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Abstract 

On-line optimization provides a means for maintaining a process near its optimum operating conditions by providing set points to the 
process’s distributed control system (DCS). To achieve a plant-model matching for optimization, process measurements are necessary. 
However, a preprocessing of these measurements is required since they usually contain random and—less frequently—gross errors. These 
errors should be eliminated and the measurements should satisfy process constraints before any evaluation on the process. In this paper, the 
importance and effectiveness of simultaneous procedures for data reconciliation and gross error detection is established. These procedures 
depending on the results from robust statistics reduce the effect of the gross errors. They provide comparable results to those from methods 
such as modified iterative measurement test method (MIMT) without requiring an iterative procedure. In addition to deriving new robust 
methods, novel gross error detection criteria are described and their performance is tested. The comparative results of the introduced methods 
are given for five literature and more importantly, two industrial cases. Methods based on the Cauchy distribution and Hampel’s redescending 
M-estimator give promising results for data reconciliation and gross error detection with less computation. 
© 2003 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Real time on-line optimization provides set points to the 
process’s distributed control system (DCS) and therefore 
maintains the process near its optimum operating conditions. 
This optimization requires an accurate process model and 
reconciled process data. The process model is a set of in-
equality and equality constraints and describes the funda-
mental relationship of process units, such as material and 
energy balances, rate equations and equilibrium relations. 
Reconciled process data is used to specify the current status 
of the plant model and for estimation of the model parame-
ters for plant-model matching. 

Data reconciliation adjusts process measurements with 
random errors by having them satisfy material and energy 
balance constraints and is a way to improve the quality of the 
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measurements taken from a process via DCS or any other 
means of data collection. 

The elimination of the less frequent gross errors is 
achieved by gross error detection. Therefore, simultaneous 
data reconciliation and gross error detection have emerged 
as a key part of on-line optimization. 

Since the first proposed solution to the steady-state data 
reconciliation problem (Kuehn & Davidson, 1961) a vast  
body of chemical engineering literature has been developed 
describing many other approaches. Besides the solution of 
the linear and nonlinear problem using matrix projection 
(Crowe, 1986; Crowe, Garcia Campos, & Hyrmak, 1983), 
a solution of the nonlinear data reconciliation problem via 
successive linearization is described (Knepper & Gorman, 
1980; Veverka & Madron, 1997). Liebman and Edgar (1988) 
demonstrated that using nonlinear programming instead of 
successive linearization remarkably improved reconciliation 
results. Tjoa and Biegler (1991) showed that using nonlin-
ear programming along with a method based on a contam-
inated Normal (Gaussian) objective function instead of the 
least squares objective function, any gross error present in 
the measurements could be replaced with reconciled values, 
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and an iterative procedure was not required. By establish-
ing an analogy between maximum likelihood rectification 
(MLR) and robust regression, Johnston and Kramer (1995) 
reported the feasibility and better performance of the robust 
estimators as the objective function in the data reconciliation 
problem especially when the data contain gross errors. Sub-
sequently, different types of robust estimators and their per-
formance in data reconciliation were reported (Albuquerque 
& Biegler, 1996; Arora & Biegler, 2001). These studies have 
shown the potential of robust statistics developed by Huber 
(1981), which attempts accurate estimation of statistical pa-
rameters in the presence of gross errors. 

However, the simultaneous approach for data reconcilia-
tion along with the gross error detection using the results 
from robust statistics has been employed to solve problems 
of small size (6–12 equality constraints) except for (Chen, 
Pike, & Hertwig, 1998) and (Jordache, Ternet, & Brown, 
2001). Moreover, the derivation of some other robust objec-
tive functions and their comparative performance have not 
been studied. In this paper, these issues are addressed along 
with the derivation and performance evaluation of different 
gross error detection criteria with and without dependence 
on the objective function used. Most importantly, the pre-
sented methods are employed on two industrial plants; the 
petroleum refinery alkylation process and the contact pro-
cess for sulfuric acid production. 

2. General formulation 

A data reconciliation problem begins with the acquisition 
of the process data measurements. To assess the performance 
of the process evaluation or control, 

x T = [x1, x2, x3, . . .  , xn] 

is a set of system variables for which sensors are available 
to measure their state. 

The result of a measurement session (data from the DCS) 
can be collected in a set of measurement vectors as follows 

y T = [yi,1, yi,2, . . .  , yi, i ] for i = 1, 2, 3, . . .  , n  i 

where li is the number of sets of measurements taken during 
steady-state plant operation to estimate the system variable 
xi. li is equal to one if we are interested in the snapshot of the 
process and is greater than one if our concern is a smoothed 
average within a time window of interest. 

If there were no gross errors in the system, the difference 
of the measured values and the system state would have a 
distribution around the mean zero, i.e. 

yi,1 − xi, yi,2 − xi, yi,3 − xi, . . .  , yi, i − xi 

is a sample from a distribution with mean zero. Also, the 
unknown variance of this distribution can be estimated by 
using plant’s historical data. 

The states of the system variables are determined by us-
ing the constraints that describe the process. Therefore, us-
ing a proper objective function in an NLP, estimates of the 
xi’s can be obtained which are expected to minimize these 
differences. 

The formulation for the data reconciliation problem with 
the generalized least squares method has its root in the gen-
eral regression model. Let us define a single measurement 
of the ith measured variable at the jth steady state as yi,j . 
The kth fixed regressor (explanatory or independent) vari-
able that we believe to explain the variation between each 
steady state is called zk,j. Then a linear regression problem 
with fixed regressors using generalized least squares estima-
tion is posed as: 

J 
(yi,j − θ0 − θ1z1,j · · · − θkzk,j)2 

min (1) 
σ2 

jj=1 

for which the regression model is stated as: 

yi,j = θ0 + θ1z1,j · · · + θkzk,j + εj, 
2E(εj) = 0, Var(εj) = σj ∀j (2) 

An estimate for the location of the steady state can be cal-
culated using a special case of the linear regression prob-
lem described above, where k = 0 and the sum is over the 
steady-state points l. 

 i 
(yi,  − θ0)2 

min (3) 
σ2 

 =1 i,  

The corresponding regression model is 

yi,  = θ0 + εi, , E(εi, ) = 0, Var(εi, ) = σ2 ∀ i,  

(4) 

The minimization problem (3) can also be written as 

 i 
(yi,  − xi, )

2 

min such that xi,1 = xi,2 = · · · = xi, i = θ0 
σ2 

 =1 i,  

(5) 

Formulation (5) is equivalent to (6) 

 i 
(yi,  − xi, )

2 

min such that Axi = 0, 
 =1 

σ2 
i,    

1 −1 0  . 0   0 . . . 0     A(( i − 1)   i) = 0 . . . 0  (6)    0 . 1 −1 0     
0 . . 1 −1 

If the measured values are standardized with their true val-
ues and standard deviations, they are pragmatically assumed 



�

�

�

� � � � ��

� � � �� �
�

� � � � �
� ��

� � � �
� �� �

383 D.B. Özyurt, R.W. Pike / Computers and Chemical Engineering 28 (2004) 381–402 

to be random variables from the same distribution (univari-
ate) with zero mean and unit deviation. Then similar to (6), 
but with a general matrix A for the linear case, additional 
constraints, and  i = 1, data reconciliation problem can be 
stated as: 

n 
(yi,1 − xi,1)2 

min such that 
σ2 

i=1 i,1 

Ax = 0, (7) 

