

Tjoa-Biegler’s method and Lorentzian distribution method were observed from the numerical

results.  It is expected that this modified compensation strategy can further improve the

performance of Tjoa-Biegler’s method and Lorentzian distribution method.  In addition, this

strategy is easy to conduct without requiring modification of main program of the optimization

problem.  It can be automatically conducted by computer program, and it is appropriate for use

with on-line optimization. 

The gross error detection results using the actual plant operating data (plant data on 6-

10-97 and 6-12-97) given in Table 5-11 and 5-12 are in agreement with the theoretical and

numerical evaluation results for gross error detection using simulated plant data.  For the two sets

of current plant data on 6-10-97 and 6-12-97, measurement test method detected six gross

errors, Tjoa-Biegler’s method detected 16 gross errors, and Lorentzian distribution method

detected 29 gross errors.  All of the detected gross errors were smaller than 20F, and most of

them were smaller than 10F.  As shown in Figures 5.3 and 5.4 for gross error detection rate and

Figures 5.5 and 5.6 for number of type I errors, measurement test method had the smallest gross
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error detection rate and committed the smallest number of type one errors in three methods for

gross errors less than 20F.  Lorentzian distribution function of robust method committed the

largest number of type I errors in three methods for gross errors less than 20F.  Also, the relative

efficiency of Lorentzian distribution of the robust method is lower than the normal distribution

function of measurement test method and contaminated Gaussian distribution function of Tjoa-

Biegler’s method.  This means than Lorentzian distribution has a lower accuracy when the gross

errors in measurements are smaller (e.g., less than 20F).  The detected gross errors for current

operating data are smaller than 20F, and the numbers of gross error detected by three methods

for plant data on 6-10-97 and 6-12-97 agreed with results from the theoretical and numerical

evaluation results given above. 

E. Results for Parameter Estimation

In this section, the one-step and two-step estimation strategies are used to conduct

parameter estimation.  In one-step estimation, the gross error detection, data reconciliation and

parameter estimation are conducted simultaneously using an algorithm that is able to rectify both

random and gross errors.  One-step estimation combines gross error detection, data

reconciliation, and parameter estimation into one optimization problem.  The mathematical

statement for one step estimation is given in Eq. 3-36 using Tjoa-Biegler’s method.  One step

estimation eliminates the interaction between two data reconciliation associated with gross error

detection and with parameter estimation.  However, the estimation accuracy may be reduced due

to the reduced data quality.  In one-step estimation, the plant data sampled from distributed

control system is directly used in the one-step optimization to estimate the parameter values, and
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this data may contain both gross errors and random errors.  In two-step estimation, the

measurements with gross errors are rectified in combined gross error detection and data

reconciliation, and the data used to estimate plant parameters in step two only contains random

error.

The two-step estimation requires a separated gross error detection and data

reconciliation step to detect and rectify the gross errors in plant data and a data reconciliation and

parameter estimation step to update the parameter values using the data from gross error

detection and data reconciliation.  As discussed in previous chapter, these two steps use the same

plant model and only the difference is that parameters in a plant model are constants for gross

error detection step and variables for parameter estimation step.  The data reconciliation in

combined gross error detection and data reconciliation should use the current values of the

process parameters, but these values come from the subsequent parameter estimation step.

Therefore, a strategy is proposed to avoid this dilemma.  It uses the old parameter data estimated

from the last on-line optimization cycle for gross error detection and data reconciliation to

reconcile process variables and detect gross errors.  Then a new set of measurements, which

contains only random errors, is constructed using part of the original data that contains only

random errors combined with the reconciled values of the plant data that contains gross errors.

This set of constructed measurements is used to simultaneously estimate process parameters and

variables.  The mathematical statement for step one and step two are given in Eq. 3-34 using

Tjoa-Biegler’s method for combines gross error detection and data reconciliation and Eq. 3-35

using the least squares method for simultaneous data reconciliation and parameter estimation. 
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The procedure to solve optimization problems in Eq. 3-34 for step one of two-step

estimation and Eq. 3-36 for one-step estimation is the same as described in Figure 5.2 for

combined gross error detection and data reconciliation.  The only difference in Eq. 3-36 for one-

step estimation is that the parameters in the plant model are variables rather than constants for

step one (combined gross error detection and data reconciliation) of two-step estimation in Eq.

3-34.  The optimization problem (Eq. 3-35) of step two for two-step estimation is essentially the

same as Eq. 3-36 for one-step estimation.  The only difference is that the measurements contain

only random errors for Eq. 3-35, but they contain both random and gross errors for Eq. 3-36.

 The parameters are variables in Eqs. 3-35 and 3-36, and they are to be estimated with the

process variables.

The plant model for conducting parameter estimation is given in Chapter IV for the

sulfuric acid process, and it is the same as used in the combined gross error detection and data

reconciliation of last section.  The same 110 sets of simulated plant data were generated by

GAMS using Eq. 5-1 and were used to conduct one-step and two-step estimation.  These 110

sets of simulated plant data contain 110 gross errors with a 10F of magnitude.  In each set of

data, one measured variable was added with a gross error, and all measured variables were

added with random errors.

When GAMS solved the optimization problem of simultaneous data reconciliation and

parameter estimation in Eq. 3-35 (step two of two-step method) or simultaneous gross error

detection, data reconciliation, and parameter estimation in Eq. 3-36 (one-step method), it was

encountered that about 50% of cases failed to converge to the optimal solution, if all the seven
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heat transfer coefficients and four reaction effectiveness factors listed in Table 4-7 were

considered as parameters in the plant model.  While searching for the optimal solution, the

optimization algorithm failed to bring the searching points back to the feasible region.  This is a

problem associated with the optimization algorithm or the bound setting for some important

variables.  

The solver, CONOPT, was used in GAMS to solve the optimization problems in on-line

optimization primarily.  Also, the solver, CONOPT2, has been used to solve the simultaneous

data reconciliation and parameter estimation optimization problems to see if other algorithm can

improve the solution.  The result was that both CONOPT and CONOPT2 had similar

performance.  However, CONOPT could find the optimal solution of some problems for which

CONOPT2 could not, and CONOPT2 could find the optimal solution of some problems for

which CONOPT could not.  The reason of solution failure was that the step search brought

searching points to an infeasible region, and then it was not able to get back to feasible region and

then failed to reach the optimal solution.  Therefore, a tighter upper bound on sulfur feed (F50)

in the optimization problem was given to improve the solution, and it was successful for some

simulated plant data sets.

Using different solver or changing bounds on some variables can improve the solution of

the simultaneous data reconciliation and parameter estimation problem or simultaneous gross

error detection, data reconciliation, and parameter estimation problem.  However, one set of

simulated plant data required using CONOPT to successfully solve the optimization problem, and

the other set of simulated plant data required CONOPT2 or changing bound on F50 to
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successfully solve the optimization problem.  This is not appropriate for the comparison and

evaluation of different  algorithms and strategies, which requires that the same information be used

for different algorithms or strategies.  

The number of parameters was reduced by dividing the eleven parameters into two sets

of parameters, i.e., one set of parameters includes seven heat transfer coefficients and the other

set of parameters includes four reaction effectiveness factors.   These two sets of parameters can

be updated alternately in the sequence of on-line optimization.  Then, the plant model is modified

to include only seven heat transfer coefficients as plant parameters.  After the modification, the

solution of the optimization problem for simultaneous data reconciliation and parameter estimation

or simultaneous gross error detection, data reconciliation, and parameter estimation was

significantly improved, and about 95% of the cases were able to reach the optimal solution with

this procedure.  

The computation results of the reconciled data for one-step estimation are summarized

in Table 5-18 using the 110 sets of simulated plant data.  The table lists the gross error detection

rates, numbers of type I errors, remaining standardized errors, relative standard deviation

reduction, and relative error reduction after data reconciliation for key measurements.  The key

measurements are the measured variables that are directly related to the determination of

parameters in plant models.  It is required that the key measurements must be directly related with

other measured variables through at least three independent equality constraints.  
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In Table 5-18, the first column gives the names of the measurements.  The second column

lists the gross error detection rates for each measurement when gross errors were added to this

measurement.  The third column lists the numbers of type I errors committed 
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Table 5-18 Statistical Results of Reconciled Data for One-Step Estimation

Variable
Name

Gross error
detection rates

No. Of
type I
errors

Remaining
error after
reconciled

Relative S.D.
reduction after

reconciled

Relative error
reduction after

reconciled

T06 100% 5 0.5097 0.718 0.541

T07 100% 4 0.4115 0.763 0.708

T08 100% 4 0.3396 0.8 0.685

T09 100% 1 0.3734 0.785 0.704

T10 100% 2 0.6001 0.683 0.547

T11 100% 1 0.6002 0.711 0.575

T15 100% 4 0.6255 0.656 0.503

T16 100% 3 0.2731 0.841 0.749

T17 100% 1 0.3543 0.803 0.68

T19 40% 9 0.9038 0.0076 0.221

TS2 40% 11 1.0803 0.169 0.376

TS3 60% 13 0.9726 0.266 0.354

TS4 100% 3 0.6329 0.483 0.263

F04 100% 1 0.321 0.816 0.582

F05 100% 2 0.3256 0.825 0.73

F14 100% 3 0.2999 0.84 0.742

F20 100% 1 0.2925 0.835 0.723

F50 100% 0 0.1746 0.904 0.824

FS1 100% 0 0.2976 0.808 0.817

FS5 100% 1 0.1904 0.856 0.837

X 100% 1 0.0649 0.895 0.883

CO2 100% 0 0.4457 0.731 0.625

Average 92.7% 70 0.459 0.691 0.621
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by one step estimation for each measurement when gross errors were added to this measurement.

The fourth column gives the average of remaining errors in key measurements after data

reconciliation over 110 runs’ result.  The remaining error is the absolute difference between the

reconciled and the true value as defined in Eq.5-5.  The average remaining error over key

measurements is about 0.459F, where F is the standard deviation of measurements given in

Table 5-1.  The fifth column indicates the relative standard deviation reduction after data

reconciliation for key measurements over 110 runs’ result.  The relative standard deviation

reduction is the ratio of the standard deviations of the 110 sets of reconciled data to those of 110

sets of measurements.  There is an average 69.1% of standard deviation reduction for key

measured variables.  The sixth column gives the relative error reduction after data reconciliation.

The relative error reduction is defined in Eq.5-3, i.e., the ratio of the remaining errors after data

reconciliation to the absolute measurement errors.  

