Quantifying Sustainable Development with Sustainable Costs in the Optimization of Chemical Production Complexes with New Plants for Carbon Nanotubes, Carbon Dioxide and Biochemicals

Ralph W. Pike¹, Debalina Sengupta², Helen H Lou³ T.C. Ho³ Thomas A. Hertwig⁴, Aimin Xu² and Sudheer Indala²

1. Minerals Processing Research Institute, Louisiana State University, Baton Rouge, LA 70803 USA

2. Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA

3. Department of Chemical Engineering, Lamar University, Beaumont, TX 77710

4. Mosaic Corporation, Uncle Sam, LA 70792 USA

The First International Symposium on Sustainable Chemical Product and Process Engineering (SCPPE2007) Guangzhou, China, September 25-28, 2007

Introduction

- Industrial processes using biomass and carbon dioxide mitigate global warming
- Objectives are:
 - Identify and design new industrial processes using biomass and carbon dioxide as raw materials
 - Show how these processes are integrated into an existing chemical production complex
 - Obtain the optimal configuration of plants in a chemical production complex using mixed integer nonlinear programming
- Demonstrate that these results are applicable to other chemical production complexes in the world

Base Case of Existing Plants

Plants in the lower Mississippi River Corridor, Base Case. Flow Rates in Million Tons Per Year

Optimal Configuration of Plants in a Chemical Production Complex

- Chemical Complex Analysis System.
 - Determines the optimum structure for a complex
 - Uses the triple bottom line as the objective function
 - Incorporates multi-criteria optimization for Pareto optimal solutions
 - Incorporates Monte Carlo simulation for sensitivity analysis of the optimal solutions
- Triple Bottom Line economic, environmental, and sustainable costs
 Economic and environmental cost to the company
 - Sustainable cost to society to repair damage to the environment from emissions within permitted regulations
- Life Cycle Analysis (LCA)
 - Comparative assessment of sustainability using eight impact categories.
 - Evaluates categories based on material and energy balances at stages of the life cycle from collecting raw material from earth and ending when all this material is returned to earth.

Carbon Dioxide as a Raw Material

- Intermediate of fine chemicals for the chemical industry
 -C(O)O-: Acids, esters, lactones
 -O-C(O)O-:Carbonates
 -NC(O)OR-: Carbamic esters
 -NCO: isocyanates
 - -N-C(O)-N: Ureas
- Use as a solvent
- Energy rich products CO, CH₃OH

From Creutz and Fujita, 2000

Methodology of Developing New Carbon Dioxide Processes

- Identify potentially new processes
- Simulate with HYSYS
- Estimate utilities required
- Evaluate value added economic analysis
- Select best processes based on value added economics
- Integrate new processes with existing ones to form a superstructure for optimization

New Processes Included in the Complex

Product	Synthesis Route	Value Added Profit (cents/kg)
Methanol	CO ₂ hydrogenation	2.8
Methanol	CO ₂ hydrogenation	3.3
Methanol	O_2 hydrogenation	7.6
Methanol	O_2 hydrogenation	5.9
Ethanol	O_2 hydrogenation	33.1
Dimethyl Ether	CO ₂ hydrogenation	69.6
Formic Acid	CO ₂ hydrogenation	64.9
Acetic Acid	From CH_4 and CO_2	97.9
Styrene	Ethylbenzene dehydrogen	ation 10.9
Methylamines	From CO ₂ , H ₂ , and NH ₃	124
Graphite	Reduction of CO ₂	65.6
Synthesis Gas	Methane reforming	17.2
Propylene	Propane dehydrogenation	4.3
Propylene	Propane dehydrogenation	with CO_2 2.5

Application of the Chemical Complex Analysis System to Chemical Complex in the Lower Mississippi River Corridor

- Base case
- Superstructure
- Optimal structure

Processes in the Superstructure

Plants in the Base Case

- Ammonia
- Nitric acid
- Ammonium nitrate
- Urea
- UAN
- Methanol
- Granular triple super phosphate
- MAP and DAP
- Sulfuric acid
- Phosphoric acid
- Acetic acid
- Ethylbenzene
- Styrene