A is the process matrix 

Lb ≤ x ≤ Ub 

Formulation (7) can be further generalized to include the 
unmeasured variables (u) and nonlinear process model con-
straints ( f, g), which is frequently used in the data reconcil-
iation literature. 

min(y − x)Q−1(y − x) such that 

g(x, u) ≥ 0 

f(x, u) = 0 
(8)

Lbx ≤ x ≤ Ubx 

Lbu ≤ u ≤ Ubu 

where Q = diag[σ1
2 
,1, σ2

2 
,1, . . . , σ2 

n,1] 

∗An optimum xi (called x ) to the problem (8) is expected i 
to result in the differences 

∗ ∗ ∗ ∗ y1 − x1, y2 − x2, y3 − x3, . . .  , yn − x n 

from a distribution with zero mean. 
A fundamental method to determine whether the mea-

surements are from a distribution with zero mean is apply-
ing hypothesis testing with H0 being “µ is 0” and H1 being 
“µ is not equal to 0”, where µ denotes the mean. The test 
statistic for this procedure is 

∗ˆ ) − 0E(yi − xit = (9) 
ˆ ∗ V(yi − x )i 

∗where Ê is an estimate for the expected value of (yi −x ) and i 
V̂ is an estimate for the variance. This test statistic in Eq. (9) 
is the basis of classical gross error detection procedures. If a 
particular probability distribution function can be assumed 
for t, larger t values will describe less likely instances and 
provide proof for the truth of the hypothesis H1, i.e. the 
existence of a gross error (outlier). 

3. Definition and comparison of different objective 
functions for data reconciliation 

Different objective functions besides the weighted least 
squares (WLS) in (8) can be used for data reconciliation. 
The WLS objective function assumes measurement errors 
from a distribution with zero mean and known variance. For 

any possible deviation from this assumption, another objec-
tive function, which does not require this assumption, can 
be a better candidate. This is especially the case when the 
measurements contain some gross errors. A gross error in a 
measured variable causes “smearing”, contaminating the es-
timates for other measured variables. Increasing the break-
down point of the data reconciliation method used can reduce 
“smearing”. The breakdown point for location estimators is 
defined as “the smallest fraction of free contamination that 
can carry the estimated value beyond all bounds” (Hampel, 
1985) and is close to zero for weighted least squares method. 
In other words, even a single measurement with gross error 
is enough to invalidate the basis of WLS method causing 
“smearing”. 

Objective functions with better breakdown points can be 
found from Normal-like distribution functions with heavy 
tails or combining two distributions to account for the con-
tamination caused by the outliers (gross errors), e.g. contam-
inated Normal distribution. Similar to Gauss’s development 
of the Normal distribution function for residuals into the 
weighted least squares objective function (Deutsch, 1965), 
maximum likelihood functions can be utilized to derive these 
objective functions. 

A maximum likelihood function is formed from the prob-
ability distribution function of the measured variable xi, by  
maximizing the product of individual probability values for 
each measured variable. 

max P = max Pi (10) 
i 

For the Normal distribution, the product in (10) becomes 

1 (yi − xi)
2 

max Pi = max √ exp − 
2πσi 2σ2 

ii i 

(yi − xi)
2 √ 

or min − ln exp − + ln( 2πσi)
2σ2 

ii i 

(yi − xi)
2 

or min (11)
2σ2 

ii 

which is equivalent to the weighted least squares objective 
function. Similarly, for contaminated Normal distribution 
function, this product becomes 

1 (yi − xi)
2 

max Pi = max (1 − pi) √ exp − 
2πσi 2σ2 

i i 

1 (yi − xi)
2 

+ pi √ exp − (12)
2πbiσi 2b2σ2 

i i 

or 

(yi − xi)
2 

min − ln (1 − pi)exp − 
2σ2 

i 

pi (yi − xi)
2 √ 

+ exp − + ln( 2πσi)
2b2σ2bi i i i 

i 
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where pi is the probability and b2σ2 the variance of the i i 
contamination by a gross error. 

For Logistic distribution, function (10) becomes 

1 exp((yi − xi)/σi) max Pi =max or 
σi (1 + exp((yi − xi)/σi))2 

i i 

(yi − xi)min 2 ln  1 + exp 
σi

i 

(yi − xi)− + ln σi (13)
σi 

and finally, for the Cauchy (Lorentz) distribution, the max-
imum likelihood objective function becomes 

1 
max Pi =max or 

πσi(1 + (yi − xi)2/σ2)ii i 

(yi − xi)
2 

min ln(πσi) + ln 1 +
σ2 

ii 

(14) 

The generalized maximum likelihood objective function, 
proposed by Huber (Huber, 1981) has the form 

yi − ximin ρ (15)
σi

i 

i.e. any reasonable monotone function, ρ, of  εi = (yi − 
xi)/σi, the standard error, can be used for the data recon-
ciliation formulation, provided that the gross errors have a 
reduced effect on the estimation of measured process vari-
ables. Therefore, the three maximum likelihood objective 
functions for contaminated Normal, Cauchy and Logistic 
distributions—with the proper tuning parameters—can be 
used without assuming the underlying measurement error 
probabilities. In addition, Fair function, “Lorentzian” func-
tion and Hampel’s redescending M-estimator are three other 
robust generalized maximum likelihood objective functions 
that can be employed in the data reconciliation formula-
tion. Among these three functions, Fair function was con-
structed using a combination of ordinary-least squares for 
small residuals and least-absolute residual (LAR) for large 
residuals (Fair, 1974), whereas “Lorentzian” function was 
introduced by Johnston and Kramer (1995) and Hampel’s re-
descending M-estimator by Hampel (Andrews et al., 1972). 

In classical estimation literature, a location (mean) es-
timation of a sample from a univariate distribution is cal-
culated by Eq. (3). A robust estimate of the location can 
be obtained by changing the objective function in Eq. (3) 
with a robust function, such as a generalized maximum 
likelihood estimator (M-estimator). The efficiency of these 
estimators is defined (up to a common factor) as the in-
verse of the variance of the final estimate under the ideal 
model distribution, which is traditionally chosen as the Nor-
mal distribution (Hampel, 1985). If a rejection rule is im-
posed, the efficiency is calculated using the variance in the 

location estimates calculated after outlier values are elim-
inated from the sample. If a smaller critical value is used 
for rejection, the power of the rejection rule (similar to 
gross error detection) increases; however, the variance of 
the estimate, if there are actually no outliers in the sam-
ple, increases. This loss of efficiency is called “insurance 
premium” and can be used to “tune” the estimators with 
parameters. This tuning by efficiency values is necessary 
if one desires to compare the performance of different ρ 
functions and eventually the rejection rules designed on 
them. 

The consequence of this tuning requirement is that in data 
reconciliation and gross error detection the performance of 
two different ρ functions can be compared properly only for 
(nearly) equal efficiency cases. This means that, for instance, 
Fair function with 95% efficiency can be compared with 
95% efficient Hampel’s redescending M-estimator. 

