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O ptimization of plant operations and process design
requires maximizing a profit function subject to a
plant model that can involve thousands of con-

straint equations. The mathematical programming modeling
languages of GAMS and AMPL were developed to alleviate
many of the difficulties associated with the development
and solution of large, complex mathematical program-
ming models like these and to allow direct formulation
and solution on a computer. They have problem formula-
tion in a language very similar to the mathematical state-
ment of the optimization problem.

The modeling language GAMS (General Algebraic Mod-
eling System) was developed at the World Bank to facilitate
the solution of multi-sectoral economy-wide models['] where
FORTRAN programs had been previously used. The model-
ing language AMPL (A Modeling Language for Mathemati-
cal Programming) was developed at AT&T Bell Laborato-
ries for communication applications. [2JThese two languages
offer an efficient and effective way to solve mathemati-
cal programming problems at the expense of learning
another programming language. Both languages have
similar construction, and AMPL is interactive and use
separate model and data files.

GAMS appeared in 1988, is now in version 2.25, and has a
number of linear, mixed integer linear, nonlinear, and mixed
integer nonlinear solvers, including MINOS, CONOPT,
CPLEX, DICOPT, LAMPS, XA, and OSL, among others.[']
AMPL appeared in 1993 and includes,,~e solvers MINOS,
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XA, and OSL, with others to become available.[4JBoth have
. mainframe, workstation, and PC versions, and they have

student editions that can solve small problems (about 300
constraint equations). The manual is the same for all ver-
sions, and licensing fees are comparable.

GAMS has been used to solve chemical engineering opti-
mization problems, and Grossmann['] has edited a CACHE
Design Case Studies Series with a number of typical prob-
lems for use in optimization courses. Also, we have used
GAMS and AMPL in research and instruction and have
found them to be valuable tools that can be used to solve a
range of optimization problems. Consequently, we offer here
a brief comparison of GAMS, AMPL, and MINOS to assist
those who would like to take advantage of this new approach
for solving mathematical programming problems.

Prior to GAMS and AMPL, codes like MINOS were used
to solve large linear and nonlinear programming problems.
MINOS (Modular In-Core, Non-Linear Optimization Sys-
tem) is a widely used nonlinear programming solver that
was developed in the System Optimization Laboratory of the
Department of Operations Research at Stanford University.
It is described as a FORTRAN-based computer system that
solves large-scale linear and nonlinear optimization prob-
lem.. [6]Two files are needed to solve linear programs. One a
MPS (IBM-Mathematical Programming System) file, is re-
quired for all problems to define the names of all variables
and constraints and to specify the bounds and initial values
for variables. The other is a SPECS (Specifications) file that
sets various run-time parameters.

For nonlinear programming problems, two additional FOR-
TRAN subroutines, FUNOBJ and FUNCON, are required.
The nonlinear parts of the objective function are provided in
a FORTRAN subroutine FUNOBJ, and the nonlinear con-
straints are defined by the subroutine FUNCON. The sub-
routine FUNOBJ calculates values of the nonlinear part of
the objective function and as many gradients as possible.
The subroutine FUNCON is used to evaluate the nonlinear
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TABLE 1
GAMS Program for Problem Pi

$TITLEExample Problem

* Define the variables in the optimization problem
VARIABLES X,Y;
POSmvE VARIABLES X,Y;

*Specify the values of constants in the problem
PARAMETER cr Ivalue..J;
PARAMETER DTI value..J;
PARAMETER All value..J;
PARAMETER A21 value..J;
PARAMETER A31 value..J;

. Define the objective function and constraints

EQUATIONS OBIFUN
CONI
CON2;

OBIFUN..TCOST=E=p{X] + Cf'X+DT'Y;
CONI.. qX] +AI'Y=E=BI;
CON2.. A2'X + AJ'Y=E=B2

'Imposethe bounds on the variables
X.UP=U;
Y.UP = U;

X.LO = L;
Y.1O=L;

'Specify the equations included by model 'Example"
MODELExampleJalV;
. Give the solve statement
SOL VB Example USING NLP MINIMIZING TeOST;

. Display the optimaJ solution

DISPLAY X.L, Y.L;