Plants Added to form the Superstructure

- Acetic acid from CO₂ and CH₄
- Graphite and H₂
- Syngas from CO₂ and CH₄
- Propane dehydrogenation
- Propylene from propane and CO₂
- Styrene from ethylbenzene and CO₂
- Methanol from CO_2 and H_2 (4)
- Formic acid
- Methylamines
- Ethanol
- Dimethyl ether
- Electric furnace phosphoric acid
- HCI process for phosphoric acid
- SO₂ recovery from gypsum
- S and SO₂ recovery from gypsum

Triple Bottom Line

Triple Bottom Line = Σ Product Sales

- Σ Raw Material Costs Σ Energy Costs
- Σ Environmental Costs
- + Σ Sustainable (Credits Costs)

Triple Bottom Line = Profit - Σ Environmental Costs

+ Σ Sustainable (Credits – Costs)

Some of the Raw Material Costs, Product Prices and Sustainability Cost and Credits

Raw Materials	Cost (\$/mt)	Sustainable Cost and Credits	Cost/Credit (\$/mt)	Products	Price (\$/mt)
Natural gas	235	Credit for CO2 consumption	6.50	Ammonia	224
Phosphate rock		Debit for CO2 production	3.25	Methanol	271
Wet process	27	Credit for HP Steam	11	Acetic aci	d1,032
Electro-furnace	34	Credit for IP Steam	7	GTSP	132
Haifa process	34	Credit for gypsum consumption	5.0	MAP	166
GTSP process	32	Debit for gypsum production	2.5	DAP	179
HCI	95	Debit for NOx production	1,025	NH4NO3	146
Sulfur		Debit for SO2 production	192	Urea	179
Frasch 53				UAN	120
Claus 21				Phosphor	ic496

Plants in the Optimal Structure from the Superstructure

Existing Plants in the Optimal Structure Ammonia	New Plants in the Optimal Structure Formic acid		
Nitric acid	Acetic acid – new process		
Ammonium nitrate	Methylamines (MMA and DMA)		
Urea	Graphite		
UAN	Hydrogen/synthesis gas		
Methanol	Propylene from CO ₂		
Granular triple super phosphate (GTSP)	Propylene from propane		
MAP and DAP	dehydrogenation		
Contact process for Sulfuric acid			
Wet process for phosphoric acid	New Plants not in the Optimal Structure		
Ethylbenzene	Methanol (Bonivardi)		
Styrene	Methanol (Jun)		
Power generation	Methanol (Ushikoshi)		
Existing Plants not in the Optimal	Methanol (Nerlov and Chorkendorff)		
Structure	Ethanol		
Acetic acid	Dimethyl ether		
	Styrene - new method		
	Electric furnace process for phosphoric		
	acid		
	Haifa process for phosphoric acid		
	SO ₂ recovery from gypsum waste		
	S and SO ₂ recovery from gypsum waste		

Triple Bottom Line Results for the Base Case and Optimal Structure

	Base Case (million dollars/year)	Optimal Structure (million dollars/year)
Income from Sales	1,277	1,508
Economic Costs (Raw Materials and Utilities)	554	602
Raw Material Costs	542	577
Utility Costs	12	25
Environmental Cost (67% of Raw Material Cost)	362	385
Sustainable Credits (+)/Costs (-)	-18	-15
Triple Bottom Line	343	506

Life Cycle Assessment using TRACI

• Comparative analysis was conducted on the base case and optimal configuration of plants in the chemical production complex using TRACI

• Scope is "Entry-to-Exit"

Classifies resources and releases into various impact categories

Characterization value quantifies the extent of harm stressor can cause

- Changes from the base case to the optimal configuration
 - Fossil fuel use increased by 75% from the increase is the energy use of the new plants added to consume excess carbon dioxide being released in the atmosphere.
 - Water use increased by a comparable amount
 - Global warming category decreased by 66% from base case because new processes consumed carbon dioxide
 - Small changes in acidification, water use, eutrophication, photochemical smog and human health.