The ρ functions that we studied are as follows: 

WLS 

1 2 (16)2 εi 

Contaminated Normal 

ε2 ε2 
i pCN i−ln (1 − pCN)exp − + exp − 

2 bCN 2b2 
CN 

(17) 

Cauchy 

ε2 

cC
2 ln 1 + i (18)

2 cC 

Logistic 

2 ln  1 + exp 
εi − 

εi (19) 
cLo cLo 

“Lorentzian” 

1 − 
2 

(20)
1 + (ε2/2cL)i 

Fair � �� |εi| |εi|2c 2 − ln 1 + (21)F cF cF 

Hampel’s redescending M-estimator 

1 
2 ε

2 
i , 0 ≤ |εi| ≤ aH 

2 aH|εi| − 1
2 aH, aH < |εi| ≤ bH � � 
2 2a a cH − |εi|

aHbH − H + (cH − bH) 1 − ,
2 2 cH − bH 

bH < |εi| ≤ cH 

2 1 2 aHbH − 1
2 aH + (cH − bH) 2 a , cH < |εi| 

(22) 

2 
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Table 1 
Tuning constants for different ρ functions with efficiency values 95.5% 

ρ function Tuning constants 

Contaminated Normal 
Cauchy 
Logistic 
“Lorentzian” 
Fair 
Hampel 

bCN = 10, pCN = 0.235 
cC = 2.3849 
cLo = 0.602 
cL = 2.6 
cF = 1.3998 
aH = 1.35, bH = 2.7, cH = 5.4 

To compare the data reconciliation and gross error de-
tection performance of these ρ functions, they were first 
standardized by properly tuning their parameters. Some 
functions have their tuning constants given as a function 
of asymptotic efficiency such as the Fair and Cauchy func-
tions. However, these asymptotic variances “give only crude 
indications for the actual variances” for finite sample size 
(Hampel, 2002). Therefore, approximate finite sample vari-
ances and consecutively relative efficiencies were calculated 
by simulation and Monte Carlo studies (Hampel, 1985; 
Andrews et al., 1972). We performed a similar study for the 
above ρ functions with a sample size of 28 and 2000 sim-
ulation runs that resulted in the following tuning constant 
values (efficiency values are approximately 95.5%) given 
in Table 1. 

Fig. 1 depicts individual standardized ρ functions in the 
objective function, showing that Fair and Logistic functions 
cases result in a convex objective function. The convexity 
of the objective function guarantees the global optimality 
of the nonlinear data reconciliation problem for a process, 
which can be described by only linear constraints. 

Methods to measure the robustness of an estimator involve 
the use of the influence function, IF (Hampel, Ronchetti, 
Rousseeuw, & Stahel, 1986), which is defined for a sample 
x, an estimator T over an assumed distribution function F 
and a perturbed distribution function Ft as follows: 

T(Ft) − T(F) ∂ 
IF(x, T, F) = lim = [T(Ft)]|t=0 (23) 

t→0 t ∂t 

The heuristic interpretation of this influence function is that 
“it describes the effect of an infinitesimal contamination at 
the point x on the estimate” (Hampel et al., 1986). Since 
the influence function is proportional to the derivative of the 
maximum likelihood function, the weight given to any gross 
error in the measurements while calculating the estimates 
can be seen in Fig. 2 (see Appendix A for details). 

The influence function for WLS is proportional to the 
measurement error (derivative of Eq. (12)) justifying the low 
breakdown point and unbounded effect of large errors. The 
effect of larger errors is reduced for the ρ function of the 
Cauchy distribution, “Lorentzian” function and Hampel’s 
redescending M-estimator, shown by gradually decreasing 
influence functions in the region of greater than 3.0 of the 
standard error. Therefore, these three ρ functions are called 
redescending ρ functions. Fair function and the ρ function 
of the Logistic distribution have a bounded influence by the 

large errors since their influence function increases slowly 
with respect to the measurement errors approaching a con-
stant value for large errors. The influence of small measure-
ment errors on the ρ function of the contaminated Normal 
distribution is the same as on the WLS; however, the influ-
ence decreases for larger errors and becomes proportional 
to very large errors after passing through a minimum (at 
standard error 4.7 in Fig. 2). 

Collectively, methods with influence functions which re-
main bounded as the standard error increases, should be 
insensitive to gross errors when data reconciliation is con-
ducted with them. 

4. Obtaining different gross error detection criteria 

“Statistically, a gross error is an error whose occurrence as 
realization of a random variable is highly unlikely” (Veverka 
& Madron, 1997). Therefore, the hypothesis testing ap-
proach to detect these unlikely occurrences works very well, 
provided that the measurement errors come from a known 
probability distribution. In other words, an advantage of hav-
ing an underlying distribution function for the measurement 
errors (including the gross errors) is that the rejection of the 
gross errors can be performed using confidence level or α 
values. A measurement value which probably occurs less 
than (α  100)% of the time can be detected as a gross error. 
This way the measurements with higher errors can be elim-
inated with a certainty of (1 − α). The value beyond which 
the measurements are considered as gross errors is called a 
cut point. The cut points for four distribution functions are 
given in Table 2. 

Rejection of the gross errors by employing the hypothesis 
testing approach can give misleading results if the a priori 
assumption about the measurement error distribution is vi-
olated. Moreover, rejection criteria for the cases without a 
priori probability distribution functions can not be defined 
systematically. 

Alternative definitions of possible rejection criteria have 
been proposed in the literature. For instance, the rejection 
criterion proposed by Farris and Law (1979) for the con-
taminated Normal distribution function case is equivalent to 
defining the cut point (xc) as  

max {P(the measurement is larger than x c and is an outlier) 

−P(the measurement is larger than x c and is not an outlier)} 

Table 2 
Cut points for four distribution functions at α = 0.03 

Probability 
distribution function 

(mean, variance) Cut points for 
α = 0.03 

Normal 
Contaminated Normal 

Logistic 
Cauchy 

(0, 1) 
0.235 (0, 100) + 
0.765 (0, 1) 
(0, 1) 
(0, 1) 

±2.16 
±15.2 

±4.2 
±21.0 
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Fig. 1. Individual ρ functions in the objective function compared with weighted least squares objective (rhoL: “Lorentzian”, rhoF: Fair function, rhoCN: 
contaminated Normal distribution, rhoC: Cauchy distribution, rhoLo: Logistic distribution, rhoH: Hampel’s redescending M-estimator). 

This cut point falls on the descending part of the influence 
function (Fig. 3). By examining the first and second deriva-
tives of the influence function, additional cut points can be 
defined systematically, for instance, the minimum, maxi-
mum and inflection points of the influence functions can 
become possible candidates. Choosing a smaller cut point 
(critical value) can improve the gross error detection but will 

also increase the false detection and the variance of the es-
timates under the ideal condition, i.e. if there are no gross 
errors in the measurements. 

For the ρ functions such as Fair function, and the ρ func-
tion for the Logistic distribution, the cut points can not be 
found using this procedure, because their influence functions 
do not have single maximum, minimum of inflection points. 
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Fig. 2. Relative influence of the errors in the measurement to the objective function (WLS: weighted least squares, CN: contaminated Normal). 

