A Prototype System for Economic, Environmental and Sustainable Optimization of a Chemical Complex

T. A. Hertwig**R**, A. Xu*, A. B. Nagy+, R. W. Pike* J. R. Hopper# and C. L. Yaws# **R**Kaiser Aluminum and Chemical Company, Baton Rouge, LA 70821 *Louisiana State University, Baton Rouge, LA 70803 +University of Veszprem, Veszprem, Hungary #Lamar University, Beaumont, TX 77710

> Session 18008 Tools for Sustainabbility Los Angels AIChE Annual Meeting November 12-17, 2000

Introduction

Background and motivation

Describe the prototype of the system

Describe two applications

Conclusions

Background

Pollution prevention was an environmental issue now a critical business opportunity

Long term cost of ownership must be evaluated with short term cash flows

Companies undergoing difficult institutional transformations emphasis on pollution prevention has broadened to include Total (full) cost accounting Life cycle assessment Sustainable development Eco-efficiency (*eco*nomic and *eco*logical)

Broader assessment of current and future manufacturing in the chemical industry

Driving forces ISO 14000, "the polluter pays principle" Anticipated next round of Federal regulations associated with global warming Sustainable development

Sustainable development

Concept that development should meet the needs of the present without sacrificing the ability of the future to meet its needs

Sustainable development costs - external costs

Costs that are not paid directly

Those borne by society

Includes deterioration of the environment by pollution within compliance regulations.

Koyoto Protocol - annual limits on greenhouse gases begining in 2008 - 7% below 1990 levels for U.S.

Status of TCA, LCA and Sustainability Metrics

Some of these tools exist and some are being developed

Standard methodologies and measurements have not developed as rapidly in the past twenty years as has the opportunity to apply them

Source:Kohlbrand, H. K., 1998, "From Waste Treatment to Pollution Prevention and Beyond - Opportunities for the Next 20 Years," Proceedings of Foundations of Computer Aided Process Operations Conference, Snowbird, Utah, July 5-10, 1998.

Total Cost Accounting

Identifies the real costs associated with a product or process

Includes direct, indirect, associated and societal costs

Chemical companies and petroleum refiners have applied total cost accounting

found that the cost of environmental compliance was three to five times higher than the original estimates.

Center for Waste Reduction Technology (CWRT) recently completed a detailed report with an Excel spreadsheet on Total Cost Assessment Methodology Life Cycle Assessment

A "cradle to grave" approach.

AIChE/CWRT TCA methodology

Capability to evaluate the full life cycle

Considers environmental and health implications from raw material extraction to end-of-life of the process or product

Sustainability Metrics

Ratios

Numerators are materials, energy, pollution dispersion and toxics dispersion

Denominators are revinue, mass and value added for a product

Sustainable Metrics Project of the CWTR/AIChE Representatives from twelve major chemical companies Issued two interim reports Held a workshop

AIChE/CRWRT TCA Report includes sustainable costs estimated from a study of power generation

Prototype System for Optimization of a Chemical Complex

Integrated system

Economic, environmental and sustainability costs Best configuration of plants

Use by plant and design engineers Meet environmental and sustainability requirements Evaluations for impacts associated with green house gases, finite resources, etc.

Collaboration with engineering groups Monsanto Enviro Chem Motiva Enterprises IMC Agrico Kaiser Aluminum and Chemicals

Figure I Program Structure for the Chemical Complex Analysis System

Chemical Complex Analysis System

Flowsheet

Processes can be drawn on the using a graphics program Equations, parameters and properties entered through windows for each plant

AIChE/CWRT Total Cost Assessment Methodology criteria for the best economic-environmental design prices, costs, sustainablity metrics

Optimal plant configuration - mixed integer nonlinear programming problem SYNPHONY GAMS/DICOPT

Database

Material and energy balances, rate equations, equilibrium relations and thermodynamic and transport properties shared components of the system

EPA pollution index methodology locates sources of pollutant generation

Figure 2 Schematic of Agricultural Chemicals Complex with Raw Materials, Products, Emissions and Wastes.