Table 5-18 summarizes the computation results from one-step estimation.  It shows that

one-step estimation achieved a 92.7% of average gross error detection rate and committed 70

type I of errors over the 110 runs.  The average remaining error, relative standard deviation

reduction, and relative error reduction after data reconciliation were 0.459F, 69.1% reduction

of the measurement variations, and 62.1% reduction of the original errors over 110 runs’ result.

Table 5-19 summarizes the computation results from two-step estimation.  The two-step

estimation used the same 110 sets of simulated plant data as one-step estimation to conduct

combined gross error detection and data reconciliation of step one.  At this step, 
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Table 5-19 Statistical Results of the Reconciled Data for Two-Step Estimation

Variable
Name

Gross error
detection

rates

No. Of
type I
errors

Remaining
error after
reconciled

Relative S.D.
reduction after

reconciled

Relative error
reduction after

reconciled

T06 100% 2 0.465 0.741 0.525

T07 100% 2 0.3558 0.805 0.73

T08 100% 0 0.2806 0.856 0.721

T09 100% 1 0.3097 0.851 0.775

T10 100% 2 0.4985 0.752 0.624

T11 100% 1 0.4986 0.779 0.674

T15 100% 0 0.6475 0.643 0.471

T16 100% 0 0.2577 0.855 0.751

T17 100% 2 0.3376 0.826 0.717

T19 100% 1 0.522 0.732 0.551

TS2 100% 1 0.6262 0.723 0.64

TS3 100% 2 0.675 0.669 0.575

TS4 100% 4 0.4799 0.719 0.435

F04 100% 2 0.3315 0.8 0.568

F05 100% 4 0.3268 0.817 0.735

F14 100% 2 0.307 0.837 0.755

F20 100% 3 0.2992 0.833 0.731

F50 100% 2 0.1511 0.91 0.853

FS1 100% 2 0.1655 0.914 0.898

FS5 100% 1 0.1054 0.934 0.91

X 100% 0 0.0651 0.898 0.882

CO2 100% 1 0.475 0.725 0.564

Average 100% 35 0.3718 0.797 0.686
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the gross errors are detected and rectified, and a set of plant data was constructed from this step

using the proposed strategy.  Then this set of constructed plant data was used to conduct

simultaneous data reconciliation and parameter estimation of step two. 

In Table 5-19, the results for gross error detection rate and number of type I errors were

obtained from step one.  While the remaining error, relative standard deviation reduction, and

relative error reduction were obtained from step two.  Table 5-19 shows that two-step estimation

achieved a 100% of average gross error detection rate and committed 35 type I of errors over

the 110 runs.  The average remaining error, relative standard deviation reduction, and relative

error reduction after data reconciliation were 0.37F, 79.7% reduction of the measurement

variations, and 68.6% reduction of the original errors.

Table 5-20 compares the parameter estimation results from two strategies.  In this table,

the first and second columns list the names and plant design values of parameters in the process

model, where the plant design values of parameters was determined by the plant design data for

measured variables given in Table 5-1.  The third, fourth, and fifth columns give estimated means

of parameters, ratios of estimated parameter standard deviations to  estimated means, and the

relative difference between estimated means and true values from one-step estimation.  The sixth,

seventh, and eighth columns give the estimated means of 
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Table 5-20 Comparison of Estimated Parameter Data from Two Strategies

Parameter
Names

Plant
design
values

One-step estimation Two-step estimation

Estimated
means

Estimated
S.D./mean

(mean-
true) /true

Estimated
means

Estimated
S.D./mean

(mean-
true) /true

BlrU xxxx xxxx 0.73% 0.21% xxxx 0.31% 0.17%

Ex65U xxxx xxxx 3.37% 0.65% xxxx 2.40% 0.54%

Ex66U xxxx xxxx 3.42% 0.98% xxxx 2.96% 0.61%

Ex67U xxxx xxxx 1.83% 0.60% xxxx 1.48% 0.52%

Ex68U xxxx xxxx 16.8% 0.99% xxxx 4.11% 1.85%

Ex69cdU xxxx xxxx 6.98% 0.15% xxxx 1.99% 0.62%

EX69aU xxxx xxxx 12.0% 0.93% xxxx 3.54% 1.53%

Average 6.44% 0.64% 2.40% 0.83%

parameters, the ratios of estimated parameter standard deviations to estimated means, and the

relative differences between estimated means and true values from two-step estimation.  For one-

step estimation, the largest and average estimated standard deviations were 16.8% and 6.4% of

the mean values; and the largest and average relative differences between the estimated and the

true were 0.99% and 0.64% of the true values.  For two-step estimation,the largest and average

estimated standard deviations were 4.1% and 2.4% of the mean values; and the largest and

average relative differences between the estimated means and the true values were 1.8% and

0.8% of the true values.



305

The result in Table 5-20 showed that the estimation variation (standard deviation of

estimated parameters) from one-step estimation was larger than one from two-step estimation.

The reason is the redundancy condition in two-step estimation is better than one in one-step

estimation.  This provides more restriction for two-step estimation when the optimization  solution

adjusts the variable values and makes the solution have a smaller variation.  The difference

between the estimated means and the true is comparable for these two strategies.

In Table 5-21, the overall performance is compared for these two strategies on

parameter estimation accuracy, data reconciliation accuracy, gross error identification, and

computation effort.  As shown in Table 5-21, two-step estimation demonstrated 4% lower

variation on estimated parameter values, 6.5% higher error reduction, and 10.6% higher relative

standard deviation reduction on reconciled data than one-step estimation.  Also, two step

estimation had 6.3% higher gross error detection rate and committed 50% less of type I errors

than one-step estimation.  Both two-step and one-step estimation had comparable estimation

accuracy on the plant parameters.  However, two-step estimation required 82% more

computation time than one-step estimation did.  It is concluded that two-step estimation strategy

is recommended for  the sulfuric acid plant model.
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Table 5-21 Comparison of the Overall Performances of Two Strategies

One-step
estimation

Two-step estimation

Overall
parameter
estimation
accuracy

Variation of estimation: S.D./mean 6.44% 2.40%

Relative difference of estimated
parameters from true

0.64% 0.83%

Overall
reconciled
data
accuracy

Relative error reduction after
reconciled

62.13% 68.57%

Relative S.D. reduction after
reconciled

69.06% 79.72%

Gross error
detection

Average gross error detection rate 0.927 1

Number of type I errors 70 35

Computation time
4.16 Second

7.62 Second
Step one: 3.88 Sec.
Step two: 3.74 Sec.

In summary, the comparisons in Tables 5-7 and 5-8 for these two strategies showed that

both one-step and two-step were able to accurately estimate the plant parameters and process

variables for the sulfuric acid process.  Two-step estimation demonstrated a better  performance

in estimation accuracy than one-step estimation, while one-step estimation required less

computation time as discussed in above paragraph.  Also, one-step estimation eliminates the

interaction between two data reconciliations for gross error detection and for parameter
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estimation.  For the sulfuric acid process, the two-step estimation is recommended to be used in

on-line optimization based on the numerical results.

F. Evaluation of Plant Model Formulations

The constraint equations for all units of sulfuric acid contact process have been developed

in Chapter IV.  In this section, the objective is to examine the observability and redundancy of

sulfuric acid plant model and to investigate how the plant model formulation affects the accuracy

of the optimization problems in on-line optimization.  

F-1. Examination of Observability and Redundancy for Sulfuric Acid Plant Model

The process measurements are taking from the Baily distributed control system of sulfuric

acid plant.  The distributed control system provides the direct measurements for all required

temperatures, pressures, steam flow rates, and acid flow rates for on-line optimization.  However,

the direct measurements of flow rates for gas streams are not available at all.  Some of

measurements of gas steams are required to satisfy the observability in data reconciliation.  The

examination of observability and redundancy determines that four flow rates for gas streams (air

from compressor F04, gases from sulfur burner F05, gases from inter-pass absorption tower

F14, and gases from economizer 4A F20) must be measured to satisfy the observability of

variables, which are associated with gas streams, for detail plant model.  How the observability

and redundancy was determined will be described in the following using waste heat boiler unit as

an example.  Therefore, these required gas flow rate measurements are obtained using the

discharge pressure and speed of compressor (or turbine).  The flow rate of stream S04 (F04)

is determined by the discharge pressure and speed of the compressor with the compressor
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performance chart.  Then the flow rates of F05, F14, and F20 are determined by the flow rate

F04 and assuming 2%, 94.8%, and 99.7% (99.7% is a direct measurement) of SO2 conversion

at the corresponding streams.

The open form equation based plant model for sulfuric acid plant has been established

in Chapter IV, and the measured variables and parameters for this plant were listed in Table 4-7

and 4-8.  How the observability of unmeasured variables and parameters was examined is

discussed using the waste heat boiler unit in the following.

For the waste heat boiler, the constraint equations are shown in Table 5-22.  This unit

has 20 constraint equations in total, and they are four species material balances for four

components in gas stream, one material balance for steam stream, and material relationship on

the blowdown between streams SS4 and SS6, one overall energy balance, one heat transfer

equation, eight enthalpy equations for four components of two gas streams (S05 and S06), three

enthalpy equations for three steam streams (SS4, SS5, and SS6), and one logarithm mean

temperature equation.  All these equations contains 29 variables.  Among these variables, FS5,

TS4, TS5, TS6, PS5, T05, T06, are measured variables where the temperature for steam

streams SS4, SS5, and SS6 are the same, i.e., TS4= TS5= TS6.  F05O2, F05N2, F05SO2,

F05SO3 are dummy measured variables, and they are determined 

by measured variables (F04 and F05), concentration relation of components in stream S04, and

molar balances of the burner.  FS4 is a dummy measured variable, and it equal measured variable

FS1 in the up stream.  The heat loss Qloss and heat tansfer area Aboiler are constant.  Therefore,
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this unit has 12 measured variables and 17 unmeasured variables ()tlm, F06O2, F06SO2,

F06SO3, F06N2, FS6, h05O2, h05SO2, h05SO3, h05N2, h06SO3, h06SO2, 

Table 5-22 The Constraint Equations for Waste Heat Boiler 

Description
Waste boiler extracts the heat generated in sulfur burner. 

Inlet: S05, SS4
Outlet:S06, SS5, SS6

Species
material
balances
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Overall
energy
balances

where

Heat
transfer 

h06O2, h06N2, hS4, hS5, hS6).  Also, the heat transfer coefficient Uboiler is a parameter to be

estimated.  Hence, the degree of freedom of this unit is (29 variables + 1 parameters - 20

equations) = 10, and this unit has 12 measured variables.  The number of measured variables is

larger than the degree of freedom, and this unit satisfies the local observability.