TABLE 2

CiY AMPL Model File for Problem Pi

# Input the bounds for the variables in the optimizationproblem
var X>=L, <=U;
varY>=L, <=U;

# Define the names of the constants in the problem
param CT;
paramDT;
param Al
param A2
param A3

# Definetheobjectivefunction of the problem
minimizeobj; P{X] +cr'x +O1'Y;
# Define theconstraintequationsof theproblem
subjectto CONI;fIX] + AI'Y =BI
subject to CON2: A2'X + AJ'Y =B2;

(b.)AMPL Data File for Problem Pi

# Inputthe values of the constants in the problem
param cr :=value ;

param DT :=value ;
param Al :=value ;

param A2 :=value ;

param A3 :=value ;

constraints and as many elements of the Jacobian matrix as
possible. The current version of MINOS is 5.4, which added
a callable subroutine feature to version 5.3.

GAMS 2.25 is described as a high-level language that
makes concise algebraic statements of mathematical pro-
gramming models in a language that is relatively easy to
read and write and hence is easy to understand and imple-
ment,11!Further, the advantages of GAMS over FORTRAN
solvers like MINOS are described as providing a computer
language for compact representation of large and complex
models, allowing changes to be made in model specifica-
tions simply and safely, having unambiguous statements of
algebraic relationships, and permitting model descriptions
that are independent of solution algorithms.

A GAMS program is a collection of statements in the
GAMS language. These statements consist of the sentences
that defme data structures, initial values, and data modifica-
tions and of equations that provide relationships among the
variables. When problems contain matrices and vectors, sets
and indices are used to express these statements in a concise
fonn. The program calls on an adapted version of a solver,
such as MINOS, that is controlled by a number of default
parameters or "options" similar to the SPECS file in MINOS.
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AMPL has essentially all of the
features of GAMS but is more flex-
ible and interactive. The process and
economic models can be input in
segments; debugging and running the
optimization can be done with the
results viewed. In GAMS, a model
file has to be edited, and this file is
run in a separate step.

In summary, GAMS and AMPL
modeling languages act as a bridge
between mathematical programming
problems and FORTRAN solvers for
problem fonnulation, and they can
apply different solvers to an optimi-
zation problem. Also, both have a
presolve phase that uses bound tight-
ening procedures and variable sub-
stitutions to reduce the number of
constraints and variables. On the
other hand, FORTRAN solvers pro-
vide experienced modelers with
more flexibility in setting run-time
parameters, which is important for
large and complicated problems.

GAMS AND AMPL STATEMENTS
OF THE OPTIMIZATION PROBLEM

Both linear and nonlinear programming problems can be
expressed in the following standard mathematical fonn used
by MINOS:

minimize F(x)+cTx+dTy

subject to f(x)+A!y=bJ

Azx + A3y = bz
1S;(x,y)S;u

objective function

nonlinear and linear

equality constra iots

var iable bounds

(PI)

where the vectors (c, d, bl' bz,l, u) and the matrices (AI' A"
and A,) are constants, where F(x) is a smooth scalar func-
tion, and where f(x) is a vector of smooth functions)61PI is a
linear programming problem if x is zero. The objective
function gives a measure of the profit or cost of the operation
of a plant, and the constraint equations represent material
and energy balances, rate equations, equilibrium relations,
demand for product, availability of raw material, etc.

The GAMS and AMPL statements are given in Tables I
and 2 for the mathematical programming problem PI with
the parameters and variables as scalars. The AMPL model
file is in Table 2a and the data ftle is in Table 2b. As can be
seen in Tables I and 2a,b, the modeling language representa-
tions are similar to the mathematical statements for problem
PI. Both start by defining variables and parameters and then
follow with the objective function and constraints. GAMS
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has the values of parameters with their definitions, and
AMPL has the values of parameters in a data file. These
programs are easy to read, and they can be checked by
people other than the modeler.

A nonlinear fuel oil allocation optimization problem
by Karimi from the CACHE compilation of GAMS
models IS]is given in the appendix with the GAMS,
AMPL, and MINOS codes and solutions. This is a
representative illustration for the comparison of these
three methods. In the next section, results are given
for comparisons of eleven small standard engineering
optimization problems. Copies of the GAMS, AMPL,
and MINOS codes for these problems are available
by sending an e-mail request to

chepik@lsuvm.sncc.1su.edu

COMPARISONS OF
STANDARD OPTIMIZATION PROBLEMS

A comparison was made among GAMS, AMPL, and
MINOS to evaluate their capability of solving eleven
standard engineering optimization problems. These in-
cluded two linear and nine nonlinear programming prob-
lems given by Grossmann,IS! Pike,17] Hock and
Schittkowski,18!and Schittkowski.19!A brief description
of each problem is given in Table 3, and a summary of
the optimization results is given in Table 4. The perfor-
mance of these three programs was evaluated by com-
paring the number of major and minor iterations, the
number of superbasic variables left at the optimum, and
the number of function calls.