Case study by a major agricultural chemical company Expanding production of sulfuric and phosphoric acid capacity Heat recovery options Two locations on different sides of the Mississippi river several miles apart Excess ammoniation capacity available

Objective expand phosphoric acid production capacity by 28%. Additional sulfuric acid and steam required Sulfuric acid can be shipped for miles and steam cannot Phosphoric acid evaporators require steam capacity from sulfuric acid plant Sulfuric acid plant produces more steam than is needed to evaporate phosphoric acid Some flexibility in matching sulfuric acid vs phosphoric acid production capacities within each site Expansion to be made in two stages

Stage one should be a best choice in case stage two is never justified

Each of the two expansion stages will have

! One phosphoric acid expansion, and the second expansion will be at the "other" site

! One sulfuric expansion with an option for over-sizing the first to serve as the second. A second sulfuric acid expansion does not have to be sited away from the first expansion

! An option for adding heat recovery equipment to one old and any new sulfuric plants

! An option for adding one turbo-generator per site per stage.

The question for the prototype to answer was what size phosphoric acid, sulfuric acid, heat recovery, and power-generation expansions should be built at each site for each stage of expansion.

Superstructure 67 different species (600 lb steam, sulfuric acid, logic switches, etc.) 75 processing units

Part of the superstructure for multiple sulfuric acid units for one plant site - One unit required 8-10 species

Figure 3 Part of Superstructure for SYNPHONY Sulfuric Plant Options at One of Two Plant Sites

New turbo-generator 10 species and 7 units to model.

SYNPHONY used for MINLP

Computing time for any one case - less than 15 seconds on a Pentium II PC.

The new Turbo-Generators were specified with dual-feed, single-extraction condensing turbines.

The TG uses 7 "units" represented here as squares.

The TG uses 10 "streams":

stream no.

- 8 High Pressure steam supply to TG
- a MW stitch to stop HP steam losses if no MW are being produced
- 9 Intermediate Pressure steam supply to TG
- 30 IP steam between TG's units
- Low Pressure steam between TG's units
- 7 LP steam exported
- 12 condensate
- 32 MegaWatt subtotals to TG's totalizer
- 52 MW total for this TG
- an IP steam flow controller to keep MW within the generator's capacity

Figure 4 Representation of a Turbo-Generator in SYNPHONY

- Production rate for a higher-emissions, single absorption sulfuric acid plant was curtailed as expected by voluntarily limiting the two-site SO₂ emissions to preexpansion levels. With this old plant curtailment, the new sulfuric plant was built with corresponding extra capacity.
- I The curtailed, single-absorption sulfuric plant was converted to double-absorption for expansion stage two when the conversion cost was significantly less than the cost of a new plant and excess capacity was built in expansion stage one. However, few companies would build excess capacity in stage one without a power incentive or strong anticipation of stage two.
- ! By raising the cost of shipping sulfuric acid between sites, the sites could be forced to be self-sufficient in sulfuric production capacity. This impacted steam- and power-generation capacities at each site.
- I Sufficient changes to the capital or operating costs of new plants at the different sites did change the siting of each new plant – sulfuric or phosphoric acid. (This sensitivity was the basis for specifying that the two phosphoric acid expansions be at different sites. There is a big cost advantage in using up excess capacities available in other parts of each site needed to support phosphoric acid production.) A site difference in incremental labor requirements to operate an incremental sulfuric plant could be made to tip the balance in siting when other factors were relatively balanced.