If the flow rate variables F04 and F05 for gas streams S04 and S05 are not measured

variables, then the component flow rates F05O2, F05SO2, F05SO3, and F05N2 can not be

considered as dummy measured variables.  Therefore, the waste heat boiler has only eight



311

measured variables which is less than the degree of freedom (10 degree of freedom) for this unit.

If the four gas stream flow rates (F04, F05, F14, and F20) are not measured variables, then all

variables associated with gas streams in the sulfuric acid process are unobservable.

The local observability and redundancy was examined for 14 units in sulfuric acid process

similar to the waste heat boiler unit as discussed here.  After local observability was examined,

the global observability and redundancy was determined by the number of measurements and the

degree of freedom for entire process.  The detail process model of sulfuric acid plant has 761

equations, 775 variables among which 43 are measured variables, and 11 parameters.  The

degree of freedom for this plant model is 25, and the number of measured variables for this

process is 43, which is larger than the degree of freedom.  Therefore, the plant satifies the global

observability and redundancy.

F-2. Comparison of Detail and Simple Plant Models

In general, a detail plant model includes material and energy balances, reaction rate

equations, heat transfer equations, and others.  It will represent the process behavior more

accurately than a simple plant model that includes only material and energy balances, where

reactor conversions and column separation are specified.  The following compares the

performance of the simple and detail plant models for sulfuric acid contact process.  The same

215 sets of simulated plant data generated with Eq. 5-1 were used to conduct combined gross

error detection and data reconciliation with Tjoa-Biegler’s method.  The procedure is the same

as discussed in combined gross error detection and data reconciliation section.
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The detail plant model for sulfuric acid process includes the species mass and energy

balances and heat transfer equations for seven heat exchangers, species mass and energy

balances, kinetic model (reaction rate equations) for four sulfur dioxide convertors, species mass

and energy balances for two absorption towers and one sulfur burner.  These fourteen units are

linked together by the species mass balances, energy balances, reaction rate equations, and heat

transfer equations.  The simple plant model  includes only the species mass and energy balances

for all fourteen units in the sulfuric acid plant.  The species mass balances for four convertors are

established based on the conversion of SO2 and the stoichiometric coefficients of the reaction.

The numbers of equations, variables, and measurements are given in Table 5-23 for these two

plant models.  The simple plant model 

Table 5-23 The Configuration of Simple and Detail Plant Models

Simple Plant
Model

Detail Plant
Model

 Total number of variables 221 775

Number of measured variables 61 43

Number of unmeasured variables 160 732

Number of constraint equations 197 761

has 221 process variables and 197 constraint equations.  Among the process variables, 61

variables must be measured variables to satisfy the observability and redundancy of the simple

plant model.  The detail plant model has 775 process variables and 761 constraint equations.

Among the process variables, 43 variables must be measured variables to satisfy observability

and redundancy of the detail plant model.
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Both simple and detail plant models were used as constraint equations for gross error

detection and data reconciliation.  In Table 5-24, the overall performance is summarized for the

simple and detail plant models averaging over the results of 215 runs for each plant model.  These

215 runs used 215 sets of simulated plant data that were generated with Eq. 5-1.  As shown in

Table 5-24, the detail plant model has 29.3% higher gross error detection rate, 76 less type I

errors, 32.1% higher random error reduction and 25.7% higher gross error reduction than simple

plant model.  It requires 2.3 times longer computation time than the simple plant model.  The

comparisons in Table 5-24 concluded that the detail simulation plant model is recommended for

the use in on-line optimization.  

Table 5-24 Comparisons of Overall Performance for Two Plant Models

Simple plant model Detail plant model

Gross error detection rate 67.1% 96.4%

Number of type I errors 102 26

Relative random error
reduction

38.2% 64.3%

Relative gross error reduction 66.1% 91.9%

Computation time 1.65 Sec. 3.84 Sec.

The detail plant  model has higher gross error detection rate, more accurate estimation results,

and required fewer measured variables.

G. Optimal Solution of On-Line Optimization
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As discussed in previous chapters, on-line optimization involves solving three nonlinear

optimizations as well as the communication of data between the optimization problems and

between on-line optimization system and plant distributed control system.  It is necessary to have

a coordination program to integrate them.  An interactive interface program is developed to

alleviate the effort of engineers in applying on-line optimization and to coordinate the solution of

optimization problems in on-line optimization. The three-step procedure (combined gross error

detection and data reconciliation, simultaneous data reconciliation and parameter estimation, and

economic optimization) is incorporated in the interface program (Interactive On-Line Optimization

System) to conduct on-line optimization.

G-1. Program Structure of Three Nonlinear Optimization Problems

For on-line optimization, the three nonlinear optimization problems use the same process

model as constraints, and they are solved by the same optimization algorithm with GAMS, the

General Algebraic Modeling System.  These three optimization problems have a similar program

content as shown in Figure 5.13.  The optimization problems for the combined gross error

detection and data reconciliation and the simultaneous data reconciliation and parameter

estimation require the information listed in Figure 5.13, except the inequality constraints.  While

the economic optimization problem requires the information listed in Figure 5.13, except the plant

measurements and the standard deviations.  Also, the plant parameters are constants in the

combined gross error detection and data reconciliation and in economic optimization, and they
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Figure 5.13 Steps in the GAMS Program
                   for Optimization Problems

are variables in  simultaneous data

reconciliation and parameter estimation.

The values of parameters are updated in

parameter estimation step for the use in

economic optimization and next data

validation.  In addition, the objective

function in each optimization problem

can be different dependent on the goal to

be achieved.  The GAMS source codes

to conduct the three nonlinear

optimization problems for sulfuric acid process are given in Appendix F.

The initial points of variables and scaling of the variables and equations are optional in the

optimization programs.  However, successful optimization solutions strongly rely on the

appropriate initial point to start searching for the optimal solution.  Because the model is highly

nonlinear and multiple optimal solutions exist, the optimization algorithm may not be able to find

the correct optimal solution or reach the optimal point if the appropriate initial point information

is not provided.  Also, scaling of all variables and coefficient matrix of the linearized constraint

equations is important in reducing the computation error and improving the solution of the

optimization problem.  In addition to the consideration of algorithms and the plant model

formulation as discussed previously, the knowledge about the process, appropriate initial point
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Figure 5.14 The Procedure for On-Line Optimization

assignment, and scaling for the process model are the essential conditions for the success of the

optimization solutions.

G-2. Coordination of Optimization Problems and Data Exchange

Based on the investigation results and computation experience, the best procedure to

conduct the on-line optimization system is proposed as shown in Figure 5.14.  This includes

solving the three optimization problems in sequence, the data exchange between the three

optimization problems,

the communication of

on-line optimization

system and the

distributed control

system, as well as the

examination of  steady

state of the process

operation and the

optimization solutions.

It is necessary to have a

coordination program to

integrate individual step

in on- line optimization.

The interactive on-line



317

optimization system has been developed to perform this work and to alleviate the effort for

engineers to apply the on-line optimization.

As shown in Figure 5.14, the procedure to conduct on-line optimization is first the plant

data is extracted from distributed control system to detect if the process is  in steady state

condition.  If it is in steady state , then the plant sampled data is incorporated in the program of

gross error detection and data reconciliation and the system has GAMS solve the optimization

problem.  After solving this optimization problem and reconciling the process data, the GAMS

program detects the gross error in measurements based on the estimated errors of measurements

and the built-in test statistic.  Also, this step generates a data file that includes a set of plant

measurements with only random errors which is constructed from the result of data validation

using the proposed strategy discussed in previous chapter.   Then the solution is examined to see

if the solution is successful.  It is suggested that the success of solution be based on the number

and location of the detected gross errors.  If it is found that more than five measurements in a

close neighborhood contain gross errors, then this usually is an indication of the failure of an

algorithm in reconciling process data.  If this is the case, then the result from data validation should

be discarded, and the on-line optimization procedure is restarted.

Once the solution of data validation is successful, then the generated plant data file from

data validation step is incorporated in the simultaneous data reconciliation and parameter

estimation program.  The system has GAMS execute this program and solve the optimization

problem.  After the optimal solution is found, the GAMS program automatically generates a plant

parameter data file that includes the names and estimated values of the parameters.  Then, the
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optimization solution is examined to see if the estimated parameter values are reasonable.  Each

estimated parameter value is compared with the pre-specified ranges of the parameter.  If it is out

of the pre-specified range, then this value can not be used in economic optimization.  The

parameter data from the optimal solution  is discarded, and the on-line optimization procedure

is restarted.  

Once the solution of parameter estimation is successful, then the generated plant

parameter data file is incorporated in the economic optimization program to update the plant

model.  Also, the new economic data and controller limits are incorporated in this program.  Then

interactive on-line optimization system has GAMS execute this program and solve the economic

optimization problem.  When the optimal solution is found, the program generates a optimal set

point data file that includes the optimal objective values and the optimal operation conditions.

Then, the status of the process is reexamined to see if the process still operates under the same

steady state conditions as the plant sampled data was taken to updated plant parameters.  Also

the controller limits are examined to see if the optimal set points violate the controller limits.  If the

process still operates in the original steady state conditions and no violation with controller limits

is found in the optimal set points, then the optimal set points are sent to the distributed control

system to adjust the set points for controllers.

When the distributed control system implements the new optimal set points, the plant

moves from the old operating conditions to new optimal conditions.  The plant remains operating

in these optimal conditions for a time period, and then the on-line optimization procedure is

repeated again to search for the new optimal set points.  
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Above is the optimal procedure to conduct on-line optimization and it can be applied to

any process.  In addition, two optimization problems for combined gross error detection and data

reconciliation and for simultaneous data reconciliation and parameter estimation may be combined

into one optimization problem as discussed in the previous chapter.  In this case, the two boxes

in Figure 5.14 for combined gross error detection and data reconciliation (data validation) and

for parameter estimation become one step to identify the gross error in measurements and

estimate process parameters and variables.

