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Application to a Monsanto contact process
Interactive Windows program incorporating these

methods
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On-Line Optimization

Automatically adjust operating conditions
with the plant’s distributed control system

Maintains operations at optimal set points

Requires the solution of three NLP’s

gross error detection and data reconciliation
parameter estimation
economic optimization

BENEFITS
Improves plant profit by 3-5%

W aste generation and energy use are
reduced

Increased understanding of plant
operations
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Some Companies Using On-Line
Optimization

United States Europe

Texaco OMV Deutschland
Amoco Dow Benelux
Conoco Shell

Lyondel OEMV

Sunoco Penex

Phillips Borealis AB
Marathon DSM-Hydrocarbons
Dow

Chevron

Pyrotec/KTI

NOVA Chemicals (Canada)

British Petroleum

Applications
mainly crude units in refineries and
ethylene plants



Companies Providing On-Line Optimization

Aspen Technology - Aspen Plus On-Line
- DMC Corporation
- Setpoint
- Hyprotech Ltd.

Simulation Science - ROM
- Shell - Romeo

Profimatics - On-Opt
- Honeywell

Litwin Process Automation - FACS

DOT Products, Inc. - NOVA



Distributed Control System
Runs control algorithm three times a second

Tags - contain about 20 values for each
measurement, e.g. set point, limits, alarm

Refinery and large chemical plants have 5,000 -
10,000 tags

Data Historian

Stores instantaneous values of measurements for
each tag every five seconds or as specified.

Includes a relational data base for laboratory and
other measurements not fromthe DCS

Values are stored for one year, and require hundreds
of megabites

Information made available over a LAN in various
forms, e.g. averages, Excel files.



Plant Problem Size
Contact Alkylation Ethylene

Units 14 76 -
Streams 35 110 ~4,000
Constraints
Equality 761 1579 ~400,000
Inequality 28 50 ~10,000
Variables
Measured 43 125 ~300
Unmeasured 732 1509 ~10,000

Parameters 11 64 ~100



Status of Industrial Practice for On-Line Optimization

Steady state detection by time series screening
Gross error detection by time series screening
Data reconciliation by least squares

Parameter estimation by least squares

Economic optimization by standard methods



Key Elements
Gross Error Detection
Data Reconciliation
Parameter Estimation

Economic Model
(Profit Function)

Plant Model
(Process Simulation)

Optimization Algorithm



DATA RECONCILIATION

Adjust process data to satisfy material and
energy balances.

Measurement error - e
e=y-X

y = measured process variables
X = true values of the measured variables

X=y+a

a - measurement adjustment



DATA RECONCILIATION

measurements having only random errors - least squares

Minimize: e’2e=((y - X)'2Z Ny x)
X
Subjectto: f(x)=0

> = variance matrix = {0%}.

0; =standard deviation of e..

f(x) - process model
_ | inear or nonlinear



DATA RECONCILIATION

Linear Constraint Equations - material balances only
f(x)= Ax=0
analytical solution - x =y - >AT(AZA")'Ay
Nonlinear Constraint Equations
f(x) includes material and energy balances,
chemical reaction rate equations, thermodynamic
relations

nonlinear programming problem

GAMS and a solver, e.g. MINOS



Types of Gross Errors
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Gross Error Detection
Methods

Statistical testing
0 many methods
o0 can include data reconciliation

Others
O Principal Component Analysis

O Ad Hoc Procedures - Time series
screening



Combined Gross Error Detection and Data Reconciliation

Measurement Test Method - least squares

Minimize: (y-x)'ZNWy-x)=eZe
X, Z
Subject to: f(x,z,0)=0

Test statistic:
if |ei|/oi>_ C measurement contains a gross error

Least squares is based on only random errors being present
Gross errors cause numerical difficulties
Need methods that are not sensitive to gross errors



Methods Insensitive to Gross Errors

Tjao-Biegler's Contaminated Gaussian
Distribution

P(yi | xi) =(1-n)P(yi | X, R) +n P(y | xi, G)

P(yi | %, R) = probability distribution function for the random error
P(yi | %, G) = probability distribution function for the gross error.
Gross error occur with probability n

Gross Error Distribution Function

PG = L e

J/2mbo




Tjao-Biegler Method

Maximizing this distribution function of measurement
errors or minimizing the negative logarithm subject to the
constraints in plant model, i.e.,

C(yx)? (y-x)?

Minimize: i i
X ~Yln(1-n)e %+ Ne % Injy21o.
N TI 1

b
Subjectto: f(x)=0 plant model
xt < x < xY bounds on the process
variables

A NLP, and values are needed for nand b

Test for Gross Errors

If nP(yi|xi, G) > (1-n)P(yi| xi, R), gross error
probability of a probability of a
gross error random error

. \{ 2h? ln{b(l—n)}
b2-1 0

Yi=X;

;] =

i



Robust Function Methods

Minimize: - p(yi x) ]
|

X
Subjectito:  f(x) =0
xt < x < xY
Lorentzian distribution
p(ei) = | 11 5
+ —€;
2

