Integration of Industrial Scale Processes using Biomass Feedstock in the Petrochemical Complex of the Lower Mississippi River Corridor



#### Debalina Sengupta<sup>1</sup>, Ralph W. Pike<sup>1</sup>, Tom Hertwig<sup>2</sup> and Helen H. Lou<sup>3</sup>

Session #20 - 23A01 Design for Sustainability Paper # 20c American Institute of Chemical Engineers Annual Meeting, Nashville (Nov 8-13, 2009)

- 1. Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
- 2. Mosaic Corporation, 7250 Highway 44, Uncle Sam, LA 70792
- 3. Department of Chemical Engineering, Lamar University, Beaumont, TX 77710

## Introduction

- Introduction to Sustainable Development
- Research Vision
- Biomass conversion processes, Aspen HYSYS 2006<sup>®</sup> designs, Aspen ICARUS Process Evaluator 2006<sup>®</sup> cost estimations
- Integration of biotechnology in existing plant complex
- Conclusions

# Sustainability

Sustainability refers to integrating development in three aspects

- Economic
- Environmental
- Societal

There are numerous approaches to attempt an integration of these aspects by world organizations, countries and industries.



### AIChE Total Cost Assessment Methodology

• A methodology was developed by an industry group working through the AIChE to assess the total cost in a project and they issued a detailed report on total cost assessment (Constable et al., TCA Report 1999).

| Project Team                     |                                                                                                          |
|----------------------------------|----------------------------------------------------------------------------------------------------------|
| AD Little (Collab. & Researcher) | Bristol-Myers Squibb                                                                                     |
| DOE                              | Dow                                                                                                      |
| Eastman Chemical                 | Eastman Kodak                                                                                            |
| Georgia Pacific                  | IPPC of Business Round Table                                                                             |
| Merck                            | Monsanto                                                                                                 |
| Owens Corning                    | Rohm and Haas                                                                                            |
| SmithKline Beecham (Lead)        | Sylvatica (TCAce Dev.)                                                                                   |
|                                  | AD Little (Collab. & Researcher)<br>DOE<br>Eastman Chemical<br>Georgia Pacific<br>Merck<br>Owens Corning |

• TCA Users Group created in May 2009. Work is ongoing to update the costs identified in the report.

| • | Type I:   | Direct                      |
|---|-----------|-----------------------------|
| ٠ | Type II:  | Indirect                    |
| ٠ | Type III: | <b>Contingent Liability</b> |
| • | Type IV:  | Intangibles                 |
| • | Туре V:   | External                    |

Constable, D. et al., "Total Cost Assessment Methodology; Internal Managerial Decision Making Tool", AIChE, ISBN 0-8169-0807-9, July ,1999.

## Corporate Sustainability

• A company's success depends on maximizing the profit as expressed below.

```
Profit = \Sigma Product Sales – \Sigma Raw Material Costs – \Sigma Energy Costs
```

- The profit equation above can be expanded to meet the "Triple Bottomline" criteria of sustainability.
- This will incorporate the economic costs expanded to environmental costs and societal costs (also referred to as the sustainable or sustainability costs)

Triple Bottom Line= $\Sigma$ Product Sales+ $\Sigma$ Sustainable Credits- $\Sigma$ Raw Material Costs- $\Sigma$ Energy Costs- $\Sigma$ Environmental Costs- $\Sigma$ Sustainable Costs

Triple Bottom Line =  $\Sigma$  Profit -  $\Sigma$  Environmental Costs +  $\Sigma$  Sustainable (Credits – Costs)

## **Research Vision**

- Propose **biomass based processes** integrated into the chemical production complex in the Gulf Coast Region and other chemical complexes of the world.
- Utilize **carbon dioxide** from processes in the complex to make chemicals and produce algae for biomass feedstock.
- Assign costs to the **Triple Bottomline Equation** components.
- Propose a Mixed Integer Non-Linear Programming problem to maximize the Triple Bottomline based on constraints: multiplant material and energy balances, product demand, raw material availability, and plant capacities
- Use **Chemical Complex Analysis System** to obtain Pareto optimal solutions to the MINLP problem
- Use Monte Carlo simulations to determine **sensitivity** of optimal solution



## **Biomass Processes**

The following biomass conversion processes are considered for integration into the chemical complex superstructure:

- Fermentation
- Anaerobic digestion
- Transesterification
- Gasification

Pretreatment of biomass is necessary before any of the biomass conversion processes.