G-3. Development of Interactive On-Line Optimization Interface Program

The interactive on-line optimization system provides a mechanism where all of the

information needed to build the three nonlinear programming problems is provided by the process

engineer through interface windows, and the three optimization problems share and transfer

information as shown in Figure 5.15.  The engineer provides the process simulation and economic

models, raw material

availability and product

demand data through the

interface windows for the

on-line optimization system

to develop the optimization

programs.  The system then

extracts plant data from the

distributed control system,
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performs data validation, parameter estimation and economic optimization to generate the optimal

set points for the distributed control system.  The interactive on-line optimization system guides

the engineer to enter the necessary information, and the engineer does not need to understand the

details of methodology of on-line optimization.  Also, the system ensures that a complete set of

information is obtained.

Microsoft's Visual Basic 5.0 was used for  development of interactive on-line optimization

program, which is shown diagrammatically in Figure 5.16.  Visual Basic 5.0 provides an efficient

way to create User Access Windows as an interface to enter information (data and equations)

which can be used to generate programs to be run by applications such as the optimization

language GAMS.  The Visual Basic program is used to create an interface program (interactive

on-line optimization system) that provides user access friendly windows for engineers to enter

plant information, generates GAMS programs for three optimization problems based on the built-

in methodology of on-line optimization and entered plant information, has GAMS compile and

execute the programs of the optimization problems, and presents the optimal solution for

engineers.  This only requires that  the process engineer provide the plant model, economic

model, and plant data from the distributed control system.  The process engineer does not have

to know the methodology of on-line optimization and write GAMS programs for the three

optimization problems because the interactive on-line optimization system writes these programs.

Also, 
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Figure 5.16  Diagram for Interactive On-Line Optimization System Using Visual Basic
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a friendly and easy access on-line HELP is available to guide the engineer entering the plant

information.

Above is the general information about the interactive on-line optimization interface

program.  The detail description and example demonstration about this program have been given

in the manual and tutorial of the interactive on-line optimization system which is included in

Appendix G.

H.  Comparison with Other Investigations

The objective of this research project was to systematically investigate the optimal

structure of on-line optimization and to theoretically and numerically evaluate the applicable

algorithms for conducting on-line optimization.  Also, an actual chemical process, sulfuric acid

plant from IMC Agrico Company was used to conduct this investigation.  The following

compares the contribution from this research project with other investigations.

Investigation of Optimal Structure:  Previous research on on-line optimization was

reported by two groups: industrial applications and academic studies, all of which focused on the

study of individual components of on-line optimization.  There was no detail description about the

whole structure of on-line optimization as this research project does which includes the study of

algorithms for individual component and the integration of these components.  The industrial

applications (Bailey, et al., 1993; Bayles, M., 1996; Culter and Ayala, 1993; Fatora, et al.,

1992; Gott, et al., 1991; Hardin, et al., 1995; Kelly, et al., 1996; Mudt, et al., 1995; Mullick,

1993; and Scott, et al., 1994) focused on the implementation of economic optimization, and they

did not give the detail information of the methodology used.  Also, most of the industrial on-line
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optimization applications did not have gross error detection step or just used a simple time series

screening method to filter out the abnormal measurements, which is not effective in detecting the

persistent gross errors.  The academic studies (Albuquerque and Biegler, 1993 and 1995; Tjoa

and Biegler, 1991; Britt and Luecke, 1973; Crowe, C. M., 1986, 1989, 1992, and 1994;

Johnston and Kramer, 1995; Leibman, et al., 1992; Mah and Tamhane, 1982; Mah, et al., 1976;

Mah, 1990; Narasimhan and Mah, 1987 and 1988; Rollins, D.K., and J.F. Davis, 1992 and

1993) focused on the study of the algorithms for individual components, such as gross error

detection, data reconciliation, and parameter estimation individually.  Most of them used a simple

hypothetical process model with all variables measured and linear constraints to test the

developed algorithms.  These process models do not represent the real, complicated chemical

and refinery processes in which constraints are highly nonlinear and large portion of process

variables are unmeasured.  

This research project systematically investigated the structure and the methodology of on-

line optimization using an actual chemical process, the sulfuric acid process from IMC Agrico

Company at Convent, Louisiana. It covered the methodology and implementation for all

components required in on-line optimization, i.e., theoretical and numerical evaluation of the

algorithms for gross error detection, data reconciliation, and parameter estimation, study of

economic potential from on-line optimization for chemical processes and the impact of plant

model formulation on the performance of on-line optimization, as well as the integration of

individual components of on-line optimization.  The research results should provide a better
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understanding about the individual components of on-line optimization and how these components

work together and communicate with one another.

Application of Industrial Process:  Using an actual chemical process rather than a

hypothetical process to test the methodology of on-line optimization provides better insight about

true behavior of on-line optimization.  It is more valuable for examining the methodology and

more convincing to practicing engineers.  It is very difficult for academic researchers to get plant

information because companies usually do not want to share their proprietary information with

others.  It was fortunate that IMC Agrico and Monsanto agreed to share their companies’

proprietary data.  This provided us with the opportunity to test the available theoretical algorithms

with a real industrial chemical process and made our research results much more valuable.  Also,

using an actual chemical process in our investigation provided first hand experience on how the

plant model formulation affects the performance of on-line optimization.  The basic considerations

in better formulating plant model were given based on our study results. 

Theoretical and Numerical Evaluation of Algorithms: The present work theoretically and

numerically evaluated the available algorithms and distribution functions used in the algorithms.

These algorithms are applicable to gross error detection, data reconciliation, and parameter

estimation for complicated and nonlinear process models; and they are measurement test method

using the normal distribution (Mah and Tamhane 1982), Tjoa-Biegler’s method using

contaminated Gaussian distribution (Tjoa and Biegler, 1991), and robust methods using

Lorentzian distribution (Huber, 1981 and Johnston and Kramer 1995) or Fair function

(Albuquerque and Biegler, 1995).  In addition to the works of Tjoa and Biegler (1991) and
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Albuquerque and Biegler (1995 and 1996), which tested their algorithms using a simple

hypothetical process model, and Johnston and Kramer (1995) that just briefly mentioned the

Lorentzian distribution, our work first applied these algorithms to the industrial process, sulfuric

acid plant, and compared their performance based on the results for sulfuric acid plant.  The

results indicated that the contaminated Gaussian distribution and Lorentzian distribution are more

effective in automatically rectifying random and gross errors than normal distribution

(measurement test or least squares method) that has been widely studied and applied.

Albuquerque and Biegler (1996) and Johnston and Kramer (1995) briefly discussed the

theoretical evaluation of algorithm using influence function.  The present work systematically

evaluated and compared the performances of all applicable distributions in reconciling process

data using the combination performance of influence function and relative efficiency.  

Serth and Heenan (1986 and 1987) have numerically compared the performance of

measurement test (MT), iterative measurement test (IMT), modified iterative measurement test

(MIMT), method of pseudonodes (MP), and screened combinatorial (SC) method using a simple

linear steam-metering system.  It was concluded that MIMT represents the best combination of

computation speed and efficiency (accuracy).  Kim, et al., (1997) reported that performance of

MIMT was enhanced by using nonlinear program (NLP) technique and they demonstrated the

enhancement using a simple adiabatic CSTR process that has six variables and three constraints.

The advantage of NLP technique over the successive linearization used by Serth and Heenan’s

MIMT is that it explicitly handles nonlinear constraints and the bounds of variables are

automatically incorporated in the optimal solution.  It was found that the linearization-based
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technique does not successfully treat the large measurement errors for highly nonlinear system as

NLP does.  The present work used NLP technique to solve the nonlinear data reconciliation

problems as Kim, et al., did for the complicated and highly nonlinear chemical process.  Also, a

modified compensation strategy was proposed to improve the data reconciliation accuracy.  The

proposed strategy is more effective and requires smaller number of iterations than modified

iterative strategy in MIMT. 

Integration of On-Line Optimization: Based on the results of this research, the optimal

procedure and best algorithms to conduct on-line optimization have been proposed as discussed

previously.  Also, the integration of components in on-line optimization was studied and the

strategy to construct data from the result of previous step to use in following step was proposed.

Based on the results, an interactive on-line optimization interface program has been developed

to alleviate the effort for engineers to apply on-line optimization.  This program incorporates the

detail algorithms for on-line optimization and the detail procedure for data exchange.  It provides

user friendly interface windows to guide engineers to enter required plant information, and it

automatically generates and executes the programs of optimization problems involved in on-line

optimization.

In summary, this research work provided a detail and systematical investigation on the

methodology of on-line optimization.  It should help understand the on-line optimization

technology and provide the basis for continuing study in the integration of process economics,

design, operations, simulation, optimization, and control, which represents the Postmodern Era

of Process Control as mentioned in Edgar’s award lecture (Edgar, 1997).
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I. Summary

On-line optimization is an effective approach for economic improvement and source

reduction in chemical plants and refinery processes.  On-line optimization involves several steps

and these are gross error detection to identify and rectify the gross errors in plant data from

distributed control system, parameter estimation to update the values of process parameters in

the plant simulation model, and economic optimization to generate a set of optimal set points that

will optimize the plant economic objective and satisfy the constraints in the plant simulation model.

Optimal Procedure of On-Line Optimization:  The optimal procedure to conduct on-line

optimization has been proposed based on the results from this research.  For a chemical plant or

refinery process, the best procedure for on-line optimization is shown diagrammatically in Figure

5.14.  It involves solving three nonlinear optimization problems of Data Validation (gross error

detection and data reconciliation), Parameter Estimation (simultaneous data reconciliation and

parameter estimation) and Economic Optimization.  It first conducts combined gross error

detection and data reconciliation to detect and rectify gross errors in plant data sampled from

distributed control system using the Tjoa-Biegler's method (the contaminated Gaussian

distribution) or robust method (Lorentzian distribution).  This step generates a set of

measurements containing only random errors for parameter estimation.  Then, this set of

measurements is used for simultaneous parameter estimation and data reconciliation using the least

squares method.  This step provides the updated parameter values in the plant model for

economic optimization.  Finally, optimal set points are generated for the distributed control system
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from the economic optimization using the updated plant and economic models.  This optimal

procedure can be used for any process to conduct on-line optimization.

In addition, the gross error detection, data reconciliation, and parameter estimation can

be combined into one optimization problem and conducted simultaneously.  For this  case, the

Data Validation and Parameter Estimation in Figure 5.14 can be combined into one step, and the

best procedure is first to conduct the simultaneous gross error detection, data reconciliation, and

parameter estimation using Tjoa-Biegler’s contaminated Gaussian distribution or Lorentzian

distribution with plant data from distributed control system.  Then, the updated plant model and

current economic model are used to conduct economic optimization to generate the optimal set

points for distributed control system to control.