Carbon Nanotubes

- Seamless cylindrical tubes, consisting of carbon atoms arranged in a regular hexagonal structure
- Consist of carbon filaments with nanoscale (10-9 m) diameter and micron scale (10-6 m) length.
- Considered as the ultimate engineering material because of their unique and distinct electronic, mechanical and material characteristics.
- Challenge production of purified carbon nanotubes in commercial quantities at affordable prices.
 Market price is \$100-\$400/gm for purified nanotubes

Summary of Conceptual Designs of CNT Processes

	CNT PFR Process	CNT-FBR Process
Catalyst	Fe	Co – Mo
	$Fe(CO)_5 \rightarrow Fe + 5CO$	Silica
Reactants	CO and Fe(CO) $_5$	СО
Reactor Type	Plug Flow Reactor	Fluidized Bed
Reactor Conditions	1050 °C @ 450 psi	950 °C @ 150 psi
Selectivity to CNT	90%	80%
Purification	- Oxidation	- Leaching
	- Acid Treatment	- Froth Flotation
	- Filtration	- Acid Treatment
Production rate (kg/hr)	595	595

Flow Diagram of CNT-FBR Process

Summary of the Profitability Analysis for the Conceptual Designs of CNT Processes

Economic Analysis	CNT-PFR Process	CNT-FBR Process
Total Plant Costs	\$4.6 million	\$4.4 million
Total Product Costs	\$186 million	\$124 million
Annual Sales Revenue	\$450 million	\$450 million
Economic Price	\$38/kg	\$25/kg
Net Present Value (NPV)	\$609 million	\$753 million
Rate of Return (ROR)	37.4%	48.2%

Sustainable Chemical Plants using Biomass Feedstocks

Vision

• Convert existing plants to ones that are based on renewable resources requiring nonrenewable resource supplements

• Develop new plants using renewable resources which supply the needed goods and services of the current ones

Essential component of sustainable development

• Embodies the concept that sustainability is a path of continuous improvement, where products and services required by society are delivered with progressively less negative impact upon the Earth

• Consistent with sustainable development is defined as development which meets the needs of the present without sacrificing the ability of the future to meet its needs

Biomass Feedstock

- Virgin Biomass
 - Specifically grown feedstock for food, animal feed, fuel or chemicals
 - Unit price set by usage as food or animal feed
- Waste Biomass
 - Typically agricultural residue, municipal solid waste, used cooking oils, fats and grease from animals etc.
 - Used as fuel
 - Unit price set by price of the fuel it replaces
- United States can provide about 1.0 billion dry tons of sustainable, collectable biomass and continue to meet food, feed and export demands. Corn led in annual production of grain crops in the U.S. with 330,000 tons per year in 2006.

Biomass Conversion Routes

Common conversion routes for biomass include:

- Fermentation
- Anaerobic digestion
- Transesterification
- Chemical conversion
- Gasification/Pyrolysis
- Liquefaction

Chemicals from Fermentation

- Fermentation is the enzyme-catalyzed transformation of an organic compound to release energy.
- Fermentation feedstock can be starch (corn), sugars (sugarcane) or cellulosic and lignocellulosic biomass (switchgrass, corn stover).
- Fermentation using different enzymes yield different products like succinic acid, butanol etc.

U.S. produced 5.0 billion gallons of ethanol in 2006 Approximately 90% of U.S. ethanol is produced from corn

60% of the world's biobased ethanol is obtained from sugar cane in Brazil

Ethanol Product Chain

Ethanol can be the starting material for ethylene which is a major commodity chemical used to produce polyethylene, acetaldehyde etc.

Anaerobic Digestion of Mixed Biomass

Inhibition of the fourth stage of anaerobic digestion produces organic acids

Hydrolysis - Complex organic molecules are broken down into simple sugars, amino acids, and fatty acids with the addition of hydroxyl groups. Acidogenesis - Volatile fatty acids (e.g., acetic, propionic, butyric, valeric) are formed along with ammonia, carbon dioxide and hydrogen sulfide. Acetogenesis - Simple molecules from acidogenesis are further digested to produce carbon dioxide, hydrogen and organic acids (mainly acetic acid).