Fairfigmetion €| €|
p(€;0) = cz{z’ - log(1+ ’ )}
C

C

c is a tuning parameter

Test statistic

€i = (Yi - X )/Oi



Parameter Estimation
Error-in-Variables Method

Least squares
Minimize: (y- x)'2'(y- x) =e'X e
Subjectto: f(x,08)=0

O -p| ant parameters

Simultaneous data reconciliation and parameter
estimation

Minimize: (y- x)'Z'(y- x) =e'X e

< 8
Subjectto: f(x,68) =0

another nonlinear programming problem



Three Similar Optimization Problems

Optimize: Objective function

Subjectto:  Constraints are the plant
model

Objective function

data reconciliation - distribution function
parameter estimation - least squares
economic optimization - profit function

Constraint equations

material and energy balances
chemical reaction rate equations
thermodynamic equilibrium relations
capacities of process units

demand for product

availability of raw materials



Theoretical Evaluation of Algorithms for Data Reconciliation
Determine sensitivity of distribution functions to gross errors

Obijective function is the product or sum of distribution functions
for individual measurement errors

P=1Ip(e) <Y Inp(e) = Yp(e)



Three important concepts in the theoretical
evaluation of the robustness and precisionof
an estimator from a distribution function

Influence Function

Robustness of an estimator is unbiasedness
(insensitivity) to the presence of gross
errors in measurements. The sensitivity of
an estimator to the presence of gross errors
can be measured by the influence function
of the distribution function. For M-estimate,
the influence function is defined as a
function that is proportional to the derivative
of a distribution function with respect to the
measured variable, (dp/ox)



Relative Efficiency

The precision of an estimator from a distribution is measured by
the relative efficiency of the distribution. The estimator is precise
if the variation (dispersion) of its distribution function is small

Breakdown Point

The break-down point can be thought of as giving the limiting
fraction of gross errors that can be in a sample of data and a
valid estimation of the estimator is still obtained using this data.
For repeated samples, the break-down point is the fraction of
gross errors in the data that can be tolerated and the estimator
gives a meaningful value.



Influence Function

proportional to the derivative of the distribution function, IF - dp/ox

represents the sensitivity of reconciled data to the presence of gross errors

Normal Distribution
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Comparison of Influence Functions

. < Normal distribution
<« Fair function
w1
<€ Contaminated distribution
0.5
Lorentzian distribution
0
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Error €

Effect of Gross Errors on Reconciled Data - Least to Most

Lorentzian » Contaminated Gaussian » Fair » Normal
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Numerical Evaluation of Algorithms
Simulated plant data is constructed by
y= Xx+e+ao
y - simulated measurement vector for measured variables
X - true values (plant design data) for measured variables
e - random errors added to the true values

a - magnitude of a gross error added to one of measured
variables

0 - a vector with one in one element corresponding to the
measured variable with gross error and zero in other elements



Criteria for Numerical Evaluation

Gross error detection rate - ratio of number of gross
errors that are correctly detected to the total number of
gross errors in measurements

Number of type | errors - If a measurements does not
contain a gross error and the test statistic

identifies the measurement as having a gross

error, it is called a type | error

Random and gross error reduction - the ratio of the
remaining error in the reconciled data to the
error in the measurement



Comparison of Gross Error Detection Rates
390 Runs for Each Algorithm
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Comparison of Numbers of Type | Errors
390 Runs for Each Algorithm
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Comparison of Relative Gross Error Reductions
645 Runs for Each Algorithm
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Results of Theoretical and Numerical Evaluations

Tjoa-Biegler's method has the best performance
for measurements containing random errors
and moderate gross errors (30-300)

Robust method using Lorentzian distribution is
more effective for measurements with very
large gross errors (larger than 300)

Measurement test method gives a more accurate
estimation for measurements containing only
random errors. It gives significantly biased
estimation when measurements contain gross
errors larger than 100
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Economic@®ptimization

Value Added Profit Function

SreaFes T SrssFss  Srs1aFs1a = CrsoFs0 = CrsiF st = Cresfes

On-Line Optimization Results

Profit
Current ptimal
Date ($/day) ($/day) Improvement
O
6-10-97 37,290 38,146 2.3%
$313,000/yr
6-12-97 36,988 38,111 3.1%

$410,000/yr
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Interactive On-Line Optimization Program

1. Conduct combined gross error detection and data
reconciliation to detect and rectify gross errors in
plant data sampled from distributed control system
using the Tjoa-Biegler's method (the contaminated
Gaussian distribution) or robust method (Lorentzian
distribution).

This step generates a set of measurements containing
only random errors for parameter estimation.

2. Use this set of measurements for simultaneous
parameter estimation and data reconciliation using
the least squares method.

This step provides the updated parameters in the
plant model for economic optimization.

3. Generate optimal set points for the distributed control
system from the economic optimization using the
updated plant and economic models.



Interactive On-Line Optimization Program

Process and economic models are entered as
equations in a form similar to Fortran

The program writes and runs three GAMS
programs.

Results are presented in a summary form, on a
process flowsheet and in the full GAMS output

The program and users manual (120 pages) can
be downloaded from the LSU Minerals
Processing Research Institute web site

URLhttp://www.mpri.lsu.edu
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Some Other Considerations
Redundancy

Observeability
Variance estimation
Closing the loop

Dynamic data reconciliation
and parameter estimation



Summary

Most difficult part of on-line optimization is developing and
validating the process and economic models.

Most valuable information obtained fromon-line
optimization is a more thorough understanding of the

Process
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