Economic Optimization: Plant economic optimization demonstrated a potential in

improving the plant profits and reducing pollutant emission.  The plant economic optimization

showed 3% profit improvement or 2.3% profit improvement and 25% emission reduction over

the design conditions for the sulfuric acid process at IMC Agrico Company’s plant.  On-line

optimization using current operating data demonstrated that plant economic optimization gave

2.3% ($313,000/year) and 3.1% ($410,000/year) profit improvement over the plant operation

conditions on 6-10-97 and 6-12-97.  Also, plant economic optimization was able to achieve up

to 5% profit improvements over the current plant operation conditions for some special operating

cases, such as plant must run under a reduced rate of products.  Moreover, plant optimization

could determine set points that reduced the SO2 emission and still achieved 2.1% profit

improvement over current operation condition.  
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Data Validation: The performance of algorithms was theoretically evaluated using the

influence function and the relative efficiency of the distribution used by the algorithm.  The

comparison of influence functions for the distributions showed that both contaminated Gaussian

and Lorentzian distributions are effective in rejecting the contribution of gross errors in

measurements on the estimation.  They are able to rectify the measurements containing gross

errors through other measurements that do not contain gross errors.  While measurement test

method which is based on a normal distribution has a significantly biased estimation in reconciling

process data for  measurements containing both random and gross errors; and the degree of bias

increases unboundedly with the increase in the error magnitude.  Therefore, an iterative

elimination strategy was necessary for the normal distribution to avoid the bias whenever a gross

error was detected.  The comparison of relative efficiency shows that normal distribution has the

highest efficiency when measurements are normal (no gross error).  The relative efficiency

decreases in order as: the contaminated Gaussian distribution, Lorentzian distribution, and Fair

function.  It was concluded that the contaminated Gaussian distribution has the best performance

for the moderate gross error size, Lorentzian is more effective for extremely large gross errors

or infinite gross errors, and normal distribution has the highest estimation accuracy when

measurements do not contain gross errors.

The numerical study for combined gross error detection and data reconciliation concluded

that Tjoa-Biegler’s method has the best performance for moderate gross error size in

simultaneously rectifying both random and gross errors.  It achieved the highest gross error

detection rate, highest random and gross error reduction, and committed the lowest number of



330

type I errors in the three distributions (normal, contaminated Gaussian, and Lorentzian

distributions) for the gross error range in 3F - 30F.  Lorentzian distribution demonstrated a

tendency to exceed the performance of Tjoa-Biegler’s method when gross errors are larger than

30 times the standard deviation.  Measurement test resulted in significant biased estimation

(misrectification) in reconciling measurements containing both random and gross errors; and this

was observed by lower error reduction and large number of type I errors committed by

measurement test method.  Also, the numerical results  showed that Lorentzian distribution is the

least sensitive to the variations of gross error sizes, and measurement test is the most sensitive to

the variations of gross error sizes.  

A modified compensation strategy has been proposed and incorporated with

measurement test method to avoid the biased estimation due to the presence of gross errors.  The

improvement on estimation accuracy from this strategy is the same as the modified iterative

strategy proposed in literature.  However, the modified compensation strategy requires much

smaller number of iterations and is more straight forward to conduct without requiring

modification of the program of the optimization problem.  It can be automatically conducted by

computer program, and it can be included in on-line optimization.  The numerical results from

modified compensation measurement test (MCMT) demonstrated that the modified compensation

strategy significantly reduces the biased estimation of measurement test.  This was observed by

significantly reduced number of type I errors committed by the algorithm.  Also, a small number

of type I errors from Tjoa-Biegler’s method and Lorentzian distribution was observed from
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numerical results.  It is recommended that this modified compensation strategy be incorporated

with Tjoa-Biegler’s method and Lorentzian distribution to further improve their performance.  

Parameter Estimation: The methodology (mathematical statement of optimization

problem) for parameter estimation in on-line optimization is similar to one for combined gross

error detection and data reconciliation.  The only difference is that the process parameters are

variables in simultaneous data reconciliation and parameter estimation step rather than constants

in combined gross error detection and data reconciliation.  Therefore the algorithm used to

reconcile data in simultaneous data reconciliation and parameter estimation step should have the

same performance as it does in combined gross error detection and data reconciliation.  Based

on the algorithm and characteristic of measurement data used for parameter estimation, two

alternative estimation strategies have been proposed for conducting parameter estimation, two-

step estimation and one-step estimation, as described previously.  Two-step estimation is

corresponding to the procedure of three optimization problems for on-line optimization, i.e.,

combined gross error detection and data reconciliation, simultaneous data reconciliation and

parameter estimation, and economic optimization.  One-step estimation is corresponding to the

procedure of two optimization problems for on-line optimization, i.e., the simultaneous gross error

detection, data reconciliation, and parameter estimation, and the economic optimization.  

The overall performance of both one-step and two-step estimation was compared based

on parameter estimation accuracy, data reconciliation accuracy, gross error identification, and

computation effort.  Two-step estimation demonstrated 4% lower variation on estimated

parameter values, 6.5% higher error reduction, and 10.6% higher relative standard deviation



332

reduction on reconciled data than one-step estimation.  Also, two step estimation had 6.3%

higher gross error detection rate and committed 50% less of type I errors than one-step

estimation.  Both two-step and one-step estimation had comparable estimation accuracy on the

plant parameters.  However, two-step estimation  required 82% more computation time than

one-step estimation did.

In summary, two-step estimation demonstrated a better  performance in estimation

accuracy than one-step estimation for sulfuric acid process, while one-step estimation required

less computation time as discussed in above paragraph.  Also, the one-step estimation eliminates

the interaction between two data reconciliations for gross error detection and for parameter

estimation.  For the sulfuric acid process, the two-step estimation is recommended to be used in

on-line optimization based on the numerical results.
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CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

Based on the results of this research for on-line optimization of chemical plants and

petroleum refineries, it is concluded as following:

1. For a chemical process or refinery, the optimal procedure to conduct on-line optimization

includes solving three nonlinear optimization problems of combined gross error detection

and data reconciliation, simultaneous data reconciliation and parameter estimation, and

economic optimization in sequence, as well as the data exchange as shown in Figure

5.14.  Also, the gross error detection, data reconciliation, and parameter estimation can

be combined into one optimization problem.  Then, the optimal procedure includes

solving two nonlinear optimization problems for simultaneous gross error detection, data

reconciliation, and parameter estimation and for economic optimization.

2. On-line optimization using current operating data demonstrated that plant economic

optimization gave 2.3% ($313,000/year) and 3.1% ($410,000/year) profit improvement

over the plant operation conditions on 6-10-97 and 6-12-97.  Plant economic

optimization demonstrated a potential in improving the plant profits and reducing pollutant

emission.  The plant economic optimization showed 3% profit improvement or 2. 3%

profit improvement and 25% emission reduction over the design conditions for the

sulfuric acid process at IMC Agrico Company’s plant.  

3. Theoretical studies of algorithms used for data reconciliation were based on the influence

function and relative efficiency of the distribution functions used by the algorithms.  The
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comparison of influent functions of the distribution functions showed that the sensitivity

of the distribution functions to the presence of gross errors decreases in an order as:

normal distribution of measurement test method, Fair function of  robust method,

contaminated Gaussian distribution of Tjoa-Biegler’s method, and Lorentzian distribution

of robust method.  The comparison of relative efficiencies of the distribution functions

used by the algorithms showed that the estimation accuracy from a distribution function

increased in order as: Fair function, Lorentzian distribution, contaminated Gaussian

distribution, and normal distribution.  It was concluded that the Tjoa-Biegler’s

contaminated Gaussian distribution has the best performance for moderate gross error

size; Lorentzian distribution is more effective for extremely large gross errors or infinite

gross errors; and normal distribution has the highest estimation accuracy when

measurements do not contain gross errors based on the theoretical studies. 

4. Numerical studies were evaluated based on the results of gross error detection rate,

number of type I errors, relative random and gross error reductions from three algorithms

summarized on the simulation results from 4000 runs.  The three algorithms are

measurement test method using the normal distribution, Tjoa-Biegler’s method using

contaminated Gaussian distribution, and robust method using Lorentzian distribution for

combined gross error detection and data reconciliation.  The numerical evaluation

concluded that Tjoa-Biegler’s method has the best performance for moderate gross error

size in simultaneously rectifying both random and gross errors.  It achieved the highest

gross error detection rate (97.4%), highest random and gross error reductions (66.1%
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and 96.7% respectively), and committed the lowest number of type I errors in three

distributions for the gross error range (3F - 30F).  The method based on Lorentzian

distribution demonstrated the tendency to exceed the performance of Tjoa-Biegler’s

method when gross errors were large (larger than 30F).  Measurement test method had

results with a significant biased estimation (misrectification) in reconciling measurements

containing both random and gross errors.

5. A modified compensation strategy has been proposed to avoid the biased estimation due

to the presence of large gross errors for the data reconciliation algorithms.  The

improvement on estimation accuracy from proposed strategy is the same as the modified

iterative strategy proposed in literature.  However, the modified compensation strategy

requires fewer number of iterations and is more straight forward to incorporate without

requiring modification of the program of the optimization problem.  The numerical results

from modified compensation measurement test (MCMT) method demonstrated that the

modified compensation strategy significantly reduces the biased estimation in

measurement test.  This was observed by significantly reduced number of type I errors

committed by the algorithm. 

6. The parameters in a plant model can be estimated by two-step estimation method or

one-step estimation.  The numerical results on parameter estimation showed that both

one-step and two-step estimation strategies can accurately estimate process parameters

and variables for the sulfuric acid plant.  Two-step estimation demonstrated 4% lower

variation on estimated parameter values, 6.5% higher error reduction, and 10.6% higher
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relative standard deviation reduction on reconciled data than one-step estimation.  Also,

two step estimation had 6.3% higher gross error detection rate and committed 50% less

of type I errors than one-step estimation.  However, two-step estimation  required 82%

more computation time than one-step estimation did.  For the sulfuric acid process, the

two-step estimation is recommended to be used in on-line optimization based on the

numerical results.

7. The Monsanto designed sulfuric acid process of IMC Agrico Company at Convent,

Louisiana, was used to test the methodology of on-line optimization and to study the

effect of plant model formulation on the results.  Based on the results, the open form

equation based plant model improves the performance of plant models and the solutions

of the nonlinear optimization problems in on-line optimization.   

8. A general procedure to examine the observability and redundancy of open form equation

based model has been proposed, and it was applied to sulfuric acid contact process

model.  