In a major iteration of the optimization algorithm, the
nonlinear constraints are linearized at a point to give a
set of linearized constraints. A major iteration is a step
between the linearizations of the nonlinear constraints.
The minor iterations are steps of the simplex or reduced
gradient method that search for the feasible and optimal
solution based on these linearized constraints. For lin-
early constrained problems, only minor iterations take
place. For nonlinearly constrained problems, both major
and minor iterations are required, and minor iterations
take place between the successive linearizations of the
nonlinear constraints. The number of major and minor
iterations, especially for nonlinear problems, strongly
depends on the initial values and bOands on the vari-
ables, the expressions for constraint equations, and the
run-time parameters.

In the reduced gradient algorithm, the total of n vari-
ables are separated into a set of m basic variables, where
m is the number of constraints and (n-m) nonbasic or
independent variables. The superbasic variables are sub-
set of the nonbasic variables that can profitably be
changed.!"! At the first feasible point, all nonbasic vari-
ables away from their bounds are chosen as superbasic,

TABLE 3
Description of Standard Optimization Problems

PROBLEM

RefineryScheduling
LP

9 variables
4 eq., 8 ineq. constraints

DESCRIPTION

A refinery produced gasoline, healing oil, jet fuel, and

lube oil from limited amount of 4 different crudes. The
objective was to maximize the profit per week by increas-

ing product sales and reducing the operating and purchase

costs of crude (Karimi in [5])

Petroleum Refmery

LP

33 variables

21 eq., 16ineq. constraints

The objective of this simple, yet non-trivial problem was

to find the optimum operating conditions for a refinery

that maximized profit. It had three process units, each

having several input and output streams, and it had four

product streams.j1]

Fuel Allocation

NLP

8 variables

2 eq., 6 ineq. constraints

A two-boiler turbine-generator, using a combination of
fuel oil and blast furnace gas (limited amount) was used to

produce power. The objective was to minimize the con.
sumptionof fuel oilrequiredto generatea specified amount
of power, The fuel requirements were expressed as a
quadratic function of the generated power. (Karimi in [5])

Optimization of Sulfur Content
NLP

10 variables
5 eq., 2 ineq. constraints

Three streams having different sulfur intents were com-
bined to form two products having specifications on the
maximum sulfur content The objective was to maximize

profit subject to linear and bilinear product and quality
constraintsYO]

Alkylation Process Optimization

NLP
IOvariahles

7 eq. constraints

A reactor and fractionator system was used with four
feeds to produce alkylate, The objective was to maximize
a profit function that included the cost of feed and recycle

and sale nf product. (Biegler in [5])

Chemical Equilibrium I

NLP

12 variahles

4 eq. constraints

The objective was to find the equilibrium composition of

a mixture of ten chemical species by rniIrimizing the Gibbs

free energy subject to elemental balance constraints. This

was done by varying the composition of the mixture to
arrive at the optimal point. (Karimi in [5])

Chemical Equilibrium IT
NLP

10variahles

3 eq. constraints

The objective was to fmd the equilibrium composition by

minimizing the Gibbs free energy subjectto three elemen.

tal balances.
[I)

Heat Exchanger Networl<

Configuration - NLP
15 variahles

13 eq.. 16 ineq. cnnstraints

A Multi-Spindle Autom. Lathe

NLP

10 variahles

I eq., 14 ineq. constraints

The objective was to identify the minimum cost for a
utility network configuration for a specifiedcombination
of process streamnnstches.(Yee and Grossmannin [5])

The optimization of a multi-spindle automatic lathe was
to minimize a nonlinear objective function subject to fif-
teen generalized polynomial constraints, [9!

Optimization of Linear Objective
Function & Quad.Constraints- NLP

15 variab]es

10 ineq. constraints

This optimization problem was to minimize a linear ob-

jective function subject to ten quadratic constraints.
[9]

Optimization of Nonlinear Objective
Function & Quad.Constraints-NLP

7 variables
2 eq"3 ineq. constraints

This optimization problem was to minimize a general

nonlinear objective function subject to two quadratic and,

three linear constraints. ['J
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and a variable will leave the superbasis

TABLE 4 if it hits a bound or becomes basic.