However, provided that the functions have same efficiencies, 
the cut points for redescending ρ functions prove as rea-
sonable cut point candidates for these “non-redescending” 
ρ functions. 

An alternative rejection rule, which is based on the ro-
bust median and median deviation, has the code name 
X84 (Hampel et al., 1986). This rule rejects the mea-
surements, for which the residuals after the data rec-
onciliation are more than 5.2 median deviations away 
from the median of the residuals. The median devia-
tion (median absolute deviation) is the median of the 
absolute residuals from the median. This rule does not 
have a predetermined and ρ-function-dependent cut point. 
Therefore, it can be used with any ρ function described 
above. 

In the following section, the performance of these differ-
ent gross error detection criteria is evaluated with numerical 
experiments. 

5. Examples 

Numerical experiments for data reconciliation and gross 
error detection reported in literature have been applied to 
relatively small plant simulation problems, and there are 
few cases where results for industrial examples are given 
(Chen et al., 1998; Jordache et al., 2001; Sanchez, Sentoni, 
Schbib, Tonelli, & Romagnoli, 1996; Weiss, Romagnoli, & 
Islam, 1996). In this study, both small simulation and actual 
plant examples are solved, and their results are compared. 
We have compared the performance of weighted least 
squares, the modified iterative measurement test method 
(MIMT) and ρ functions for the contaminated Normal 
(CN), Cauchy (C) and Logistic (Lo) distributions, along 
with “Lorentzian” (L), Fair function (F) and Hampel’s 
redescending M-estimator (H). 

For each method, three different gross error detection cri-
teria are tested except for the MIMT method. The summary 
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of each criterion for different methods is given in Table 3. 
Data reconciliation and gross error detection using MIMT 
are performed as described in Kim, Kang, Park, and Edgar 
(1997). 

Performance measures to evaluate different gross error 
detection criteria employed are the overall power (OP): 

Number of gross errors correctly identified 
OP = (24)

Number of gross errors simulated 

and average number of Type I errors (AVTI) (Narasimhan 
& Jordache, 2000). 

Number of gross errors wrongly identified 
AVTI = (25)

Number of simulation trials made 

Average and median total error reductions (TER) (Serth, 
Valero, & Heenan, 1987) are used to compare the data val-

tidation performance of different methods, where x is the i 

Table 3 
Methods and their gross error detection criteria 

Method Gross error detection criteria 

WLS Cut points at α = 0.05, α = 0.025 and X84 
CN Cut points from influence function (2.131, 3.34) 

and X84 
Cauchy Cut points from influence function (2.385, 4.131) 

and X84 
Logistic Same as CN 
“Lorentzian” Cut points from influence function (2.123, 3.658) 

and X84 
Fair Same as CN 
Hampel’s M Cut points from influence function (2.131, 3.34) 

and X84 
MIMT Cut point at α = 0.05 

true value for the ith measured variable. 

n t n t 
i=1((yi − x )/σi)2 − i=1((x ∗ − x )/σi)2 

i i i
TER = 

n t 
i=1((yi − x )/σi)2 

i

(26) 

Performance test procedure for the examples with known 
true values of the measured variables consists, in general, of 
the following steps. 

1. Using true values such as design data, measurement sets 
are created for each variable by adding noise from Nor-
mal and Cauchy distributions with equal probability, i.e. 
half of the simulated measurement errors has a Nor-
mal probability distribution and the other half are from 
Cauchy probability distribution. Therefore, the assump-
tion that the random errors have a particular probability 
distribution, is relaxed. 

2. Add gross errors to measurements depending on the per-
centage of gross error occurrence. 

3. Solve data reconciliation problem for each of the eight 
methods. 

4. Using different gross error detection criteria calculate the 
performance measures for each method, i.e. calculate OP 
and AVTI. 

5. Calculate total error reduction for each method as a per-
formance measure for the data reconciliation if the true 
values are given, i.e. calculate TER. 

All models for the examples and random number gen-
eration for the Monte Carlo simulations are implemented 
in GAMS (Brooke, Kendrick, & Meeraus, 1992). The data 
reconciliation formulations are solved with the NLP solvers 
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CONOPT2 and MINOS5. In the first five examples, the 
piece-wise linear Hampel’s redescending M-estimator is 
modeled as an external function coded in the programming 
language C and called by GAMS (Kalvelagen, 2002). For 
the last two problems, these discontinuities are smoothed 
as described in Arora and Biegler (2001). All calculations 
for the performance measures and the gross error detection 
rule X84 are implemented with Perl. 

5.1. Examples from literature 

The methods presented above are tested first on examples 
used in various literature articles in the last three decades. 
Two of these examples (Examples 1 and 2) contain linear 
and the remaining three (Examples 3-5) nonlinear process 
models. Except in Example 5, the lower bounds on the vari-
ables are set to 50% of the true values and the upper bounds 
to twice the true values. In Example 5, the lower bounds for 
all variables are 50% of the true values whereas the upper 
bounds are set to 150% of the true values. 

Example 1 (Ripps, 1965). This example involves a simple 
chemical reactor with two entering and two leaving mass 
flows. All four variables are measured in the system, and they 
are related by three linear mass balance equations (Ripps, 
1965; Romagnoli & Sanchez, 2000). For the Monte Carlo 
study, random measurements are created from Normal and 
Cauchy distributions as outlined above. Outliers were cre-
ated in 10% of the measurements randomly by adding or 
subtracting 10–100% of the true values. With the exceptions 
of the Hampel’s redescending M-estimator and MIMT, all 
runs were executed independently and with the same initial 
conditions. For MIMT, all consecutive runs were initiated 
with the resulting values of the previous run. Hampel’s re-
descending M-estimator converged to an inferior optimal if 
it was not initialized with the results from Cauchy distribu-
tion ρ function or Fair function method. 

The results of Monte Carlo study runs for each method 
are shown in Table 4. The ρ function of the Cauchy distribu-

Table 4 
Performance of different methods for Example 1 

tion shows the best performance with second highest over-
all power and lowest average number of Type I errors if the 
first cut point at 2.385 is used. Rule X84 seems to be con-
servative for this example, and the factor 5.2 can be reduced 
to improve the results. The comparison of the data recon-
ciliation performance shows that ρ function of the Cauchy 
distribution is the most effective one among other methods 
with 77.5% mean and 92.3% median total error reduction. 
Median TER indicates that 50% of the TER values are above 
0.923. 

Since the problem has only four measured variables, a 
special attention to the breakdown point is necessary. The 
highest breakdown point achievable is 50% (Rousseeuw & 
Leroy, 1987) which corresponds to two gross errors (outliers) 
in this case. Therefore “smearing” can occur if the example 
is solved with two or more gross errors. 

Example 2 (Serth and Heenan, 1986). Our second example 
considers a steam metering system with 28 variables (all 
measured) and 12 linear equations. The measured values are 
created using the correct flow rates Serth and Heenan (1986) 
and 25% of the observations have gross errors ranging from 
10 to 100% of the true values. 