9. An interactive, window interface program, Interactive On-Line Optimization System, has

been developed to alleviate the effort of engineer to apply on-line optimization.  This

program incorporated the detail methodology of on-line optimization developed in this

research project and automatically links with optimization software (GAMS) for solving

the optimization problems of on-line optimization.

B. Recommendations
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The following recommendations are made for future investigation in this area:

1. Although the methodology of on-line optimization is general and applicable for all

chemical processes, the plant model formulation is specific for different types of chemical

processes.  The plant model formulation requires extensive knowledge of the process for

developing the plant simulation and examining the observability and redundancy of the

simulation model.  Additional work can be focused on the software development for

establishing the open form equation based plant model.  This will significantly reduce the

effort of engineers in applying on-line optimization and avoid the errors that are possibly

committed in the plant simulation. 

2. The knowledge of error structures of the plant data is important for effectively verifying

and adjusting the data.  Better understanding about the distribution behavior pattern of

measurement errors is very important in improving the gross error identification and

estimation accuracy in reconciling process data.  Therefore, the further study of the

instrument errors is essential to provide more accurate distribution function and to have

the algorithm  perform better. 

3. Although steady state process simulation models represent the behavior of continuous

processes, the study of the modeling of dynamic response of these processes is important

in describing the unsteady state behavior of processes and investigating the transient

behavior of the process from set point change.
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APPENDIX A. TERMINOLOGY

Bounds  - define the allowable range of process variables.  The low and up bounds represent the

allowable minimum and maximum operating conditions of the process variables and the

raw material availability and product quality requirements.

Closed form sequent modular plant model - follows the traditional design rules, using the

information for the input streams of a unit to determine the values of the output variables.

Changes of variables in input streams can affect variables in output streams, but the

changes of variables in output streams can not affect the determination of process

variables in the input streams.

Control variables - are the variables whose values must be satisfied by adjusting the

manipulated variables.

Data reconciliation - Data reconciliation is a procedure to adjust or reconcile process data

obtained from distributed control system and obtain more accurate values by adjusting

the data to be consistent with material and energy balances.

Distribution function - is used to describe the behavior pattern of measurement errors.

Economic model - is the objective function for economic optimization.  It is a function that is

used to maximize the plant profit; minimize the operation cost, emission or energy

consumption; for example. 

Economic optimization - is to determine the plant operation conditions that will optimize the

economic objective (model) and satisfy the constraints of the plant model.
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Equality constraint equations  - are mass and energy balances, heat transfer equations,

reaction rate equations (kinetic model), thermodynamic equilibrium equations, physical

property functions, and others.

GAMS, General Algebraic Modeling System - was developed at the World Bank to solve large

and complex mathematical programming models by using a programming language that

makes concise algebraic statements of the models and was easily read by both the

modeler and the computer (Brook et al., 1988).

Gross error detection - is a statistical procedure to detect and rectify gross errors in plant

sample data sampled from distributed control system.

Gross error detection rate - is the ratio of number of gross errors that are correctly detected

by the algorithm to the actual number of gross errors in measurements.

Inequality constraint equations  - provide additional restrictions for the economic optimization.

The inequality constraint equations for a chemical process are the demand for main and

by products, availability of raw materials, maximum capacities of the equipment,

restriction on the waste/pollutant emission, and others. 

Influent function - is proportional to the derivative of the distribution function.  It reflects the

influence of contaminated measurements on the estimation.

Initial point - the starting values of variables in a optimization problem for the optimization

algorithm to search for optimal solution.  The default initial point of GAMS is zero or the

bound whichever is closer to zero if the bounds are specified to be different from default

values.
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Key measured variables - are the variables that are directly related to the determination of

plant parameters

Measurable variables - are the variables that can be measured by instruments, such as flow

rate, temperature, pressure, composition, or other.

Measured variables - are the variables that have been sampled from plant’s distributed control

system.

Manipulated variables - are the variables that are adjusted to satisfy the requirement on control

variables. 

Open form equation based plant model - is written as a set of algebraic and/or differential

equations in the form f(x) =0.  The equations are solved simultaneously for the values of

variables, rather than sequentially.

Observability - An unmeasured variable in steady state model is observable if and only if it can

be uniquely determined from a set of values for the measured variables, which are

consistent with all of the given constraints.  Any unmeasured variable which is not so

determinable is unobservable (Crowe, 1989).

Optimization algorithm - is a mathematical method to solve an optimization problem, such as

simplex method for linear optimization problems and successive linear programming,

successive quadratic programming and the generalized reduced gradient method for

nonlinear optimization problems.
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Parameter estimation - is a statistical procedure to update the values of parameters in the plant

model using the plant data reconstructed from the combined gross error detection and

data reconciliation.

Plant (simulation) model - is consist of a set of equations that represent the relationship among

process variables and describe the process behavior.  These include the equality

equations (material and energy balances, etc.) and inequality equations (availability of raw

materials, demand of products, capacity of equipment, etc.). 

Plant parameters  - are parameters in plant model that are unmeasurable and whose values

change slowly with time and are not affected by the changes of operation conditions.,

e.g., heat exchanger fouling factors, catalyst effectiveness factors, or tray efficiency.

These parameters usually describe the condition of process equipment.

Redundancy - A measured quantity is redundant if and only if it would be observable if that

quantity was not measured.  Otherwise, the measured quantity is non-redundant (Crowe,

1989).

Relative efficiency - represents the asymptotic efficiency of a distribution to normality.  It

indicates the estimation accuracy for normal measurements.

Relative error reduction - is the ratio of the remaining error after data reconciliation to the

original measurement error.

Set points - are the operating points of the controllers in the distributed control system that are

adjusted by n-line optimization.
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Type I error - is the event that the algorithm has incorrectly identified a normal measurement (no

gross error) as an abnormal measurement (measurement containing gross error).

Type II error - is the event that the algorithm has incorrectly identified an abnormal

measurement (measurement containing gross error) as normal measurement.

Unmeasured variables - are the variables that are not sampled from plant distributed control

system.  Their values will be determined by the measured variables through constraint

equations.
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APPENDIX B  STATISTICAL BACKGROUND INFORMATION

The application of the methods of probability to the analysis and interpretation of

empirical data is known as statistical inference.  The basic idea is to develop a probability

distribution function based on the data sampled from a population and to use this distribution

function to test other data that is from the same population.  The statistical theory of data

reconciliation in on-line optimization is based on the same idea, i.e., assume the data is subject

to a certain type of distribution.  Then, this distribution is used to reconcile the data for process

variables sampled from distributed control system.  

The distribution functions for data reconciliation of on-line optimization have been

discussed in Chapters II and III.  They are the normal distribution function which is used by the

least squares method, the contaminated Gaussian distribution function, robust functions

(Lorentzian distribution and Fair function).  These distribution functions are used to construct the

likelihood function (maximum likelihood method) or posterior density functions (Bayesian

method).  Data reconciliation is conducted by maximizing the likelihood function or the posterior

density function subject to process constraints.

The statistical method of data reconciliation can generally be stated as:

Maximize: P(x, y) (B-1)
       x, z

Subject to: f(x, z) = 0
xL# x # xU, zL# z # zU

where P(x, y) is the likelihood function or posterior density function.  f(x, z) = 0 is the process

constraints such as mass and energy balances.  y is the vector of measurements (sample data) for
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(B-2)

the measured variables and x is the vector of true values for the same variables as y.  z is the

vector of unmeasured variables in the constraints.  xL# x # xU and zL# z # zU are the bounds

on the process variables.  Solving this optimization problem gives a set of values for process

variables (x and z) that will maximize the objective function P(x, y) and satisfy the process

constraints f(x, z) = 0.  This objective function is used to reconcile the sample data, and the

constraint equations are necessary to describe the process.  The following will briefly discuss the

relation of a distribution function, likelihood function, and posterior density distribution.

I. Relationship of Distribution, Likelihood Function, and Posterior Density Function

A distribution is the sum of all the probabilities of a random variable associated with

outcomes in sample set S.  Conceptually, it describes the probability structure of the random

variable (Larsen and Marx, 1986).  It is empirical function regressed from the sampled data.  As

discussed in Chapters II and III, the distribution functions that are applicable to reconciling the

sampled data from distributed control system for on-line optimization are the normal distribution,

the contaminated Gaussian distribution, and robust functions.

If the measured data are independent of each other, then the probability for a particular

set of data {y1, y2, .., yn} is the product of individual probabilities p(yi), i = 1, 2, .., n.  This

product is called likelihood function (Barlow, 1989).  The likelihood function is expressed as :

where P(yi) is the probability distribution function for measurement error i.  This distribution

function can be different depending on the distribution structure of sampled data, and it can be
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(B-3)

the normal distribution function, the contaminated Gaussian distribution function, or robust

function. 

The concept of conditional probability is used in Bayesian theorem.  The probability that

an event F occurs if it is known or given that an event E has occurred is denoted by P(F*E) and

it is called a conditional probability of F given E.  Probability P(F*E) is obtained by letting E be

the new reduced sample space.  Then fractional probability on E which lies on E1F (the

intersection of E and F, i.e., the sample space consists of the elements contained in the set where

E and F overlap) is given by (Guttman, et al., 1982):

An interpretation of Eq. B-3 is that posterior to observing that measurements y have been made,

the probability of x changes from the prior probability, P(x), to posterior probability P(x *y)

(Guttman, et al., 1982).

According to Bayesian theorem, the posterior density function P(x* y) can be written in

terms of the conditional probability P(y*x) of an event that has measurements y and is given the

true values of the variables as x, the prior probability that the variables have the true values as x

in P(x), and the prior probability that the variables have measurements y in P(y).  The Bayesian

theorem is (Bretthorst, G. L., 1989):

P(x * y) = P(y * x) P(x)/P ( y) (B-4)
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(B-6)

The prior probability P(y) is a normalized constant and independent of x.  It does not

affect the optimization and can be excluded.  The conditional probability P(y * x) is the product

of conditional probability for individual measurement P(y*x), i.e.,

P(y * x) = P(y1 * x1) P(y2 * x2) @@@  P(yn * xn) = J  P(yi * xi) (B-5)

This probability function P(y * x) is a likelihood function. 

The prior probability of the true values of the variables x, P(x), can be constructed by

the principle of maximum entropy based on the prior qualitative knowledge about the true values

of process variables.  The detail methodology about maximum entropy is given in Shannon

(Shannon, 1948).