- Heat-recovery and power-generation equipment was installed or not installed based on installation cost and the value of the power. Installation costs varied because the one anticipated heat-recovery retrofit was cheaper than in a new plant, and an unanticipated retrofit was more expensive than in a new plant. The value of power varied because incremental power displaced purchase at one site and added to sales at the other site. In Louisiana and until recently, power sales were worth "30%" less than displaced power purchase.
- In Conclusion, the prototype selected the best site for required new phosphoric and sulfuric acids production capacities and selected, sited, and sized the optional heat-recovery and power-generation facilities. Its capability was demonstrated by duplicating and expanding an industrial case study

Dow AgricoScience (Blau and Kuenker, 1998)

delivering nutrients to crops will lead to the best economic, environmental and sustainable development solutions for agricultural chemicals rather than focusing on the products themselves.

Agricultural Chemical Complex

Based on the plants in the Baton Rouge - New Orleans Mississippi river corridor Information provided by the cooperating companies and other published sources

Representative of the current operations and practices in the agricultural chemical industry

Figure 6 Agricultural Chemical Complex Based on Plants in the Baton Rouge-New Orleans Mississippi River Corridor, Base Case. Flowrates are TPY

10 plants and associated utilities for power, steam and cooling water

Products solid mixture [18% N - 18% P2O5 - 18% K2O] ammonia liquid mixture [9-9-9] methanol Raw materials Intermediates Emissions air sulfuric acid sulfur dioxide phosphoric acid nitrogen oxides, water ammonia ammonia natural gas sulfur nitric acid methanol phosphate rock silicon tetrafluoride urea carbon dioxide potassium chloride hydrogen fluoride gypsum **Blending Compounds** mono-ammonium phosphate (MAP) [11-52-0] urea [46-0-0] di-ammonium phosphate (DAP)[18-46-0], ammonium nitrate [34-0-0], granular triple super phosphate (GTSP) [0-46-0] UAN [~30-0-0]

Superstructure

Additional plants

Alternate ways to produce intermediates, consume wastes and greenhouse gases and conserve energy Leading to a complex with less environmental impacts and improved sustainability

Phosphoric acid

Electric furnace process which produces calcium oxide HCI which produces calcium chloride rather than gypsum

Potassium chloride Trona process IMCC process Sylvinite ore plant Ammonium sulfate

Acetic acid from methane and carbon dioxide Multi-Plant, Multi-Product Agricultural Chemical Complex Evaluation

Value added or profit margin (difference between sales and the cost of raw materials) for economic model

Environmental Costs 67% of the raw material costs Based on the data provided by Amoco, DuPont and Novartis in the AIChE/CRWRT report

Sustainable Costs

- Cost of \$3.25 per ton was charged as a cost to plants that emitted carbon dioxide
- Based on the data provided by from the study of power generation in the AIChE/CRWRT report
- Credit of \$6.50 per ton to plants that consumed carbon dioxide
- Credit of \$6.50 per ton for steam by the sulfuric acid plant when carbon

dioxide emissions were reduced by not having to produce steam in the boilers.

Four options for obtaining phosphoric acid

Four options for obtaining potassium chloride

Two options for sulfuric acid

Ammonium sulfate plant

Acetic acid plant

Economic, environmental and sustainable costs and credits

Raw Material Costs and Product Prices, Source Green Market Sheet (July 10, 2000), Internet and AIChE/CWTR TCA Report

Raw Materials	<u>Cost (\$/T)</u>	Raw Materials	<u>Cost (\$/7</u>	<u>Γ)</u> <u>Products</u> <u>Price(\$/T)</u>
Natural Gas	40	Market cost		Ammonia 190
Phosphate Rock		for short term		Methanol 96
wet process	27	purchase		Acetic Acid 45
electrofurnace	24	KC1	101	Solid Mixture 160
HCl process	25	H3PO4	176	Liquid Mixture 60
HCl	50	H2SO4	86	HP Steam 10
Sulfur				IP Steam 6.40
Frasch	42			
Claus	38	Credit for CO ₂	6.50	1
Brine	2	Consumption	l	
Searles Lake KCl o	ore 15	Deficit for CO ₂	3.25	
Sylvinite	45	Production		