The results in Table 5 show that modified MIMT has the 
best performance in data reconciliation with highest mean 
and median total error reduction. It also possesses the low-
est average number of Type I errors in 1000 simulation runs. 
Cauchy distribution ρ function also performs well, consid-
ering that it requires a single NLP solution whereas MIMT 
requires seven iterations on the average. 

Example 3 (Serth et al., 1987). Our first nonlinear example 
consists of a metallurgical grinding process with 12 equa-
tions and 24 variables. Nine mass flow rates and 15 mass 
fractions are created by using the correct values with addi-
tion of measurement errors from Normal and Cauchy distri-
butions. The gross errors generated are on the average 25% 
of the measured variables and their amount range from 10 
to 100% of the true values. 

MIMT H WLS CN Cauchy L Fair Logistic 

Number of runs 650 506 506 506 506 506 506 791 
Total GE 253 213 213 213 213 213 213 240 
Runs with GE 212 183 183 183 183 183 183 211 
OP (GED #1) 0.775 0.817 0.930 0.897 0.894 0.784 0.911 0.896 
AVTI (GED #1) 0.363 0.500 0.636 0.397 0.292 0.536 0.504 0.458 
OP (GED #2) – 0.765 0.911 0.859 0.784 0.676 0.751 0.808 
AVTI (GED #2) – 0.462 0.581 0.322 0.213 0.429 0.362 0.322 
OP (GED #3) – 0.512 0.333 0.531 0.596 0.460 0.484 0.512 
AVTI (GED #3) – 0.176 0.146 0.182 0.198 0.213 0.174 0.187 
Mean TER 0.736 0.625 0.676 0.751 0.775 0.658 0.696 0.718 
Median TER 0.915 0.878 0.836 0.906 0.923 0.892 0.901 0.894 

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number 
(i = 1, 2, 3 for first and second cut points and rule X84, respectively). 
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Table 5 
Performance of different methods for Example 2 

MIMT H WLS CN Cauchy L Fair Logistic 

Number of runs 1000 929 1100 1052 1000 1153 1000 1085 
Total GE 6955 6456 7579 7415 6914 8053 6908 6824 
Runs with GE 1000 929 1100 1052 999 1153 999 1084 
OP (GED #1) 0.684 0.705 0.759 0.724 0.720 0.744 0.744 0.712 
AVTI (GED #1) 1.364 2.118 7.645 3.371 2.255 4.692 4.193 3.253 
OP (GED #2) – 0.684 0.751 0.705 0.678 0.718 0.704 0.678 
AVTI (GED #2) – 1.826 7.296 3.203 1.500 4.144 2.622 2.038 
OP (GED #3) – 0.700 0.338 0.689 0.702 0.707 0.650 0.670 
AVTI (GED #3) – 2.713 0.882 3.281 2.421 4.846 2.499 2.699 
Mean TER 0.558 0.505 0.412 0.455 0.525 0.384 0.494 0.460 
Median TER 0.552 0.504 0.385 0.466 0.516 0.400 0.472 0.447 

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number 
(i = 1, 2, 3 for first and second cut points and rule X84, respectively). 

Similar to Example 2, modified MIMT outperformed 
other methods in data reconciliation. Once again, the ρ 
function of Cauchy distribution shows that comparable, if 
not superior results can be achieved in a single NLP solution 
(see Table 6). 

Example 4 (Pai and Fisher, 1988). In this example, there are 
six nonlinear equality constraints, five measured variables— 
all measurements are redundant—, and three observable un-
measured variables. On the average, 25% of the generated 
measurements are contaminated with gross errors ranging 
from 10 to 100% of the exact values reported in Pai and 
Fisher (1988). 

As seen in Table 7, the ρ function of Cauchy distribu-
tion results in the highest total error reduction whereas the ρ 
function for contaminated Normal reaches the highest over-
all power but with more occurrences of Type I errors. 

Example 5 (Swartz, 1989). Another widely used literature 
example is the nonlinear heat exchanger network problem 
described by Swartz (1989), and Romagnoli and Sanchez 
(2000). The system of four heat exchangers is modeled 
with 17 material and energy balances. The total number of 

Table 6 
Performance of different methods for Example 3 

variables in the system is 30, of which 16 are measured 
and the rest is unmeasured. There are 10 redundant and 6 
non-redundant measured variables. 

Gross errors are generated only for the redundant mea-
sured variables and on the average of 25% of the time. The 
magnitude of the errors range between 5 and 10 standard 
deviations for the flow rates and between 5 and 30 standard 
deviations for the temperature variables. 

Most of the methods studied show poor data reconcilia-
tion results with close to none average total error reductions 
(Table 8). The ρ function for contaminated Normal and the 
“Lorentzian” function prove to be the best options for this 
case. 

5.2. Industrial examples 

Not many industrial examples have been investigated for 
the performance of different data reconciliation and gross 
error detection methods. The few cases in the open liter-
ature study industrial process subsystems such as reactors 
(Sanchez et al., 1996; Weiss et al., 1996), or utilize simu-
lated plant measurements (Jordache et al., 2001) instead of 
real time plant data. The first industrial example involving 

MIMT H WLS CN Cauchy L Fair Logistic 

Number of runs 1000 1077 1076 1028 1006 1110 1000 1026 
Total GE 5986 6398 6389 6172 5990 6569 5935 5546 
Runs with GE 1000 1076 1075 1027 1005 1109 999 1025 
OP (GED #1) 0.744 0.776 0.843 0.758 0.774 0.757 0.822 0.799 
AVTI (GED #1) 1.744 2.234 8.571 4.488 2.583 3.722 4.986 3.675 
OP (GED #2) – 0.760 0.836 0.742 0.733 0.722 0.779 0.764 
AVTI (GED #2) – 1.964 8.172 4.330 1.809 3.149 3.102 2.362 
OP (GED #3) – 0.736 0.209 0.607 0.703 0.642 0.585 0.667 
AVTI (GED #3) – 1.945 0.391 2.771 1.757 2.478 1.143 1.492 
Mean TER 0.622 0.585 0.423 0.450 0.587 0.475 0.552 0.539 
Median TER 0.625 0.579 0.400 0.477 0.583 0.511 0.538 0.526 

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number 
(i = 1, 2, 3 for first and second cut points and rule X84, respectively). 
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Table 7 
Performance of different methods for Example 4 

MIMT H WLS CN Cauchy L Fair Logistic 

Number of runs 1000 1058 1000 1032 1000 1000 1000 1018 
Total GE 1265 1350 1265 1320 1265 1265 1265 1279 
Runs with GE 771 824 771 804 771 771 771 785 
OP (GED #1) 0.580 0.601 0.597 0.666 0.614 0.639 0.627 0.611 
AVTI (GED #1) 0.225 0.341 0.322 0.411 0.280 0.342 0.351 0.330 
OP (GED #2) – 0.504 0.578 0.588 0.469 0.526 0.515 0.494 
AVTI (GED #2) – 0.278 0.271 0.315 0.136 0.186 0.159 0.161 
OP (GED #3) – 0.442 0.180 0.468 0.386 0.420 0.333 0.335 
AVTI (GED #3) – 0.298 0.160 0.280 0.235 0.250 0.232 0.247 
Mean TER 0.538 0.321 0.493 0.369 0.542 0.478 0.526 0.511 
Median TER 0.568 0.514 0.538 0.572 0.593 0.586 0.569 0.558 

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number 
(i = 1, 2, 3 for first and second cut points and rule X84, respectively). 

real plant data and process model was given in Chen et al. 
(1998). 