For a discrete probability distribution P(i# I), i stands for some proposition and I

represents the information on which the probability distribution is based.  The principle of

maximum entropy states that if one has some testable information I, one can assign a probability

distribution to a proposition i such that P(i# I) contains only information I.  This assignment is

done by maximizing Shannon's H function (Shannon, 1948),

subject to the constraints represented by the prior information I, where H is referred as entropy

by Shannon.  

The information could be the normalization, i.e., the summation of probabilities is equal

to 1, or knowing mean and variance of the proposition i.  If nothing is known about the

proposition i, the objective function, i.e., H function, is only subject to normalization constraint
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(B-7)

(B-8)

3Pi = 1.  Then, the resultant probability function is a uniform function whose value depends on

the range of proposition i.  If it is known that only the variance exists and it has zero mean, the

constraints of H function are the normalization, first moment, and the second moment.  The

resultant probability distribution is a normal distribution function with zero mean.  If more

information is known, then more constraints are considered.  Therefore, the resultant distribution

function will more complicated and more accurate.  However, if the fault information is added to

the constraints, it will mislead the distribution function.

  For the event of throwing a die with six faces, its probability can be constructed by the

principle of maximum entropy.  It is to maximize the entropy function H subject to the constraints.

If nothing is known about the die except that the sum of probabilities for all possibles outcomes

of throwing a die is 1, then the constraint is only the nomalization, i.e., 

The possible outcomes of throwing a die will be on six different faces, and 6 in Eq. B-7

represents total number of the possible outcomes of throwing a die.  Therefore, this maximization

is expressed as:

Maximize:  

Subject to:

Eq. B-8 can be solved by Lagrange multiplier method.  Solving Eq. B-8 gives the

probability for the event of throwing a die as:

P(i * I) = 1/6 (B-9)
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If no information is known about the true values of process variables, then a uniform prior

probability (a constant) will be assigned to their distribution, P(x), based on the principle of

maximum entropy.  Therefore, the posterior density function is proportional to the likelihood

function, i.e.,

P(x * y) = P(y * x) P(x)/P(y)% P(y * x) (B-10)

where P(x) and P(y) are constants.  The Bayesian method is reduced to maximum likelihood

method.

  The relationship among these distribution functions is summarized in Figure B.1.  As

shown in Figure B.1, posterior density function from Bayesian method is the most general

approach.  It is the product of the likelihood function and prior probability P(x) of the true values

of variables x as shown in Eq. B-4.  This method incorporates more information in the distribution

function than the maximum likelihood method.  If the prior probability P(x) is a uniform

distribution (a constant), then the posterior density function is proportional to likelihood function,

and the Bayesian method is converted to maximum likelihood method.  The maximum likelihood

method is a special case of the Bayesian approach.
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Figure B.1 The Relationship among Probability Distribution Functions 
      for Data Reconciliation

If some qualitative distribution information about the true values of variables x is available

and P(x) can be constructed as a function of x, then the variances of x are incorporated in the

posterior density function.  Using this posterior density function to reconcile process data can not

only provide the point estimation (the estimated values of x) as the maximum likelihood method

does, but also it can predict the possible variation ranges around the estimated values of x, which

is indicated by the variances of x. 

The likelihood function is the product of the distribution function for individual

measurement errors as defined in Eq. B-2, i.e, it is constructed from the distribution function for

individual measurement errors.  Based on the error structure of sampled data, the distribution

function can be the normal distribution, the contaminated Gaussian distribution, gamma

distribution, robust functions, or others.  If the distribution function of measurement errors follows
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a normal distribution, then the likelihood function is the product of the normal distributions for all

measurement errors.  The maximization of this likelihood function is equivalent to the minimization

of the sum of squared errors weighted by the variance.  Therefore, the maximum likelihood

method is converted to the least squares method.  The least squares method is a special case of

maximum likelihood estimation. 

II. Comparison of Unconstrained and Constrained Optimization

The methodology of data reconciliation in on-line optimization is similar to the traditional

mean estimation of unconstrained optimization.  The relations among process variables and

parameters (constraints of the plant model) are the necessary conditions for the data reconciliation

in on-line optimization.  These equations relate the individual measurements obtained from

distributed control system and provide the resolution for reconciling data.  The following gives

simple examples to illustrate the difference and similarity between traditional mean estimation and

data reconciliation in on-line optimization.

Traditional estimation uses m repeated data to estimate the mean of one random variable

(or n variables for multivariate with m×n data).  If all m measurements are randomly measured

and normally distributed, whose variance is F2.  Then the mean of a random variable can be

estimated by maximum likelihood method, i.e., maximizing the likelihood function which is a joint

normal distribution for all sample data or minimizing the sum of squared differences between the

sample data yi and estimated mean :.  This is expressed mathematically as:

Minimize: 3 (yi  - :)2 /F2    (B-11)
     :  i
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(B-12)

(B-13)

(B-14)

where : and yi are the estimated sample mean and the sample data of the random variable.

Setting the first derivative of Eq. B-11 with respect to : equal to zero gives the global

minimization of Eq B-11.  The solution for : of Eq B-11 is obtained by:

Eq. B-12 is a function to determine the sample mean of repeated experimental data and it is given

in a number of statistical text books (Johnson and Wichern, 1992 ).  The accuracy of the mean

depends on the m, number of repeated measurements.  In general, the larger m is, the more

accurate estimation of : will be. 

 For data reconciliation of on-line optimization, the values of n measured variables are

estimated using one set of n measurements yi, i = 1, 2, .., n, where yi  represents the measured

values of n measured variable xi.  The maximum likelihood method can used to estimate the

reconciled values of the measured variables.  If all measurements are randomly measured and

normally distributed with variances Fi
2's, then the maximum likelihood estimation method for the

data reconciliation can be expressed as:

where y represent the measured values of the n measured variables x.  EE is the variance matrix

of the measured variables.  Eq. B-13 can be rewritten as:
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Maximizing the likelihood function in Eq. B-13 is equivalent to the minimizing the least

squares function in Eq. B-14.  The measured variables x are related by the constraints from the

plant model.  Thus, Eq. B-14 used with plant model is a constrained optimization problem.

 Eq. B-11 and Eq. B-14 for traditional mean estimation and data reconciliation have the

similarities and differences.  Both use maximum likelihood method.  However, the traditional mean

estimation uses m repeated data to estimate one unknown mean. Data reconciliation uses a set

of n measurements and constraint equations to estimate the values of n measured variables.  The

constraint equations are essential to relate the process variables for data reconciliation, and the

variables in a chemical process are variables in the process model.  These constraint equations

imposed on the process variables make data reconciliation possible.
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APPENDIX C  PHYSICAL PROPERTIES OF PROCESS STREAMS

In the sulfuric acid contact plant, there are four streams in the whole process.  These are

the low pressure gases (SO2, SO3, O2, and N2), liquid sulfur, steam (compressed water and

superheated vapor), and sulfuric acid liquid.  Since the pressure of the gases is lower (range in

1 atm. to 1.4 atm.) throughout the whole process, they are considered as ideal gases.  Their

enthalpy and heat capacities are calculated by the regression equations from NASA Technical

Memorandum 4513 (Mcbride et al., 1993).  Also, the  enthalpy for liquid sulfur is determined

from the regression equation in the condensed state from NASA Technical Memorandum 4513

(Mcbride et al., 1993).  However, the pressure of steam stream is as high as 640-730 psi, and

the computation formulas of the enthalpy for steam are obtained by mean of a least square fit of

the data from the ASME Steam Table (1977).  The enthalpy for sulfuric acid liquid is obtained

from a two variables (concentration and temperature) polynomial formula fit to the enthalpy-

concentration chart (Ross, 1952).

I.  The Physical Properties of Gases and Sulfur

For the ideal gases (O2, N2, SO2, SO3) and liquid sulfur, the data to calculate the heat

capacity and sensible enthalpy is taken from NASA Technical Memorandum 4513 (Mcbride,

et al., 1993).  Tables C-1 and C-2 list the heat capacity coefficients for gases used in the balance

equations as shown below.  The heat capacity coefficients for liquid sulfur is given in Table C-3.

The reference state for heat capacities and sensible enthalpies of the species is pressure at 1 Bar

and temperature at 298.15 0K.
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Table C-1. The Coefficients of Heat Capacity and Enthalpy for Ideal Gases
at the Temperature Range of 1000-5000 K             

SO2 SO3 O2 N2

a1 5.2451364 7.0757376 3.6609608 2.9525763

a2 1.97042e-3 3.17634e-3 6.56366e-4 1.39690e-3

a3 -8.03758e-7 -1.35358e-6 -1.41149e-7 -4.92632e-7

a4 1.51500e-10 2.56309e-10 2.05798e-11 7.86010e-11

a5 1.05580e-14 -1.79360e-14 -1.29913e-15 -4.60755e-15

b1 -3.75582e4 -5.02114e4 -1.21598e3 -9.23949e2

b2 -1.074049 -11.187518 3.4153618 5.8718925

Table C-2. The Coefficients of Heat Capacity and Enthalpy for Ideal Gases
at the Temperature Range of 300-1000 K            

SO2 SO3 O2 N2

a1 3.2665338 2.5780385 3.7824564 3.5310053

a2 5.32379e-3 1.45563e-2 -2.99673e-3 -1.23661e-4

a3 6.84376e-7 -9.17642e-6 9.84740e-6 -5.02999e-7

a4 -5.28100e-9 -7.92030e-10 -9.68130e-9 2.43531e-9

a5 2.55905e-12 1.97095e-12 3.24373e-12 -1.40881e-12

b1 -3.69081e4 -4.89318e4 -1.06394e3 -1.04698e3

b2 9.6646511 12.265138 3.6576757 2.9674747

H298/R -3.57008e4 -4.75978e4 0.0 0.0
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(C-1)

(C-2)

Table C-3.  The Coefficients of Heat Capacity and Enthalpy
for Liquid Sulfur                            

T > 1000 K T # 1000 K

a1 3.500784 -7.27406e1

a2 3.81662e-4 4.81223e-1

a3 -1.55570e-7 -1.07842e-3

a4 2.72784e-11 1.03258e-6

a5 -1.72813e-15 -3.58884e-10

b1 -5.90873e2 8.29135e3

b2 -1.52117e1 3.15270e2

H298/R 0.0 0.0

The empirical equations for heat capacity CP
i(T) and sensible enthalpy hi(T) for each

species  are:

and
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(C-3)

where R is molar gas constant, 8.3145 KJ/kmol- 0K. T is the temperature in K.  The reference

state for enthalpy equation is the standard state, 298.150K and 1 bar.  H298 is the absolute

enthalpy at the standard state for each species given in NASA Technical Memorandum.  It is zero

for elements and the heat of formation for the species.  Eq. C-2 is used to calculate the sensible

enthalpy of a species with reference state as temperature 298.15 K and pressure at 1 Bar.  The

units of enthalpy and heat capacity are dependent on the units of the constant R.  