Comparison of Solutions for Standard Optimization Problems During the iterations, nonbasic vari-

with MINOS, GAMS and AMPL abies are allowed to enter the
superbasis before the beginning of

No. of Iterations Superbasic Var No of Function Obj. Function each line search, provided their re-

Problem Solver Major Minor at Opt Calls Value duced gradients are significantly

Refinery S<:heduling MINOS 4 $3.4xlO'lwK
large. The number of superbasic

LP GAMS 7 $3.4xlO'IWK variables left in the solution at the

9variables AMPL 5 $3.4xlO'/wK optimal point indicates the number

4 eq., 8 ineq. constraints of nonbasic variables whose opti-
mal values are not on the bounds.

PetroleumRefinery MINOS 32 $702.000
The number of function calls is theLP GAMS 26 $702.000

33 variables AMPL 26 $702,000 number of times that subroutines
21 eq., 16ineq.constraints FUNOBJ and FUNCON have been

calJed to evaluate the nonlinear objec-
FuelAllocation MINOS 7 15 29 4.681tonlhr tive function and nonlinear con-

NLP GAMS 10 33 73 4.681 toolhr
straints.

[6]
The number of functions

8 variables AMPL 7 15 47 4.681 tonlhr
2 eq.. 6 ineq. constraints calls to nonlinear objective and con-

straint equations is a measure of the
Optimization ofSulfurContent MINOS 14 24 0 86 .750 units computational effort required to reach

NLP GAMS 14 27 0 70 .750 units the optimum.
[6]

10 variables AMPL 14 24 0 68 -750 units
5 eq., 2 ineq. constraints For the two linear programming

problems, the values of the optimum
Alkylation Process OptimizatiOll MINOS 14 19 76 $1.154.43/day obtained by GAMS, AMPL, and

NLP GAMS 16 131 750 $1.154.43/day MINOS were the same as shown in
10 variables AMPL 13 40 206 $1,161.341day

7 eq. constraints Table 4. The only difference was in

the number of iterations that each took

Chemical Equilibrium 1 MINOS 26 7 75 -43.38 to reach the optimal solution. This dif-
NLP GAMS 26 7 76 -43.49 ference probably came from the varia-

12variables AMPL 26 7 72 -43.49 tions of default initial values and
4 linear eq. constraints

bounds on the variables specified by

Chemical Equilibriumn MINOS 39 7 111 -47.76109 the three programs.

NLP GAMS 21 7 45 -47.76109 As shown in Table 4, there were
10variables AMPL 31 7 90 -47.76109

3 linear eq. constraints differences in the number of iterations,
superbasic variables left at the opti-

Heat Exchaoger Network MINOS 6 8 0 180 $56,825.83 mum, and function calls for the solu-
Configuration- NLP GAMS 8 78 0 22 $56,825.83 tions of the nine nonlinear problems.

15 variables AMPL 19 29 0 172 $56,825.83 For six of the nine nonlinear optirni-
I3 eq., 16 ineq. constraints

zation problems, the same optimal so-

A Multi-Spindle Autom. Lathe MINOS 5 24 0 116 -4,430.088 lution was located by the three meth-
NLP GAMS 4 8 0 22 -4,430.088 ods without providing starting points.

10 variables AMPL 4 12 I 78 -4,430.005 Also, the optimal solutions were sen-
1 eq., 14 ineq. constraints

sitive to the starting points of the vari-

Optimization nf Linear Objective MINOS 12 117 I3 292 .1,840.00
abies for two of the problems because

Function & Quad. Constraints - NLP GAMS 12 200 8 339 .1,840.00 of the nonlinearities in the objective
15variabl~ AMPL 12 119 11 296 -1,840.00 function and constraints as described

10ineq. constraints below. These two problems proved to

Optimization of Nonlinear Objective MINOS 9 46
be a challenge for the methods, and

4 -37.413 typical difficulties were encountered
Function&Quad, Cnnstraints.NLP GAMS 11 53 1% -37.413

7 variables AMPL 12 50 226 .37.413 in obtaining the solution of nonlinear
2 eq., 3 ineq. consttaints optimization problems.