Figure 7 Superstructure for the Agricultural Chemical Complex

		Base Case	Optimal Structure	
Profit (\$/yr)		1.96E+09	1.82E+09	
	Capacity (TPY)	Capacity (TPY)	Capacity (TPY)	
Plant Name	(upper-lower bounds)			
Ammonia	10,000-74,57100	7.46E+06	7.46E+06	
Nitric Acid	100,000-1,067,000	1.00E+05	1.00E+05	
Ammonium Nitrate	10,000-909,410	1.27E+05	1.27E+05	
Urea	10,000-3,032,000	1.69E+06	1.69E+06	
Methanol	10,000-3,546,200	3.55E+06	3.55E+06	
UAN	10,000-2,061,300	9.06E+04	9.06E+04	
MAP	10,000-189,300	1.89E+05	1.89E+05	
DAP	10,000-737,790	7.38E+05	7.38E+05	
GTSP	10,000-1,186,000	1.19E+06	1.19E+06	
Sulfuric Acid (S4)	0-12238.000	6.61E+05	6.73E+05	
Phosphate Rock(S13ROCK)	0-4,518,456	2.55E+06	2.55E+06	
Phosphate Rock(S12+S13ROCK)	0-4,5754,000	3.06E+06	3.06E+06	
Phosphorous Acid	0-4,012,400	9.19E+05	9.19E+05	
Electric furnace (S109)	0-3,497,000	na	0	
HCI to Phosacid (S85)	0-3,497,000	na	0	
Ammonium Sulfate	0-2,839,000	na	0	
Acetic Acid	0-90,000	na	9.00E+04	
Trona (S93)	0-578,610,000	na	3.97E+07	
IMCC (S89)	0-1,4251,000	na	0	
Sylvinite (S101)	0-5,312,000	na	0	
Direct Buying P2O5 (S153)	0-127,640,000	na	0	
Direct Buying KCI (S156)	0-5,600,000	1.56E+06	0	
Direct Buying H2SO4 (S159)	0-12238000	na	0	
Solid Mixture (S140)	50,000 lower bound	5.29E+06	5.29E+06	
Liquid Mixture (S141)	50,000 lower bound	3.49E+05	3.49E+05	
Table 2 Comparison of Base (Case and Optimal Struc	cture		

Figure 8 Optimal Configuration of the Agricultural Chemical Complex₀

Comparison of the base case and the optimal solution

Profit declined about 10% Including environmental and sustainability costs Carbon dioxide consumption credit and the new acetic acid plant were not sufficient to outweigh the other costs
Sulfuric acid production rate increased
Production rates for the products in the optimal solution at their upper limit which was set at the base case values
Best to obtain KCI from the Trona plant
Acetic acid plant was operating at the upper limit
Profit declines an additional 7.0% if acetic acid plant was not included in the computation of the profit
Ammonium sulfate plant not optimal to operate

Results illustrate the capability of the system to select an optimum configuration of plants in an agricultural chemical complex and incorporate economic, environmental and sustainable costs.