Aspen HYSYS<sup>®</sup> Process simulation Aspen ICARUS Process Evaluator<sup>®</sup> - Cost Estimation

### Transesterification



- Transesterification process is the treatment of natural oils with an alcohol and a catalyst to produce esters and glycerol.
- Methanol or ethanol is used as alcohol for fatty acid methyl or ethyl esters (FAME/FAEE).
- These esters can be transformed to polymers.
- Glycerol is produced ~ 10% by weight in the process.
- Glycerol can be introduced to the propylene chain.

#### **HYSYS** Design of Transesterification Process



## Design Description of Transesterification



- The design is divided into three sections
  - Transesterification reaction
  - Methyl ester purification
  - Glycerol recovery and purification
- 10 million gallons per year <sup>1</sup> of Fatty Acid Methyl Ester (FAME) produced
- FAME is utilized in manufacture of polymers
- Glycerol is used in manufacture of propylene glycol
- This process can use Algae oil as feedstock
- The energy required for the process was comparable to the energy liberated

| Transesterificatio     | n                                           |
|------------------------|---------------------------------------------|
| Thermodynamic<br>model | UNIQUAC                                     |
| Reactants              | Methanol<br>Soybean Oil                     |
| Catalyst               | 1.78% (w/w) Sodium Methylate<br>in methanol |
| Products               | Methyl Ester<br>Glycerol                    |
| Temperature            | 60°C                                        |
| Methyl Ester Puri      | fication                                    |
| Wash agents            | Water<br>HCl                                |
| Glycerol Recovery      | and Purification                            |
| Purification<br>Agents | NaOH<br>Water<br>HCl                        |

<sup>1</sup> Design based on "A process model to estimate biodiesel production costs", M.J. Haas et al., Bioresource Technology 97 (2006) 671-678

#### ICARUS Process Evaluator Economic Analysis of Transesterification

| Economic Analysis          |            |                                              |
|----------------------------|------------|----------------------------------------------|
| Economic Life              | 10         | years                                        |
| Plant Capacity             | 10,300,000 | gallons/year Methyl Ester                    |
| Total Project Capital Cost | 6,930,000  | USD                                          |
| Total Operating Cost       | 22,600,000 | USD/year                                     |
| Total Raw Materials Cost   | 19,100,000 | USD/year                                     |
| Total Utilities Cost       | 139,000    | USD/year                                     |
| Total Product Sales        | 22,600,000 | USD/year @2.18 USD/gallon<br>of Methyl Ester |

### HYSYS Design of Glycerol to Propylene Glycol



## Design description of Propylene Glycol



- The design is based on a low pressure (200 psi) and temperature (200°C) process for hydrogenation of glycerol to propylene glycol <sup>1</sup>
- ~65,000 metric ton of propylene glycol is produced per year<sup>2</sup>
- The energy required for the process was comparable to the energy liberated

| Hydrogenolysis      |                  |
|---------------------|------------------|
| Thermodynamic model | UNIQUAC          |
| Reactants           | Glycerol         |
|                     | Hydrogen         |
| Catalyst            | Copper Chromite  |
| Products            | Propylene Glycol |
|                     | Water            |
| Temperature         | 200°C            |
| Pressure            | 200 psi          |

<sup>2</sup> Capacity based on Ashland/Cargill joint venture of process converting glycerol to propylene glycol

<sup>&</sup>lt;sup>1</sup> Design based on experimental results from Dasari, M. A. et al. 2005, Applied Catalysis, A: General, Vol. 281, p. 225-231.

#### ICARUS Process Evaluator Economic Analysis of Propylene Glycol

| Economic Analysis          |             |                                              |
|----------------------------|-------------|----------------------------------------------|
| Economic Life              | 10          | Years                                        |
| Plant Capacity             | 164,000,000 | lb/Year propylene<br>glycol                  |
| Total Project Capital Cost | 6,580,000   | USD                                          |
| Total Operating Cost       | 83,400,000  | USD/Year                                     |
| Total Raw Materials Cost   | 73,300,000  | USD/Year                                     |
| Total Utilities Cost       | 2,410,000   | USD/Year                                     |
| Total Product Sales        | 133,000,000 | USD/Year@ 0.82<br>USD/lb propylene<br>glycol |