II. The Physical Properties of Steam

The steam properties are divided into two groups, compressed water from stream SS1

to SS4 and superheated vapor in stream SS5 and SS7.  For the compressed water, the 

variation of enthalpy in the operating pressure range is not significant.  It is assumed that its

enthalpy is only a function of temperature.  The polynomial function of enthalpy for compressed

water is regressed from ASME Steam Table data (Meyer, et al., 1977) shown as following:

where the unit of temperature T is oF, and the reference state of the enthalpy is 298.15 K and 1

atm.  The regression ranges are 200-500 oF and 600-750 psi.  The comparison of prediction and

tabulated data is shown in Figure C-1.  The symbol and solid line in the figure represent the

tabulated data and formula prediction respectively.  The largest relative difference between

prediction value and tabulated data is 0.01%.  
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Figure C.1 The Comparison of Prediction and Tabulated Data
                  for the Enthalpy of Compressed Water

(C-4)

The superheated vapor is fit to a third order polynomial in temperature and second order

polynomial in pressure with ASME steam table data (Meyer et al., 1977).  The regression

function is:

where the unit of temperature is oF and unit of pressure is psia.  The reference state of the

enthalpy is 298.15 K and 1 atm.  The regression ranges are 200-500 F for temperature and 600-
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         Figure C.2 The Comparison of Prediction and Tabulated Data
                           for Enthalpy of Superheated Vapor at 600 psi

750 psia for pressure.  The comparison of prediction and tabulated data is shown in Figure C-2.
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III. The Physical Properties of Sulfuric Acid

For the sulfuric acid stream, one of the difficulties in writing the energy equations is using

the right thermodynamic model to calculate the enthalpy of the sulfuric acid system.  One possible

approach which was used by Crowe (1971), Doering (1976) and Richard (1987) is using

RENON activity equation, which leads to relatively complicated equations.  Also, the

temperatures predicted by this method did not agree with the design data well (Zhang, 1993).

Besides, the variations in temperature and concentration of the sulfuric acid system is very small

in comparison to the range of application of the thermodynamic equation.  Therefore, it was

decided that the enthalpy of sulfuric acid system could be regressed directly from enthalpy-

concentration chart given by Ross (1952).  By inspecting the data of the chart, it was found that

the enthalpy at the same concentrations are almost a linear function of temperature.  Therefore,

the enthalpy data was regressed into a two-variable function, linear in temperature and second

order in concentration.  The regression result is:

h = - 145.8407C + 9.738664e-3T + 8.023897e-3TC
      + 83.61468C2 + 60.19207               (C-5)
      For 60oC # T # 120oC; 0.90 # C # 1.00       

   
where the unit of T is oC, and C is the weight fraction of sulfuric acid.  The unit of enthalpy, h, is

kilogram calorie per gram mole, where one gram mole of solution is defined as:

80.06x+18.02(1-x) g

 and x is mole fraction of SO3 defined as:
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Figure C.3 The Comparison of the Prediction and Tabulated Data
                 for Enthalpy of Sulfuric Acid Solution

The standard states were chosen as hH2O=0.0 kcal/gmol and h100%H2SO4=-1.70kcal/gmol at

T=16oC.  The enthalpy calculated in Eq. C-5 is referenced to this standard state.  The regressed

prediction is compared with the chart data as shown in Figure C-3.  The largest relative predicted

error for this enthalpy is 3%.
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(D-1)

(D-2)

APPENDIX D.  KINETIC MODEL FOR THE CATALYTIC 
  OXIDATION OF SO2 TO SO3

Doering (1976) developed a kinetic model for the catalytic oxidation of sulfur dioxide to

sulfur trioxide over vanadium pentoxide catalyst.  This model was modified for the contact sulfuric

acid plant design by Monsanto Envio-Chem System, Inc. and is discussed below.  The oxidation

of SO2 to SO3,

is carried out over a vanadium pentoxide catalyst promoted by potassium salts.  Extensive efforts

have been directed at correlating the reaction rate data for this reaction.  Doering used Harris and

Norman's rate equation for this reaction with Monsanto Type 11 and 210 catalysts.  Also, this

rate equation was applied to the new LP-110 and LP-120 vanadium pentoxide catalysts which

are being used by IMCAgrico's Uncle Sam plants (Richard, 1987).  The difference between the

old and new catalysts is only their shapes, and the former had a cylindrical shape, while the latter

utilizes the Rasching ring form.  The difference in shape does not affect the intrinsic reaction rate

equation; it only changes the diffusional effect. The new catalysts have 45% to 50% lower

pressure drops with the same conversion performance as the old catalysts.  The intrinsic rate

equation given by Harris and Norman (1972) is:
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where rSO2 is the intrinsic reaction rate with units of lb-mol of SO2 converted per hour per lb

catalyst, and Kp is the thermodynamic equilibrium constant with units of atm-1/2.  PO2, PSO2, and

PSO3 are interfacial partial pressure of O2, SO2, and SO3 in units of atm; and P0
O2 and P0

SO2 are

interfacial partial pressures of oxygen and sulfur dioxide at zero conversion  under the total

pressure of reactor, in units of atm.  The thermodynamic equilibrium constant can be calculated

by:

 Log10KP = 5129/T - 4.869,  T in oK           (D-3)

The parameters A, B, C and D in the rate equation, Eq. D-2, were derived from least

square regression of the rate data by Harris and Norman(1972).  They are the function of

temperature in K as following:

Catalyst Type LP-110 Catalyst Type LP-120 

A = exp (-6.80 + 4960/T) A = exp (-5.69 + 4060/T)
B = 0                 B = 0     (D-4)
C = exp (10.32 - 7350/T) C = exp ( 6.45 - 4610/T)
D = exp (-7.38 + 6370/T) D = exp (-8.59 + 7020/T)

The intrinsic rate equation is the rate under the conditions on the catalyst surface.  To

determine the real reaction rate from the conditions of bulk-gas stream, the following four

transport phenomena need to be considered: 

1) Diffusion of reactants and product through the pores within the catalyst.

2) Pellet internal temperature gradient. 

3) Bulk-gas to pellet temperature gradient.

4) Bulk-gas to pellet concentration gradients.
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Diffusion:  The effect of diffusion through the catalyst pores is taken into account by

multiplying the intrinsic reaction rate by an effectiveness factor, Ef, to get the actual rate, rSO3, i.e.,

rSO3 = rSO2 Ef (D-5)

In Doering’s work (1976), followed by Richard (1987) and Zhang (1993), the

effectiveness factor for this reaction was calculated by the empirical formulas.  After examining

the formulas, some inaccuracy was found.  Therefore, the model has been modified; and the

effectiveness factor was changed to a process parameter to be estimated by plant data for each

convertor.

Pellet Temperature Gradients: The intraparticle heat conduction could cause a

temperature gradient within the catalyst pellet if the heat conduction is slow relative to the rate of

heat generation due to reaction.  Based on the criterion developed by Carberry for determining

temperature gradient within a catalyst particle, Doering(1976) concluded that a significant

temperature gradient does not exist.  Therefore, it is assumed that the temperature gradient within

these catalyst particle has an insignificant effect on the reaction rate for this system.

Bulk Gas to Pellet Temperature Gradient: The bulk gas temperatures in the packed bed

reactors are measured.  The uniform pellet temperature can be determined if the temperature

gradient across the external film of the catalyst surface can be calculated.  Yoshida et al. (1962)

presented a method of estimating the temperature gradient using the following equation:
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(D-6)

where:

)T = temperature drop from a catalyst surface to the bulk gas, K

rSO3 = actual reaction rate of SO2, lb-mol/hr-lb Cat.

)Hrxn
SO3 = 1.827×(-24,097-0.26T+1.69×10-3T2+1.5×105/T)

     = heat of reaction of SO2, Btu/lb-mole

Cp = gas heat capacity, Btu/lb-oK

Pr = Prandtl number = 0.83

D$ = (1-,)Dapp, lb/ft3 = Bulk density

N = shape factor = 0.91

G = mass velocity of gas, lb/hr-ft2

av = Specific surface of pellet = 6(1-,)/dp , FT2/FT3

jH = 0.91 Re-0.51

Re = G/(avN:)      

: = gas viscosity, lb/ft-hr

The bulk density and spherical diameters of catalysts are given in Table E-1 (Zhang, 1993).

Table D-1  Catalyst Physical Properties
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(D-7)

(D-8)

(D-9)

L-110 L-120

Bulk Density, lb/ft3 33.8 38.1

Spherical Diameter, ft 0.0405 0.054

The heat capacities of the gas streams are given in Eq. B-2 of Appendix B.  The critical

gas viscosity were calculated by the following equations(Bird, et al., 1960):

where Mw is the molecular weight.  Tc and Vc are the critical temperature in K and volume in CC

per gram-mol respectively.  The viscosity for temperature T can be calculated by (Zhang, 1993):

where yi’s are molar fractions of gas components, i= SO2, SO3, O2, N2.  Ftr
i’s are temperature

factors for gases which can be calculated by (Zhang, 1993): 

where Tr
i’s are the relative temperature of gas components i.
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Bulk-gas to pellet concentration gradients:  Based on the work of Yoshida, et al. (1962),

Doering(1976) concluded that the partial pressure gradients from the bulk gas to the pellet was

sufficiently small to be neglected.

Summary: The kinetic model for the oxidation of SO2 to SO3 is given in this  appendix.

The equations required to determine the reaction rate are summarized in Figure D-1, and they are

incorporated in GAMS program.  This kinetic model precisely describes 
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Figure D.1 Rate Equation for the Catalytic Oxidation of SO2 to SO3 Using Type LP-110
and LP-120 Vanadium Pentoxide Catalyst 



378

the relation of the reaction operation conditions, such as temperature, pressure, concentrations

of gas components.  In addition, the modification of reaction effectiveness factors determined

from empirical formulas with the assumption of pseudo first order reaction to plant parameters

improves the performance of the kinetic model in GAMS program.  The simulation with present

kinetic model predicted conversion and energy transport in the packed bed reactors as described

in Chapter IV.