		Optimal Structure				
	Base Case	Case 1	Case 2	Case 3	Case 4	Case 5
Profit(\$/yr)	1.96E+09	1.82E+09	1.71E+09	1.82E+09	1.83E+09	1.44E+09
Plant name	Capacity (TPY)	Capacity (TPY)	Capacity (TPY)	Capacity (TPY)	Capacity (TPY)	Capacity (TPY)
Profit	1.96E+09	1.82E+09	1.71E+09	1.82E+09	1.83E+09	1.44E+09
Ammonia	7.46E+06	7.46E+06	7.46E+06	7.46E+06	7.46E+06	7.46E+06
Nitric Acid	1.00E+05	1.00E+05	1.00E+05	1.00E+05	1.00E+05	1.00E+05
Ammonium Nitrate	1.27E+05	1.27E+05	1.27E+05	1.27E+05	1.27E+05	1.27E+05
Urea	1.69E+06	1.69E+06	1.69E+06	1.69E+06	1.69E+06	5.14E+04
Methanol	3.55E+06	3.55E+06	3.55E+06	3.55E+06	3.55E+06	3.55E+06
UAN	9.06E+04	9.06E+04	9.06E+04	9.06E+04	9.06E+04	9.06E+04
MAP	1.89E+05	1.89E+05	1.89E+05	1.89E+05	1.89E+05	1.00E+04
DAP	7.38E+05	7.38E+05	7.38E+05	7.38E+05	7.38E+05	1.21E+05
GTSP	1.19E+06	1.19E+06	1.19E+06	1.19E+06	1.19E+06	6.38E+04
Sulfuric Acid (S4)	6.61E+05	6.73E+05	6.61E+05	6.61E+05	1.21E+04	1.11E+03
Phosphate Rock(S13ROCK)	2.55E+06	2.55E+06	2.55E+06	2.55E+06	0	0
Phosphate Rock(S12+S13ROCK)	3.06E+06	3.06E+06	3.06E+06	3.06E+06	5.17E+05	2.78E+04
Phosphorous Acid	9.19E+05	9.19E+05	9.19E+05	9.19E+05	0	0
Electric furnace (S109)	na	0	0	0	0	0
HCI to Phosacid (S85)	na	0	0	0	1.94E+06	1.93E+05
Ammonium Sulfate	na	0	0	0	0	0
Acetic Acid	na	9.00E+04	9.00E+04	9.00E+04	9.00E+04	9.00E+04
Trona (S93)	na	3.97E+07	0	0	3.97E+07	3.65E+06
IMCC (S89)	na	0	9.78E+06	0	0	0
Sylvinite (S101)	na	0	0	3.65E+06	0	0
Direct Buying P2O5 (S153)	na	0	0	0	0	0
Direct Buying KCI (S156)	1.56E+06	0	0	0	0	0
Direct Buying H2SO4 (S159)	na	0	0	0	0	0
Solid Mixture (S140)	5.29E+06	5.29E+06	5.29E+06	5.29E+06	5.29E+06	3.50E+05
Liquid Mixture (S141)	3.49E+05	3.49E+05	3.49E+05	3.49E+05	3.49E+05	3.02E+05
Table 3 Evaluation of Sensitivity	Complex					

Brief sensitivity study

- Test the capability of the system
- Four cases changing the cost of raw materials and sales price of products

Case 1 Is the optimal structure

Case 2, Cost of brine to Trona plant was increased by 90%

Trona plant was replaced with IMCC plant in the optimal solution

Trona plant consumes sulfuric acid, and the IMCC plant does not

Profit was about 6% less

Case 3, Cost of sylvinite was decreased by 52%

Trona plant was replaced with Sylvinite plant

Profit was essentially the same

Case 4, Cost of phosphate rock was decreased by 50% for the HCl plant and the cost of HCl was decreased 80%

Unrealistic reductions, the HCI plant replaced the wet-process plant

Sulfuric acid production rate was 98% less.

Profit was essentially

Case 5 Cost of phosphate rock (<68BPL) was increased by an unrealistic 360%

Decrease in all related products

Profit declined 21%

In summary, this brief sensitivity study gave results that were intuitively to be expected and demonstrated additional capabilities of the system.

Conclusions

Prototype of a chemical complex analysis system has been developed

Capability demonstrated

Duplicating and expanding an industrial case study System selected the best site for required new phosphoric and sulfuric acids production capacities and selected, sited, and sized the optional heat-recovery and power-generation facilities

Application to an agricultural chemical complex Optimal configuration of plants determined based on economic, environmental and sustainable costs

Results illustrated the capability of the system to select an optimum configuration of plants in an agricultural chemical complex and incorporate economic, environmental and sustainable costs

System and users manual will be available from the Gulf Coast Hazardous Substance Research Centers web site www.gchsrc.lamar.edu