#### Fermentation



- Fermentation is the enzyme-catalyzed transformation of an organic compound.
- Fermentation enzymes react with hexose and pentose to form products.
- Enzyme selection determines product :-
  - Saccharomyces Cervisiae (C6), Escherichia coli (C5 & C6), Zymomonas mobilis (C6)– Ethanol
  - Engineered Eschericia coli, A. succiniciproducens Succinic Acid
  - Engineeried microorganism Butanol
  - Lactic Acid Producing Bacteria (LAB) Lactic Acid

### **HYSYS** Design of Fermentation



## **Design Description of Fermentation**



- The design is based on NREL's<sup>1</sup> lignocellulosic biomass to ethanol process design which converts 2,000 metric tons/day of corn stover
- Waste treatment not considered
- Net energy was liberated from the system

#### Fermentation

| Thermodynamic Model     | UNIQUAC                           |
|-------------------------|-----------------------------------|
| Reactants               | Corn Stover                       |
| Enzyme (hydrolysis)     | Cellulase (Trichoderma<br>reesei) |
| Bacteria (fermentation) | Z. mobilis                        |
| Products                | Ethanol, CO2, Waste               |
| Nitrogen Sources        | CSL, DAP                          |

#### ICARUS Process Evaluator Economic Analysis of Fermentation

| Economic Analysis          |             |                                      |
|----------------------------|-------------|--------------------------------------|
| Economic Life              | 10          | Years                                |
| Plant Capacity             | 53,000,000  | gallons/Year ethanol                 |
| Total Project Capital Cost | 20,000,000  | USD                                  |
| Total Operating Cost       | 81,000,000  | USD/Year                             |
| Total Raw Materials Cost   | 54,000,000  | USD/Year                             |
| Total Utilities Cost       | 17,000,000  | USD/Year                             |
| Total Product Sales        | 106,000,000 | USD/Year@ 1.50<br>USD/gallon ethanol |

#### **HYSYS** Design of Ethanol to Ethylene



## **Description of Ethylene Process**



- Design is based on dehydrogenation of ethanol to ethylene<sup>1</sup>
- The capacity of the plant is based on a 200,000 metric ton/year ethylene production facility proposed by Braskem in Brazil<sup>2</sup>
- Net energy was required by the system



<sup>1</sup> Design based on process described by Wells, G. M., 1999, Handbook of Petrochemicals and Processes, Sec. Ed., Pg 207-208

<sup>2</sup> Capacity based on Braskem proposed ethanol to ethylene plant in Brazil http://www.braskem.com.br/

#### ICARUS Process Evaluator Economic Analysis of Ethylene

#### **Economic Analysis**

| Economic Life              | 10          | Years                             |
|----------------------------|-------------|-----------------------------------|
| Plant Capacity             | 440,400,000 | lb/Year ethylene                  |
| Total Project Capital Cost | 3,000,000   | USD                               |
| Total Operating Cost       | 186,000,000 | USD/Year                          |
| Total Raw Materials Cost   | 169,000,000 | USD/Year                          |
| Total Utilities Cost       | 3,000,000   | USD/Year                          |
| Total Product Sales        | 186,000,000 | USD/Year@ 0.42<br>USD/lb ethylene |

#### **Anaerobic Digestion**



- Anaerobic digestion of biomass is the treatment of biomass with a mixed culture of bacteria in absence of oxygen to produce methane (biogas) and carbon dioxide.
- Four stages: hydrolysis, acidogenesis, acetogenesis and methanogenesis
- MixAlco process Inhibits fourth stage of methane production using iodoform (CHI<sub>3</sub>) or bromoform (CHBr<sub>3</sub>). Reduces cost of process by using mixed culture of bacteria from cattle rumen. Produces mixed alcohols, carboxylic acids and ketones.