For the alkylation process optimi-
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zation, the values of the objective function at the optimum
were the same for GAMS and MINOS ($1,154.43/day),
which was the same as Grossmann's['] result. But AMPL
gave a slightly better optimal value ($1,161.34/day). This
optimal solution had been reported by the original author of
the problem, Liebman, et al. [12]Grossmann claimed the dif-
ference between the optimal results from his GAMS solution
and Liebman's solution was likely due to different default
tolerances in MINOS. Also, we have shown that this prob-
lem has multiple optimal solutions, and several local maxima
have been found by giving different starting points. In the
absence of a specified starting point, MINOS executed the
problem by setting the variables to zero or to a bound (if it
was specified) that was closest to zero and exited when an
optimum was located. Without good starting points for
most of the variables, MINOS was unable to reach the
final maximum objective value. But GAMS found the
optimal solution with only one variable initialized, and
AMPL was able to reach the final optimal solution with-
out the initialization of any variable.

The multi-spindle automatic lathe problem minimized a
nonlinear objective function subject to ten nonlinear con-
straints. For this optimization problem, GAMS successfully
located the global optimal solution from different starting
points, or even without specifying a starting point. MINOS
and AMPL could locate the correct global optimal solution
only when a starting point close to the global optimal solu-
tion was given. Otherwise, some sub-optimal solutions were
found. Also, when this problem was solved using GAMS
with the CONOPT solver, re-scaling of variables and con-
straints was required-otherwise the problem could not be
solved. When a starting point close to the global optimal
solution was specified for the three methods, GAMS and
MINOS found the same optimal value (-4,430.088), but
AMPL located a slightly higher value (-4,430.005). This
illustrates the need for starting points close to the optimum
and scaling of variables and constraint equations.

In Table 5, measures of the computation efficiency are
given by the total number of iterations, superbasic variables
left, and function calls for the eleven problems. MINOS took
fewer iterations and function calls than GAMS and AMPL
in total and for most problems. This may be significant for
large, complicated problems. But creating the MPS me and
FORTRAN subroutine for MINOS is it\me consuming and
prone to errors. These drawbacks for MINOS may supplant
its advantage. For example, some of these optimization prob-
lems were assigned to students for homework in an optimi-
zation course. A few students solved the problems using
MINOS in the time allotted, while all found optimal solu-
tions by AMPL and GAMS. Also, they reported that GAMS
and AMPL were easier to use than MINOS when starting
with no experience with these methods.

All of the problems required well-scaled variables and
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TABLE 5
Comparison of the Computation Efficiency for Eleven

Optimization Problems with MINOS, GAMS, and AMPL

Total of major Totalof minor Total of superbaslc Total
iterations iterations variablesleft function calls

MINOS

GAMS

AMPL

317

610

377

32

27

31

1011

1593

1255

62

75

81

constraint equations. 'Scaling is performed by multiplying
factors to have the variables and constraints close to a
magnitude of one.[l] Scaling is key to obtaining optimal

solutions for problems with widely varying values of the
variables and constraint equations. The users manuals
describe procedures for scaling.

SUMMARY

Programming and solving standard optimization problems
showed that GAMS, AMPL, and MINOS are all effective,
and they release modelers from programming optimization
algorithms. The comparisons showed that optimization prob-
lems are relatively easy to program in GAMS and AMPL,
and they offer a choice of solvers and have a presolve phase
to reduce model size. In addition, AMPL has features of
separate model and data mes, flexible output, and options to
run batch operations. GAMS provides a comprehensive out-
put summary that is very helpful in detecting model errors,
and it is interfaced with more solvers than AMPL now.
MINOS could be more robust than GAMS and AMPL, but
programming is more difficult. In addition, this is an active
area for developments; Floudas describes MINOPT,I13Jan
automated mixed-integer nonliner optimizer. Also, GAMS
has been extended to use the APROS technique to connect
the NLP and MILP in the decomposition of MINLP (Paules
and Floudas in [5]).
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APPENDIX
A FUEL ALLOCATION OPTIMIZATION PROBLEM

This is a simple, nonlinear, allocation optimization given
in the CACHE compilation of GAMS models by Karimi.I']
The problem statement has a two-boiler, turbine-generator
combination producing a minimum power output of 50 MW,
as shown in Figure I (next page). Fuel oil and blast furnace
gas (BFG) are to be used, and 10 fuel units per hour ofBFG
are available. A minimum amount of fuel oil is to be pur-
chased to produce the required power from the two genera-
tors. The amount of fuel used, F, in tons per hour for fuel oil

TABLE Al

, @ GAMS Code for Fuel Allocation Optimization!']