In this subsection, the sulfuric acid process from (Chen 
et al., 1998) and a new alkylation process example are in-
troduced as the first large-scale industrial examples inves-
tigated for the performance of different data reconciliation 
and gross error detection methods with real plant data. For 
the sulfuric acid process, the real plant design data was also 
available; therefore, an analysis similar to the literature ex-
amples were performed by accepting the plant design data 
as the true values of the measured variables. For these two 

Ai r Ai r Ma in Su lfu r  Wa st e  S upe r-

In let Dr yer Co mp- Bu rne r He at He ate r 
re sso r Bo ile r

industrial examples, the bounds on variables are estimated 
using available process data, process design data (only for 
the sulfuric acid plant), process engineer expertise and con-
sidering conversion properties for the nonlinear steady-state 
process simulation. 

Example 6 (Sulfuric acid process). The sulfuric acid pro-
cess modeled, is IMC Agrico contact sulfuric acid plant 
in Convent, LA, USA. The plant was designed by the 
Enviro-Chem System Division of Monsanto and began op-
eration in March, 1992. It produces 3200 TPD 93 wt.% 
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Fig. 4. The contact process for sulfuric acid (Chen, 1998). 
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sulfuric acid and process steam as a byproduct. This pro-
cess incorporates many of the types of process units found 
in chemical plants such as packed bed catalytic reactors, 
absorption towers and heat exchanger networks, among 
others. It represents the state-of-art contact sulfuric acid 
technology. 

In the contact process, molten sulfur is combusted with 
dry air; and the reaction is exothermic and goes to com-
pletion in the sulfur furnace. The gas leaving the burner is 
composed of sulfur dioxide, nitrogen, and unreacted oxygen 
at approximately 1400 ◦K. Heat from this gas is recovered 
in the waste heat boiler as byproduct steam. The gas enters 
the packed bed catalytic reactor that consists of four beds 
packed with two different types of vanadium pentoxide cat-
alyst. Here, sulfur trioxide is produced from sulfur dioxide. 
The reaction is exothermic and approaches equilibrium ex-
iting each bed. Heat is removed to shift the equilibrium, and 
this heat is used to produce steam. Also, the equilibrium 
conversion is increased in the fourth catalyst bed by remov-
ing SO3 in the inter-pass absorption tower. In the final ab-
sorption tower, SO3 is removed from the gas with 98 wt.% 
sulfuric acid. Gases exiting the final absorption tower go to 
the stack with less than 400 ppm SO2 as required by regu-
lations for emissions, no more than 4.0 lb of sulfur dioxide 
per ton of sulfuric acid produced. A flow diagram of the 
process is given in Fig. 4. 

An open form equation-based model was developed from 
the process flow diagram and process design data. The 
packed bed catalytic reactor was simulated with a kinetic 
model developed by Harris and Norman (1972) and Richard 
(1987). The process model has 43 measured variables, 732 
unmeasured variables, 11 parameters and 761 linear and 
nonlinear equality constraints. The 43 process measure-
ments obtained from the distributed control system included 
25 temperature, 11 flowrate, 2 pressure and 5 composition 
measurements. The standard deviations were determined 
based on 61 plant data sets from 11 consecutive days. These 
measured variables and their standard deviations were given 

Table 8 
Performance of different methods for Example 5 

Fig. 5. Standard errors in measurements after reconciliation of the plant 
data at the first steady state (for Hampel’s redescending M-estimator the 
error in the second measured value is −36 and not shown): (�) MIMT;  
(•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; ( ) Fair; 
( ) Logistic. 

(Chen, 1998). Of these 43 measurements, 14 are required 
to determine the state of the process. 

The performance of eight different methods for data 
reconciliation along with three different gross error detec-
tion criteria were evaluated first with using the real plant 
design data to generate measurement values and gross 
errors. The procedure applied for the small-scale litera-
ture examples was replicated. On the average, 15% of the 
simulated measurements were contaminated with gross 
errors ranging between 3 and 30 standard deviations in 
magnitude. 

The results depicted in Table 9 shows that the ρ func-
tion of Cauchy distribution has the best data reconciliation 
performance among the other seven methods. Same ρ func-
tion with the second cut point also gives one of the best 
compromises between overall power and average number of 
Type I errors. Unlike in the previous small-scale examples, 
the X84 rule shows promising performance for most of the 
methods. 

MIMT H WLS CN Cauchy L Fair Logistic 

Number of runs 1000 1018 1000 1016 1000 1000 1000 1072 
Total GE 2503 2529 2503 2527 2503 2503 2503 2529 
Runs with GE 950 962 950 960 950 950 950 1002 
OP (GED #1) 0.251 0.550 0.472 0.605 0.349 0.476 0.371 0.320 
AVTI (GED #1) 0.936 0.959 2.105 0.558 0.842 0.627 1.475 1.107 
OP (GED #2) – 0.538 0.450 0.599 0.323 0.457 0.303 0.282 
AVTI (GED #2) – 0.917 1.925 0.531 0.587 0.421 1.010 0.816 
OP (GED #3) – 0.499 0.109 0.591 0.360 0.485 0.294 0.305 
AVTI (GED #3) – 0.879 0.335 0.622 0.966 0.797 1.075 1.091 
Mean TER 0.027 −0.222 0.043 0.307 0.150 0.277 0.051 0.017 
Median TER 0.086 0.161 0.152 0.378 0.168 0.255 0.136 0.108 

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number 
(i = 1, 2, 3 for first and second cut points and rule X84, respectively). 
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Table 9 
Performance of different methods for Example 6 

MIMT H WLS CN Cauchy L Fair Logistic 

Number of runs 500 500 504 524 514 510 500 509 
Total GE 3120 3392 3305 3346 3215 3181 3181 3026 
Runs with GE 500 500 504 524 514 510 500 509 
OP (GED #1) 0.841 0.863 0.884 0.912 0.889 0.904 0.907 0.896 
AVTI (GED #1) 3.064 4.556 6.706 5.179 4.907 5.484 7.802 6.796 
OP (GED #2) – 0.833 0.879 0.897 0.848 0.876 0.866 0.844 
AVTI (GED #2) – 3.168 6.163 3.532 2.580 3.122 4.057 3.220 
OP (GED #3) – 0.819 0.670 0.871 0.827 0.852 0.778 0.784 
AVTI (GED #3) – 2.892 1.730 2.882 2.397 2.698 2.406 2.083 
Mean TER 0.721 0.662 0.636 0.708 0.759 0.679 0.665 0.653 
Median TER 0.767 0.714 0.661 0.778 0.802 0.779 0.682 0.689 

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number 
(i = 1, 2, 3 for first and second cut points and rule X84, respectively). 