#### **HYSYS** Design of Anaerobic Digestion



### **Design Description of Anaerobic Digestion**



- Design is based on anaerobic digestion of corn stover to carboxylic acids <sup>1</sup>
- The capacity of the plant is based on a 2000 metric ton/day processing of biomass<sup>2</sup>
- Ketones can be produced by modifying process
- Energy recovered from the system

#### Anaerobic Digestion



<sup>&</sup>lt;sup>1</sup> Design based on process described by Thanakoses et al., "Fermentation of Corn Stover to Carboxylic Acids", Bio.Tech and Bio. Eng., Vol. 83, No. 2, 2003 <sup>2</sup> Aden A. et al., NREL/TP-510-32438, National Renewable Energy Laboratory, Golden, CO, (June 2002)

## Gasification



- Biomass can be gasified to produce of syngas
- Syngas can be converted to chemicals like methanol, ammonia and hydrogen

## Industries in Louisiana

• Petrochemical complex in the lower Mississippi River Corridor





## Plants in the Base Case



- Ammonia
- Nitric acid
- Ammonium nitrate
- Urea
- UAN
- Methanol
- Granular triple super phosphate
- MAP & DAP
- Contact process for Sulfuric acid
- Wet process for Phosphoric acid
- Acetic acid
- Ethylbenzene
- Styrene



#### New Processes Utilizing Biomass Feedstock



- Fermentation to Ethanol,CO<sub>2</sub>
- Ethanol to Ethylene process
- Transesterification to FAME, Glycerol
- Glycerol to Propylene Glycol process
- Anaerobic Digestion to Acetic Acid, H<sub>2</sub>, CO<sub>2</sub>
- Gasification to Syngas



#### Superstructure with New Processes Utilizing CO2 Integrated into Base Case

- Electric furnace process for phosphoric acid
- HCl process for phosphoric acid
- SO<sub>2</sub> recovery from gypsum
- S & SO<sub>2</sub> recovery from gypsum
- Acetic acid from CO<sub>2</sub> & CH<sub>4</sub>
- Graphite & H<sub>2</sub>
- Syngas from  $\acute{CO}_2$  & CH<sub>4</sub>
- Propane dehydrogenation
- Propylene from propane & CO<sub>2</sub>
- Styrene from ethylbenzene &  $CO_2$
- Methanol from CO<sub>2</sub> & H<sub>2</sub>
- Formic acid
- Methylamines
- Ethanol
- Dimethylether

Past work done by our group where CO2 is utilized to make chemicals and integrated into base case

## Processes in the Optimal Structure

#### Plants in the Base Case

- Ammonia
- Nitric acid
- Ammonium nitrate
- Urea
- UAN
- Methanol
- Granular triple super phosphate
- MAP & DAP
- Contact process for Sulfuric acid
- Wet process for phosphoric acid
- Ethylbenzene
- Styrene

#### Not in the Base Case

• Acetic acid

#### New Plants in the Optimal Structure

- Acetic acid from CO<sub>2</sub> & CH<sub>4</sub>
- Graphite & H<sub>2</sub>
- Syngas from CO<sub>2</sub> & CH<sub>4</sub>
- Formic acid
- Methylamines

#### Plants Not in the Optimal Structure

- Electric furnace process for phosphoric acid
- HCl process for phosphoric acid
- SO<sub>2</sub> recovery from gypsum
- S & SO<sub>2</sub> recovery from gypsum
- Propane dehydrogenation
- Propylene from propane &  $CO_2$
- Styrene from ethylbenzene & CO<sub>2</sub>
- Methanol from CO<sub>2</sub> & H<sub>2</sub>
- Ethanol
- Dimethylether

## Algae - New Feedstock Option that use CO2

#### Algae

- Consumes CO<sub>2</sub> in a continuous process using exhaust from power plant (40% CO<sub>2</sub> and 86 % NO)
- Can be separated into oil and carbohydrates
- Upto 5,000 gallons/acre of yield of alcohol produced compared to 350 gallons/acre corn based ethanol<sup>1</sup>
- Upto 15,000 gallons/acre of algae oil produced compared to 60 gallons/acre for soybean oil<sup>2</sup>
- Water used can be recycled and waste water can be used as compared to oilseed crops' high water demand
- High growth rates, can be harvested daily

Dow Jones Reprints: This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues, clients or customers, use the Order Reprints tool at the bottom of any article or visit www.djreprints.com

See a sample reprint in PDF format. Order a reprint of this article now

#### THE WALL STREET JOURNAL

COVER 19, 2009 COVER STORY Five Technologies That Could Change Everything

3y MICHAEL TOTTY

't's a tall order: Over the next few decades, the world will need to wean itself from dependence on fossil fuels and drastically reduce greenhouse gases. Current technology will take us only so far; major breakthroughs are required.