$TITI..E Power Generation via Fuel Oil

. Define index sets

SETS G Power Generators Igeol'gen21

F Fuels/oil,gas!

K Cnnslan~ in Fuel COD5umptiun EquationslO'2I;

'Define and Input the Problem Data
TABLE A(G,F,K) C~fficieo~ in the fuel consumption equ.tiOD5

o 1 2
genl.oil 1.4609 .15186 .00145
geol.gas 1.5742 .16310 .001358

geo2.oil 0.8008 .20310 .000916
ge02.gas 0.7266 .22560 .000778;

PARAMETER PMAX(G) Maximum puwer outpu~ of gener.tors

IGEN I 30.0, GEN225.0I;
PARAMETER PMIN(G) Minimum power outpu~ of geoe..tors

IGENl18.0, GEN2 14.01;

SCALAR GASSUP Maximum supply of BFG in wrl~ per b

/10.01

PREQ Tutal power output required in MW
150.01;

*Desjgn optimization variables

VARIABLES P(G) Total power output of gen...tors in MW
X(G,F)Power outpu~ of geo...tnrs from specific fuels

Z(F)Tntal Amoun~ of fuel purchased

OILPUR Totnl amount of fuel oil purchased;
POsmVE VARIABLESP, X. Z;

. DefmeObjective Function andConstraints

EQUATIONS TPOWER Required power must be generated
PWR(G) Power generated by individualgenerators

OILUSE amount of oil purchased to be minimized
FUEWSE(F) Fuel usage must oot exceed purchase;

SUM(G, p(G»)=G=PREQ;

P(G)=E=SUM(F,X(G,F));

Z(F)=G--SUM«(K,G),a(G,F,K)'X(G,F)"(ORD(K)-I);

OILPUR=E=Z("OIL");

TPOWER..

PWR(G)..

FUELUSE(F)..

OILUSE..

'fropese Bounds and Initialize Optimization Variables

*
Upper and lower boundson P from the operating ranges
P.up(G)= PMAX(G);

P.LO(G) = PMIN(G);

*Upper bound on BFG consumption from GASSUP

Z.up("gas") = GASSUP;

* Specify initial values for power outputs

P.L(G)=.5'(PMAX(G)+PMIN(G»;

* Defme model and solve

MODEL FUELOllJnOI;

SOLVE FUELOIL USING NLP M1NJMIZlNG OILPUR;

DISPLAY X.L, P.L, Z.L, OILPUR.L;

f@GAMS Solution for Fuel Allocation Optimization
I

MODEL STATISTICS

BLOCKSOF EQUATIONS 4
BLOCKSOF VARIABLES 4
NON ZEROELEMENTS 16

DERIVATIVEPOOL 5
CODE LENGTH 81

GENERATIONTIME =(J.220SECONDS
EXECUTIONTIME =0.280SECONDS VERill MW2-OO-051

SOLVE SUMMARY

MODEL FUEL OIL OBJECTIVE OILPUR

TYPE NLP DIRECTIONMlNIMIZE

SOLVERMINOS5 FROM LINE54

SOLVERSTATUS I NORMALCOMPLETION
MODEL STATUS 2 LOCALLYOI'TIMAL
OBJECTIVEv AWE 4.6809

EXIT - OI'TIMAL SOLUTION FOUND

MAJOR ITNS,LIMIT 10 200
FUNOBJ,FUNCONCALLS 0 73
SUPERBASICS I
INfERPRETER USAGE 0.00
NORM RGI NORM PI 2.532E-1O

V ARlABLE X.L Power outputs of generators from specificfuels
OIL GAS

GENI 10.114 19.886
GEN2 3.561 16.439

VARIABLEP.L Tntalpower output of generators inMW
GENI30.000, GEN220.000
VARIABLEZ.L Total Amoun~ uf fuel purchased
OIL 4.681, GAS 10.000
VARlABLE OILPUR.L= 4.6809Totalamount of fueluil purchased

SINGLE EQUATIONS

SINGLE VARJABLES

NON LINEAR N-Z

CONSTANT POOL

6
9
4
15
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P{'] :=genl 30 g.n2 20;