Table 10 
Number of detected gross errors and total error reductions for the two steady states of the sulfuric acid process 

MIMT H WLS CN Cauchy L Fair Logistic 

Steady state 1 
GED #1 13 16 15 16 16 16 16 16 
GED #2 – 12 14 13 9 12 14 14 
GED #3 – 7 3 5 5 6 5 4 
TER 0.571 0.567 0.467 0.555 0.552 0.566 0.528 0.535 

Steady state 2 
GED #1 13 13 13 16 16 16 16 16 
GED #2 – 12 13 13 12 12 13 13 
GED #3 – 12 8 10 8 13 8 12 
TER 0.573 0.569 0.476 0.573 0.569 0.577 0.546 0.555 

Fig. 6. Standard errors in measurements after reconciliation of the plant data at the second steady state (once again for Hampel’s redescending M-estimator 
the error in the second measured value is −36 and not shown): (�) MIMT; (•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; ( ) Fair; 
( ) Logistic. 
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For the sulfuric acid plant, two different steady-state op-
eration points were determined from the data obtained on 
6 and 10 June 1997. As can be seen in Table 10, except 
the weighted least squares method, all methods performed 
similarly for the data reconciliation. However, the total er-
ror reduction is 9–38% less than the average of the Monte 
Carlo study results shown in Table 9. This decrease is ex-
pected since there are approximately twice as many gross 
errors in the plant data. On the average, 6–7 gross errors are 
created for each Monte Carlo runs, whereas the gross errors 
detected by the methods requiring single NLP solution vary 
between 4 and 16 for the first steady state and between 8 
and 16 for the second steady state. Considering the over-
all power results in Table 9, MIMT-GED #1, CN-GED #2 
and Cauchy-GED #2 methods can be used to narrow these 
ranges of number of gross errors, namely 9–13 for the first 
steady-state and 12–13 for the second steady state. Standard 
(normalized) errors of the measurements for these two plant 
operation points (Figs. 5 and 6) also show that at the first 
steady state more variables fall into the critical region where 
the distinction of random errors and gross errors is difficult. 
The cause for the gross error detection of three tempera-
ture measurements (measurement numbers 32, 40 and 42) 

is identified as the instrument measuring errors. Four flow 
rates (measurement numbers 5, 6, 7 and 8) in the plant data 
were detected at the same time containing gross errors since 
all four flow rates were calibrated from the same measure-
ment sources, namely the discharge pressure of compres-
sor and the speed of turbine. Therefore, the measuring error 
in either/both discharge pressure of the compressor or/and 
speed of the turbine would cause gross errors in these four 
flow rates. 

Example 7 (Alkylation process). The second large-scale in-
dustrial example involves a commercial, sulfuric acid cat-
alyzed alkylation plant at the Motiva Enterprises Refinery in 
Convent, LO, USA. Motiva alkylation process is a 15,000 
BPD STRATCO Effluent Refrigerated Alkylation Plant. The 
heart of the process is the STRATCO reactor or contac-
tor, which contacts the reactants in a high-velocity propeller 
stream and removes heat from the exothermic reaction. 

In the STRATCO Effluent Refrigerated Alkylation pro-
cess, light olefins (propylene, butylenes) are reacted with 
isobutane in the presence of sulfuric acid catalyst to form hy-
drocarbons, mainly in the iC7 to iC8 range, called alkylate. 

Fig. 7. Sulfuric acid alkylation process (Vichailak, 1995). 
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Table 11 
Number of detected gross errors for the three steady states of the alkylation process 

MIMT H WLS CN Cauchy L Fair Logistic 

Steady state 1 
GED #1 23 27 32 34 34 34 44 39 
GED #2 – 23 32 28 24 26 31 31 
GED #3 – 27 25 27 23 27 19 31 

Steady state 2 
GED #1 28 34 36 39 34 39 42 43 
GED #2 – 30 35 34 29 32 33 35 
GED #3 – 29 25 30 29 32 26 27 

Steady state 3 
GED #1 26 29 33 32 29 31 41 32 
GED #2 – 27 33 29 26 28 32 29 
GED #3 – 30 23 30 26 30 25 28 

Fig. 8. Standard errors in measurements after reconciliation of the alkylation plant data at the first steady state: (a) all errors; (b) errors between −5 and 
5. (�) MIMT; (•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; ( ) Fair; ( ) Logistic. 
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The alkylate product is a mixture of gasoline boiling range 
branched hydrocarbons which is blended with the refinery 
gasoline pool to increase the gasoline octane. 

A simplified process flow diagram for a generic sulfu-
ric acid alkylation process is given in Fig. 7. Specifically, 
Motiva alkylation process consists of five distinct sections, 
namely reaction, refrigeration, depropanizer, deisobutanizer 
and saturate deisobutanizer sections. The process has four 
reactor pairs and four acid settlers. In the reaction section, 
there are three feed streams: the olefin feed, the isobutane 
feed and the recycled olefin/isobutane mixture. The olefin 
feed contains the light olefins that are reacted with isobu-
tane in the alkylation unit’s STRATCO stirred reactors. The 
isobutane stream is in excess to fully react with all of the 
olefins being charged to the unit. 

The alkylation process model developed using process 
flow diagrams, process data and process systems exper-
tise has 1579 mostly nonlinear equality and 50 inequality 
constraints. The process model has 112–122 measured vari-
ables (122 for the first and second steady states, and 112 for 
the third steady state investigated in this study), 1512–1522 
unmeasured variables and 67 parameters. The process mea-
surements obtained from the distributed control system in-
clude 31 temperature, 30 flowrate, four pressure and 47–57 
composition measurements. These measured variables, their 
standard deviations and the details of the model are given in 
Özyurt, Pike, Hopper, Punuru, and Yaws (2001), and Rich 
et al. (2001). 

For the alkylation plant, three different steady-state op-
eration points were determined from the data obtained on 

Fig. 9. Standard errors in measurements after reconciliation of the alkylation plant data at the second steady state: (a) all errors; (b) errors between –5 
and 5. (�) MIMT; (•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; ( ) Fair; ( ) Logistic. 
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8–9 November and 6–7 December 1998. The gross errors 
detected by the methods requiring single NLP solution vary 
between 19 and 44 for the first, between 25 and 43 for the 
second and between 23 and 41 for the third steady state 
(Table 11). MIMT-GED #1 and GED #2 for all other meth-
ods suggest that the second steady state has the most gross 
errors followed by the third steady-state operation point. 
Considering MIMT-GED #1, H-GED #2 and Cauchy-GED 
#2, the range for detected gross errors is 23–24, 28–30 and 
26–27 for the first, second and third steady states, respec-
tively. Since the true values of the measured variables are 
not available publicly, total error reduction, overall power 
and average Type I error values can not be calculated for 
the Motiva alkylation process. However, the measurements 
of the variables detected for containing gross errors were 
examined by the plant process engineer and found to be 

close to the limits or outside of the possible measurement 
ranges. 

Standard (normalized) errors of the measurements for the 
three plant operation points are given in Figs. 8–10. 

5.3. Discussion 

In the previous two subsections, five small- and two 
large-scale examples were investigated, considering differ-
ent data reconciliation and gross error detection methods. 
The systematic approach presented is novel in the following 
aspects compared to the previous studies: 

a. The robust methods were tuned for the same efficiency 
values, which is required for a reasonable comparison 
between different methods. 