Methanogenesis - The organic acids are converted to methane, carbon dioxide and water.

The MixAlco process has a favorable return for producing acetone, diethyl ketone, and dipropyl ketone

Anaerobic Digestion of Animal Waste

In this process flow diagram, anaerobic digestion of farm waste is used to produce electricity.

The fuel gas (commonly known as biogas) is a mixture of 65% methane and 35% carbon dioxide.

Chemicals from Vegetable oils

Vegetable oils can be directly used as base oil in lubricants or can be converted by transesterification to a wide variety of chemicals

Chemicals from Transesterification

Transesterification process is the treatment of vegetable oil with an alcohol, acid or enzyme catalyst to produce esters and glycerol.

If methanol is used, then fatty acid methyl esters(FAME) are produced.

These esters have properties similar to diesel and can be used as fuel (biodiesel) or further transformed to chemicals.

Utilization of Glycerol

Glycerol or commonly known as glycerin is an byproduct of the transesterification process.

~10% by weight of glycerol is produced as a byproduct in transesterification process.

Glycerin can be used to manufacture numerous commodity chemicals such as propylene glycol.

Bio-PDO (1,3-propanediol) is a proprietary chemical produced from glycerol by DuPont.

New low pressure and temperature (200 psi and 200°C) catalytic process for the hydrogenolysis of glycerol to propylene glycol has been reported.

Chemical Conversion of Biomass to Chemicals – Levulinic Acid

Levulinic acid can be produced from acid treatment of xylose.

It is a key intermediate for conversion to commodity chemicals by reduction, oxidation or condensation

Chemicals from Gasification

• Biomass gasification is the conversion of biomass to synthesis gas (mixture of CO and H₂).

• "Syngas" is a starting point starting material for the manufacture of ammonia, methanol, urea and other important chemicals.

• Gasification can be in absence of oxygen (pyrolysis), in presence of oxygen (partial oxidation) and in presence of steam (steam reforming) :

Pyrolysis:	$C_{6}H_{10}O_{5}$	\rightarrow	5CO + 5 H ₂ + C
Partial oxidation:	$C_6H_{10}O_5 + O_2$	\rightarrow	$5CO + CO_2 + 5 H_2$
Steam reforming:	$C_6H_{10}O_5 + H_2O$	\rightarrow	6CO + 6H ₂

• Synthesis gas is used in the chemical production complexes to produce ammonia and methanol

• Nearly 12.2 billion pounds of methanol are produced annually in the USA . Methanol is converted to higher value chemicals such as formaldehyde (37%), methyl tertiary butyl ether (28%) and acetic acid (8%).

Chemicals from Pyrolysis

- Pyrolysis is the direct thermal decomposition of organic components of biomass in absence of oxygen to yield useful solid and liquid products and fuel gases.
- Slow, irreversible pyrolysis (conventional) include processes like carbonization, destructive distillation, dry distillation and retorting.

Chemicals from Thermal Liquefaction

- Thermal liquefaction is the direct chemical conversion of biomass to liquid fuels using a liquid medium (aqueous or non-aqueous).
- Hydriodic acid is used to convert biomass under low temperature and pressure to yield hydrocarbons.

New Processes in the Chemical Complex

• Two carbon nanototube processes – CNT-PFR and CNT FBR

• Biomass processes:

Fermentation process for corn to ethanol Fermentation process for waste biomass (sugarcane bagasse) to ethanol Conversion of ethanol to chemicals Fermentation of sugar to succinic acid and derivatives Anaerobic digestion to produce mixed ketones Transesterification to produce FAME and FAEE Conversion of glycerol to propylene glycol and other chemicals Chemical conversion to levulinic acid and derivatives Gasification to produce synthesis gas Conversion of synthesis gas to ammonia, methanol and urea Thermal liquefaction to produce hydrocarbons

• The optimum configuration of plants will be determined based on economic, environmental and sustainable costs using multicriteria optimization and Monte Carlo simulation