Nhat might those breakthroughs be? Here's a look at five technologies that, if successful, could radically change the

world energy picture. SPACE-BASED SOLAR POWER They present enormous opportunities. The ability to tap power from space, for instance, could jump-start whole new ndAi NAAMCAUGAUDIN STAR ON BAFTON CELLER AND MULTIPUTED AND COMPANIES AND A COMPANIES AND

## Algae Feedstock

ExxonMobil Announcement - it will invest more than \$600 million in algae-based biofuels in association with Synthetic Genomics Inc. <sup>1</sup>
Dow Announcement – Algenol and Dow Chemical Company announced a pilot scale Algae-based process to convert CO<sub>2</sub> to ethanol<sup>2</sup>



Algenol Biofuels Inc. algae to ethanol test facility in Florida

1 Biodiesel Magazine, July 2009 2 and Photo: Ethanol Producer Magazine September 2009

#### Integrated Chemical Production Complex




### Costs in the Triple Bottom line

#### • Economic Costs

- Icarus Process Evaluator results for capital costs
- Icarus Process Evaluator results for operating costs, including raw material costs and utilities

#### • Environmental costs

- AIChE/TCA report <sup>1</sup> lists environmental costs as approximately 20% of total manufacturing cost and raw material as 30% of manufacturing costs (data provided by Amoco, DuPont and Novartis).
- Environmental cost estimated as 67% of raw material cost.

#### • Sustainable costs

- Sustainable costs were estimated from results given for power generation in AIChE/TCA report<sup>1</sup>.
- Alternate methods to estimate sustainable costs are being evaluated.



<sup>1</sup> Constable, D. et al., "Total Cost Assessment Methodology; Internal Managerial Decision Making Tool", AIChE, ISBN 0-8169-0807-9, July ,1999.

### Raw Material and Product Prices (Base Case)

| <u>Raw Materials</u><br>Natural Gas<br>Phosphate Rock<br>wet process | <u>Cost (</u> | ( <u>\$/mt)</u><br>172<br>24 | <u>Raw Materials</u><br>Market cost for sho<br>purchase<br>Reducing gas<br>Wood gas | <u>Cost (</u><br>rt term | <u>(\$/mt)</u>      | <u>Products</u><br>Ammonia<br>Acetic Acid<br>GTSP | <u>Price (\$/mt)</u><br>150<br>300<br>1034<br>142 |
|----------------------------------------------------------------------|---------------|------------------------------|-------------------------------------------------------------------------------------|--------------------------|---------------------|---------------------------------------------------|---------------------------------------------------|
| HCI process                                                          | 07            | <u> </u>                     | Sustainable Costs a                                                                 | and Cre                  | <u>edits</u>        | MAP                                               | 180                                               |
| GTSP proces<br>electrofurnace<br>Sulfur<br>Frasch<br>Claus           | ss′           | 30                           | Credit for $CO_2$                                                                   | 1394                     | 6.50                | DAP                                               | 165                                               |
|                                                                      | 25            |                              | Consumption<br>Debit for CO <sub>2</sub>                                            |                          |                     | ₄NO₃<br>UAN                                       | 153<br>112                                        |
|                                                                      |               | 42                           | Production 634<br>Credit for HP Steam                                               | anol                     | 10                  | Urea<br>H <sub>3</sub> PO <sub>4</sub>            | 154                                               |
| C electrofurnace                                                     |               | 760                          | Credit for IP Steam                                                                 | 3.25                     | 6.4                 | Ethanol                                           | 670                                               |
| Ethylene<br>Benzene<br>Propane<br>50                                 | 38            | 446<br>257                   | Credit for gypsum 5<br>Consumption<br>Debit for gypsum 2.5<br>NH                    |                          | Ethylbenzene<br>320 | 240                                               |                                                   |
|                                                                      |               | 163                          |                                                                                     | 2.5                      | CO<br>Graphite      | 31<br>882                                         |                                                   |
|                                                                      |               |                              | Debit for NO <sub>x</sub><br>Production                                             |                          | 1025                | H <sub>2</sub>                                    | 796<br>705                                        |
|                                                                      |               |                              | Debit for SO <sub>2</sub>                                                           |                          | 150                 | Toluene<br>Fuel Gas                               | 238<br>596                                        |
|                                                                      |               |                              | Propene                                                                             |                          |                     | Formic Acid                                       | 690<br>1606                                       |
|                                                                      |               |                              |                                                                                     | Styrer                   | ne                  | DME                                               | 1606<br>946                                       |

Production

### Transportation to Gulf Coast



Waterways from the midwestern states can provide excellent transport for biomass feedstock to the Gulf Coast.