X :=genJ gas 19.8857 genloil 10.1143
gen2 gas 16.4388 gen20il 3.56123;

Z{'J:= gas 10 oil 4.68089;

TABLE A2

I@AMPL Model file for Fuel Allocation Optimization I
setG;
setF;

setK;

p"""
COEFF(G, P, K} >.0;

p"""PMAX(ginG};

p"""PMIN (ginG);

p"""1
{kinK};

,or Pig in G} >=PMIN[g], ,<=PMAX[g};

varX{ginG,finF} >::0;

varZ{finF} >=0;

minimize purch_oil{fin F}: If''oil'1;

subject to TPWR: sum {ginG} P[g]>=50;

sobjecttoPWR (ginG): sum (linP) X[g,fj.P[g];

sobjecttoF1JELUSE (linP): sum {kinK, ginG} COEFF[~f,k]'X[g,fj"l[k]=Z{fj;

subjeclto BFG {finF}: Z["gas"] <=10;

I@AMPL Data file for Fuel Allocation Optimization I
setG::::genlgen2;

setf:=oiI,gas;

setK:=O,1,2;

param COEFF:=

[genl,', *]: 0

oil 1.4609
gas 15742

{gen2,',*]: 0
oi1 0.8008
gas 0.7266

"""""
PMAX PMIN:=

genl 30 18
gen2 25 14;

p""":1:=
o 0
II
22;

1

0.15186

0.16310

1

0.20310

0.22560

2 '-
0.001450

0.001358

2 '-
0.0110916

0.000778

r @ AMPL Solution for Fuel Allocation Optimization l
MINOH4:

EXIT -optimal soIutioD found

NO.ofinterations

No.ofmajorinterations

Penalty""""'ter

No. of calls 10 fu.nobj

No.ofsuperbasics I

No of basic nonlinears

), 4.6808895430E.oo

4.680889543OE.oo

O.OOOOOOOOOOE.oo

47

1.350&{)8

9.610E-09

IS Objective value

7 Linear objective

.000100 Nonlinear objective

o No.ofcallsto funcon

Norm of reduced gradient

3 NormrgI Nonnpi
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a-~orl r
r

Fwl0i/~

50MW
BlastFimwce--.

I ~Gas(BFG)
a-""",]

........
I
I
2
2

,
Puc{oi) 1.4609
BFG 1.5742
P\doil 0.8008
BFG 0.7266

,
0.15186
0.16310
0.20310
022560

,
O.l'JOl45O
0.001358
0.000916
0.000771

Figure 1, Diagram and parameters for fuel
allocation optimization.m

or units per hour for BFG is a quadratic function of the
power produced, X, in MW, i.e.,

F=ao+ atX + a,X2

where the regression parameters :10,ai' and ~ are listed in
Figure 1 for the two fuels and the two generators. Also, the
ranges of operation for generators one and two are (18, 30)
MW and (14, 25) MW respectively.

The optimal solution will determine the minimum
amount of fuel oil to be purchased and its distribution
between the two generators. If F" is the amount of fuel

'Jtype j (j=1 forfuel oil and j=2 for BFG) used by genera-
tor i (i=1,2), then Xi; is the corresponding power gener-
ated. If Zt is the total amount of fuel oil purchased for the
two generators, Z, is the total usage of BFG for the two
generators, and Pi is the power generated by generator I,
then the problem can be stated as:

Minimize: ZI

2.
~

a" 0 +a" j X,,+a" 2X' SZ~lJ IJ IJ IJ IJ J
i=l

Xi\+Xi2-Pi=0 fori=1,2

PI+P2,,50

OSZ2 SIO

18SP! S30

14SP2 S25

forj=1,2Subjectto:

This problem has eight variables and two equality and six
inequality constraint equations.