Fig. 10. Standard errors in measurements after reconciliation of the alkylation plant data at the third steady state: (a) all errors; (b) errors between –5 
and 5. (�) MIMT; (•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; ( ) Fair; ( ) Logistic. 
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b. The tuning of the ρ functions for data reconciliation and 
the determination of gross error detection criteria were 
done separately. 

c. The assumption that the random errors are from a Nor-
mal distribution was relaxed by generating a mixture of 
Normal and Cauchy random variables for simulated mea-
surements. 

d. In all examples, most of the eight methods were tested 
with the same simulated measurements and gross errors. 

e. Two large-scale industrial systems were investigated with 
real plant data. 

6. Conclusions 

Data reconciliation is an important step in real time 
on-line optimization of a plant. It adjusts the process data 
to satisfy the constraints of the system model and provides 
estimates for unmeasured variables and process parameters, 
which are used in the consecutive economic optimization 
step. In this study, the focus has been on the simultaneous 
data reconciliation and gross error detection strategies to 
improve this initial step in on-line optimization. To this end, 
six different methods derived from robust statistics have 
been investigated along with weighted least squares and a 
modified version of MIMT for nonlinear models. Unlike 
previous studies, special attention was given to the concept 
of tuning the ρ functions to obtain the same efficiency at 
the ideal condition. This proves necessary for a comparative 
study of different methods. This tuning inevitably affects 
the relative shape of the influence functions for the ρ func-
tions. Using these individual influence functions, several cut 
points can be defined as prospective gross error detection 
criterion. Even for ρ functions which do not have cut points, 
such as Fair function and ρ function of Logistic distribu-

0.8 

0.6 

tion, similar gross error detection criteria can be proposed 
borrowing the cut points of other ρ functions. Moreover, an 
outlier rejection rule (X84) adopted from univariate robust 
estimation and depending solely on the observation of the 
residuals in the data reconciliation solution, is introduced. 

The evaluation of the performance of a total of eight 
methods is undertaken using five small-scale examples from 
the literature and two cases involving industrial plants with 
real process data. The Monte Carlo study shows that the 
robust approaches for the simultaneous data reconciliation 
and gross error detection of chemical processes can provide 
similar or better results compared to a sequential method, 
with a single (two for Hampel’s redescending M-estimator) 
solution of the NLP. 

A box-plot of the six observations for the average and 
median total error reduction values (Fig. 11) reveals that on 
the average one can expect mean TER values between 0.4 
and 0.8 with similar variability among different methods. 
The median TER values for MIMT and ρ function of the 
Cauchy distribution are above 0.6 for nearly half of the cases, 
proving them as good data reconciliation methods. 

The overall power of the first and second gross error de-
tection criterion was higher than 0.7 for half of the cases 
investigated (Fig. 12). Hampel’s redescending M-estimator, 
ρ functions for Cauchy and Logistic distributions along with 
the modified MIMT method achieved this performance with 
lower variability in the average number of Type I errors 
(Fig. 13). In general, the second and third gross error detec-
tion criteria reduced the average number of wrong identifi-
cations. 

The guidelines compiled from the results of six different 
examples facilitate an intelligent selection of the ρ function 
and gross error detection criterion by comparing the median 
and variability of each method. Future work will expand the 
current analysis to include the determination of the gross 
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Fig. 11. Box-plots showing mean and median total error reduction values of different methods for the six examples ((•) outlier). 
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Fig. 12. Box-plots showing overall power values of different methods for the six examples ((•) outlier). 
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Fig. 13. Box-plots showing average Type I error values of different methods for the six examples. 
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error detection criteria based on estimation efficiency and 
the breakdown point analysis for different data reconciliation 
methods. Moreover, the methodologies presented herein will 
be implemented in a future version of the Advanced Process 
Analysis System (APAS), a tool to perform comprehensive 
and in-depth evaluations of economic, environmental, safety 
and hazard analysis projects (Telang et al., 1999). 
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Appendix A 

For a set of one-dimensional observations X1, . . .  , Xn 
which are independent and identically distributed, a maxi-
mum likelihood type estimate Tn = Tn(X1, . . .  , Xn) is de-
fined (Hampel et al., 1986; Huber, 1981; Rey, 1983) by a  
minimization problem 

n 

min ρ(Xi; Tn) (A.1) 
Tn 

i=1 

As an example, assume that X1, . . .  , Xn are observations 
from Normal distribution with the probability density func-
tion φ(x) = (2π)−1/2 exp(−1/2(x − θ)2), i.e. variance of 1 
and mean θ. The arithmetic mean of the observations (Tn = 

n
(1/n) 1Xi) is a well-known estimate for the population i=
mean, and is defined by the following 

n � �� 
1−1/2 2min − ln (2π) exp − (Xi − Tn)

Tn 2 
i=1 

n 
1 = min (Xi − Tn)2 (A.2) 

Tn 2 
i=1 

or equivalently 
n n

1 
(Xi − Tn) = 0 ⇔ Tn = Xi (A.3) 

n 
i=1 i=1 

Similar to the above example, if the first derivative of ρ(Xi, 
Tn) exists, Tn can be defined by the implicit equation 

n 

ψ(Xi; Tn) = 0 (A.4) 
i=1 

where 
∂ 

ρ(Xi; Tn) = ψ(Xi; Tn) (A.5)
∂Tn 

If Fn is the empirical cumulative distribution function gen-
erated by the observations X1, . . .  , Xn, then Tn in (A.4) can 
also be written as T(Fn), where T is the following functional 

ψ(x; T(F)) dF = 0 (A.6) 

for all distributions F for which the integral is defined 
(Hampel et al., 1986). 

To evaluate the influence function of an M-estimate, re-
place F with Ft = (1 − t)F + t∆x in (A.6) and take the 
derivative with respect to t at t = 0, since the influence 
function IF is defined as 

T(Ft) − T(F ) ∂ 
IF(x, T, F) = lim = [T(Ft)]|t=0 (A.7) 

t→0 t ∂t 

Here, ∆x is the probability measure, which puts mass 1 at 
the point x. 

∂ 
ψ(x, T((1 − t)F + t∆x)) d[(1 − t)F + t∆x]|t=0 = 0 

∂t 
(A.8) 

Changing the order of the integration and differentiation, 
gives 

ψ(x, T((1 − t)F + t� x)) d(�x − F )|t=0 

∂ + ψ(x, T((1 − t)F + t∆x))
∂T(Ft) 

∂  |t=0 [T(Ft)]|t=0dFt |t=0 = 0 (A.9)
∂t 

Simplifying gives 

∂ 
ψ(x, T(F )) d(∆x − F )  + [T(Ft)]|t=0 

∂t 
∂   ψ(x, T(F )) dF = 0 (A.10)

∂T(F ) 

Making use of (A.6) and (A.7), gives 

ψ(x, T(F )) 
IF(x, T, F ) = (A.11)− (∂/(∂T(F )))ψ(x, T(F )) dF 

provided that the denominator is nonzero. Therefore, the 
influence function IF(x, T, F) is proportional to ψ(x, T(F)), 
i.e. 

∂ 
IF(x, T, F ) ∝ ρ(Xi, Tn) (A.12)

∂Tn 
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