Industries in the Lower Mississippi River Corridor can receive the feedstock and convert to chemicals.

#### Natural Gas Pipelines in the United States



### Major CO2 Pipelines in the United States



## Summary

Extend the Chemical Production Complex in the Lower Mississippi River Corridor to include:

Biomass based chemical production complex

CO<sub>2</sub> utilization from the complex

#### Obtained the relations for the above chemical plants:

- Availability of raw materials
- Demand for product
- Plant capacities
- Material and energy balance equations

#### Assigned Triple Bottomline costs:

- Economic costs
- **Environmental costs**
- Sustainable credits and costs

## Summary

- Solve Multicriteria Optimization Problem with constraints
- Use Mixed Integer Non Linear Programming Global Optimization Solvers to obtain Pareto optimal solutions of the problem below.

```
Optimise: w_1P+w_2S

P = \Sigma Product Sales - \Sigma Economic Costs - \Sigma Environmental Costs

S = \Sigma Sustainability (Credits - Costs)

w_1 + w_2 = 1
```

- Use Monte Carlo Analysis to determine sensitivity of the optimal solution.
- Follow the procedure to include plants in the Gulf Coast Region (Texas, Louisiana, Mississippi, Alabama)
- Methodology can be applied to other chemical complexes of the world.



Research White Paper and Presentation available at www.mpri.lsu.edu

#### **TCA Cost Explanations**

| Cost Type                                                   | Description                                              | Examples                                                                                                 |
|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| I. Direct costs                                             | Manufacturing site costs                                 | Capital investment, operating, labor, materials, and waste disposal costs                                |
| II. Indirect costs                                          | Corporate and manufacturing overhead                     | Reporting costs, regulatory costs, and monitoring costs                                                  |
| III. Future and<br>contingent liability<br>costs            | Potential fines, penalties and future liabilities        | Clean-up, personal injury, and property damage lawsuits; industrial accident costs.                      |
| IV. Intangible<br>internal costs<br>(Company-paid)          | Difficult-to-measure but real costs borne by the company | Cost to maintain customer loyalty,<br>worker morale, union relations, and<br>community relations.        |
| V. External costs<br>(Not currently paid<br>by the company) | Costs borne by society                                   | Effect of operations on housing costs,<br>degradation of habitat, effect of<br>pollution on human health |

### **Biomass Components**



# **Algae Species**

- The following species listed are currently being studied for their suitability as a mass-oil producing crop, across various locations worldwide
- <u>Botryococcus braunii</u>
- <u>Chlorella</u>
- <u>Dunaliella tertiolecta</u>
- <u>Gracilaria</u>
- <u>Pleurochrysis carterae</u> (also called CCMP647)<sup>[39]</sup>.
- <u>Sargassum</u>, with 10 times the output volume of *Gracilaria*.<sup>[40]</sup>



Contour plot of production cost plus return on investment as a function of capital and variable costs (based on 1000Gg/year of olefin production)





### Costs in the Triple Bottom line



Capital and operating costs for 150 million gallons per year (MMGPY) of gasoline equivalent plants, 2005 dollars



Biofpr, 1:49-56 (2007)

### **Industry Perspective**

Ethylene and Propylene are basic building blocks for polymers and chemical intermediates

Approximately 1% of global energy market and 3% of global oil and gas market is used as chemical feedstock

½ of the energy and ¾ mass of the chemical feedstock is retained in the end product

#### Ashland / Cargill license technology from Davy Process Technology Ltd. for planned JV Technology to produce propylene glycol (PG) from glycerin

#### 7/9/2007

COVINGTON, Ky., MINNEAPOLIS – Ashland Inc. (NYSE:ASH) and Cargill today announced they have entered into a technology licensing agreement with Davy Process Technology Ltd., a Johnson Matthey Company, on behalf of the joint venture the companies intend to form. The basis of the agreement is a highly efficient vapor-phase hydrogenation technology for use in converting glycerin to propylene glycol (PG).



1 CEP, March 2008, Pg S7-S14 2 http://www.braskem.com.br/site/portal\_braskem/en/ sala\_de\_imprensa/sala\_de\_imprensa\_detalhes\_6970.aspx 3 http://www.ashland.com/press\_room/news\_detail.asp?s=1543