The input files for this problem in GAMS, AMPL, and
MINOS are given in Tables AI, A2, and A3. The model
statements are similar in GAMS and AMPL, and AMPL
has separate model and data files. But the files for MINOS
are more complicated, as shown in Table A3a,b, the
MINOS MPS and SPC files. The output files are given in
Table Alb for GAM~, Table A2c for AMPL, and Table
A3d for MINOS, and all three found the same optimal
fuel allocation.
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Problem Number 11
Mjnimize

Rows 20

Columns 30

Elements 50

MPSfiJe 10

G MINOS MPS FUe for Fuel AUocation Optimization
I

NAME FUELOIL

ROWS

LOlL_AMY

L GAS_AMY

E GENTI

EGENf2

G TPOWER

N PUR_OIL

COLUMNS

XII GENTI 1.0

XI2 GENTI 1.0

X21 GENT 2 1.0

X22 GENf2 1.0

ZI PUR_OIL 1.0

Z2

PI GENTI -1.0

P2 GENTZ -1.0

RES

DEMAND TPOWER 50.0

UP BOUNDOI Z2 10.0

UP BOUNDOI PI 30.0

LO BOUNDOI PI 18.0

UP BOUNDOI P2 25.0

LO BOUNDOI P2 14.0

FR 1NIT1AL PI 24.0

FR INffiAL P2 19.5

ENDATA

TPOWER 1.0
TPOWER 1.0

@ MINOS SPC (Speclfications) FUe for Fuel Allocation

Optimizution

BEGIN FUEL OIL (NLP problem),

"To Minimize the Consumption of Fuel Oil for Fuel Oil Allocation,

Printlevel I 'OK for smallproblems

Printfreqnency I

Snmmary frequency I

Nonlinearconstraints 2
Nonlinear JacobianVar 6

Nonlinear Objective Var 0

TABLE A3

ScaleOption 2

ENDFUELOILPROBLEM

1 G Funcon Subroutines for Fuel Allocation Optimization
I

PROGRAM MINOS

lMPUCIT OOUBLEPRECISION(A-H, O-Z)
PARAMETER (NWCORE=30000)

DOUBLEPRECISION Z(30000)

CALL MINOSI(Z,NWCORE)

END
***..**.............
SUBROUTINE ICON (MODE,M, N, NJAC, X,F,G,NSTATE, NPROB, Z, NWCORE)

lMPUCIT DOUBLEPRECISION(A-H, O-Z)

OOUBLE PRECISION X(N), F(M),G(M,N),Z(NWCORE)

COMMON IMIFlLEI!READ, !PRINT,ISUMM

COMMON 1M8DIFFIDIFINT(2),GDUMMY,LDERIV,L VLDIF,KNOWNG(2)

F(I)=I.4609 + (O.l5186'X(I» + (0.OOI450'(X(I)"2))

+ + 0.8008+ (0.203IO'X(3» + (0.000916'(X(3)"2)) - X(5)
F(2) = 1.5742 + (O.l63IO'X(2)) + (0.001358'(X(2)"2))

+ + 0.7266+ (0.2256O'X(4» + (0.000778'(X(4)"2» -X(6)

G(I,I) = 0.15186+ (2.0'(0.001450)'X(I»
G(I,3)

= 0.20310 + (2.0'(0.000916)'X(3))
0(1,5)= -1.0
G(2,2) = 0.16310+ (2.0'(0.001358)'X(2»
G(2,4)= 0.22560+ (2.0'(0.OOO778)'X(4»
G(2,6) =-1.0
RETURN

END

I

@MINOS Solution for Fuel AUocation Optimization
I

EXIT - optimal solution found

FUELOIL

No.of iterations 15

No of major interations 7

Penaltypll!3lIleter .00100

No.of callsto funobj 0

No.ofsuperbasics 1
No.ofbasicnonlinears 4

No. of degenerate steps 0

Norm olx (scaled) lI48E+OO

Objectioovalue 4.6S08896266E+OO
Linearnbjective 4.6808896266E+OO
Nonlinear objective O.OOOOOOOOOOE+OO

No. of calls to funcon 29

Norm of rednced gradient 9.16OE-07

Norm rg I Norm pi 9.176E-08

Percentage .00

Norm of pi (scaled) 9.983E+OO

COLUMN STAJE ACTIVITYOBJGRADlENTLOWERLlMIT UPPERLlMIT REOUCEDGRADNT
XII BS 10.11428 .00000 .00000 NONE .00000

X12 BS 19.88572 .00000 .00000 NONE .00000

X21 SBS 3.56123 .00000 .00000 NONE .00000

X22 BS 16.43877 .00000 .00000 NONE .00000

ZI BS 4.68089 1.00000 .00000 NONE .00000

Z2 UL 10.00000 .00000 .00000 10.00000 -.83456

PI UL 30.00000 .00000 18.00000 30.00000 -.02843

P2 BS 20.00000 .00000 14.00000 25.00000 .00000

o
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