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Abstract
The commonly observed negative correlation between the number of species in an
ecological community and disease risk, typically referred to as “the dilution effect”,
has received a substantial amount of attention over the past decade. Attempts to test
this relationship experimentally have revealed that, in addition to the mean disease
risk decreasing with species number, so too does the variance of disease risk. This is
referred to as the “variance reduction effect”, and has received relatively little attention
in the disease-diversity literature. Here, we set out to clarify and quantify some of these
relationships in an idealizedmodel of a randomly assembledmulti-species community
undergoing an epidemic. We specifically investigate the variance of the community
disease reproductive ratio, a multi-species extension of the basic reproductive ratio
R0, for a family of random-parameter community SIR models, and show how the
variance of community R0 varies depending on whether transmission is density or
frequency-dependent. We finally outline areas of further research on how changes in
variance affect transmission dynamics in other systems.
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1 Introduction

Amajor focus of research efforts in the field of disease ecology is the effect of biodiver-
sity on epidemic behavior or pathogen prevalence (“disease-diversity” relationships).
The most commonly discussed such relationship is the “dilution effect”, which is an
observed negative correlation between the number of different host species (species
richness) and the incidence or risk of a specific disease (Ostfeld and Keesing 2000;
Civitello et al. 2015). The idea that greater biodiversity inhibits disease risk is attractive,
intuitive, and easily reinforced by occasional catastrophic outbreaks in monocultures
(Curl 1963; Vandermeer 1992). However, evidence exists to suggest that opposite
“amplification effects” can sometimes also occur, where increased species richness
results in an increase in disease risk (Salkeld et al. 2013; Randolph and Dobson 2012).

While dilution and amplification have received the bulk of attention, higher-order
relationships between disease incidence have recently started to become of interest as
well (Buhnerkempe et al. 2015; Johnson et al. 2015). One such property, the focus of
thiswork, is the “variance reduction effect”,which refers to a phenomenon inwhich the
variability of disease risk (asmeasuredby either pathogenprevalence or the community
disease reproductive ratio) decreases as species richness increases. Understanding this
and other higher-order phenomena is important as the focus on mean behavior in
disease ecology may not only miss important diversity relationships, but also result
in biased inference and predictions. Within a single population, susceptibility to the
pathogen or infectivity often varies a great deal amongst individuals (Dwyer et al.
1997; Lloyd-Smith et al. 2005).When considering susceptibility, individual variability
leads to a decidedly non-linear relationship in infection dynamics such that as pathogen
levels increase transmission asymptotes at ever higher pathogen amounts (Elderd et al.
2013). Standardmodels that do not account for variation in susceptibility show a linear
relationship to an increase in pathogen, which does not always hold when confronted
with the empirical data (Dwyer et al. 1997). At the between-population scale, variance
reduction suggests that diverse host communities may be less susceptible to extreme
epidemics, and that their dynamics are more predictable and perhaps controllable. In
addition, understanding when to expect variance reduction, or if other variance effects
are possible or even likely at play, can help to determine the role that diversity plays in
epidemic modeling and inference as well as how variance reduction effects may help
stabilize communities.

While the variance reduction effect has been observed in randomized experiments,
so far the underlying mechanism is not precisely understood (Mitchell et al. 2002;
Rottstock et al. 2014;Mihaljevic et al. 2014). Themost popular explanation argues that
the variance reduction effect is a “selection effect” (Huston 1997); that communities
with increased numbers of species aremore likely to have a high degree of overlap, and
therefore share properties which result in a similar response to disease. This results in
a decrease in the variability of associated disease risk in species rich communities as
compared to species poor communities.

Nevertheless, controlling for the effect of community composition (e.g. average
pathogen susceptibility of the member host species) in experimental communities
does not appear to remove the variance reduction effect, as would be expected if a
selection effect were the driving mechanism (Mitchell et al. 2002). This suggests that
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the selection effect explanation of variance reduction is incomplete and that the reduced
variance in pathogen prevalence among species rich communities is due to some other
factors besides increased similarity among host populations. Furthermore, variance
reduction also appears in silico, in simulations of dynamical models of epidemic
spread with random parameters (Mihaljevic et al. 2014). As these models allow for
explicit control of all variables, it is therefore unlikely that the unexplained variance
reduction is due to a confounding variable, as was proposed in Mitchell et al. (2002).

In this work we set out to explore the mathematical properties of variance reduc-
tion using a community, Susceptible-Infected-Recovered (SIR) model of an epidemic
which infects a community of randomly selected species. For this model we derive
and analyze the “Next Generation Matrix” (NGM) and its spectral norm, which we
term the “community invasion factor”. This definition of community R0 approximates
the average rate of new infections per individual, generalizing the reproductive ratio
from classical epidemic modeling (Diekmann et al. 1990).

Due to the randomization of community host species, our NGM is a randommatrix
and so its spectral norm will also be a random variable. We derive bounds for the
variance of this distribution and thus the community R0, which depend on the species
richness of the host community. In doing so, we show that the presence and strength
of a variance reduction phenomenon hinges on the pathogen transmission mode (den-
sity or frequency-dependent), and that when disease is density dependent a variance
amplification (an increase in variance with species richness) is also possible.

2 Model formulation

2.1 Epidemic model

We consider a random-parameter community epidemic model, with SIR dynamics
describing the course of the disease within and between n host species. Each species
within the community is undergoing an epidemic of the same pathogen, according to
the SIR model. Our choice of model and assumptions follows Dobson (2004), and
reflects a balance of realism and tractability.

Our multi-host SIR epidemic model is:

Ṡi = −pi

n∑

j=1

βi j I j

İi = pi

n∑

j=1

βi j I j − αi Ii

Ḋi = αi Ii

(1)

and it assumes that for host species i , living individuals fall into one of three categories:
susceptible (Si ), infected (Ii ), or recovered (Di ). Additionally we assume that species
abundances Ni are constant for the duration of the epidemic, i.e. we do not account
for population dynamics, effectively assuming that the population dynamics happens
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Table 1 Definitions of parameters used in the model in Eq. 1

Parameter Definition

βi j Per capita rate of pathogen transmission from host species i to host species j

αi Recovery rate of host species i when infected with the pathogen

Ki Population size of species i in the absence of the pathogen

Ni Total population size (Ni = Si + Ii + Di)

ci j Parameter that modifies between-species transmission from an arithmetic
mean of their within-species rates

at a slower rate than the epidemiological dynamics, which is common Anderson and
May (1982); Keeling and Rohani (2011).

For the between-species transmission rates, we use the convention that βi j =
ci j

βi i+β j j
2 where ci j ≥ 0. Note that we let ci j �= c ji , which allows for transmis-

sion to be asymmetric between species. The pi factors reflect whether transmission is
density-dependent (pi = Si ) or frequency-dependent (pi = Si∑

i Ni
). Density depen-

dence refers to transmission dynamics where the rate of infectious contacts increases
in proportion to population size, whereas frequency dependence assumes that it is con-
stant. A canonical example of the former would be the flu, and of the latter would be a
sexually transmitted infection. See Table 1 for the definitions of all model parameters
in the model Eq. 1.

To account for the randomization employed in experiments, we treat the parameters
of the ODEs in (1) as random variables, with the exception of the ci j , which we assume
to be fixed givens. Reserving the ci j as fixed allows us to account for different regimes
of between-species transmission explicitly. In our proof and simulationwewill assume
that all ci j = c, and by varying c we can look at variance reduction in communities
with overall low- and high- between-species infection. Furthermore, allowing for large
numbers of the ci j to be set equal to 0 (as would be the case with a vector-borne
pathogens) may constrain variance reduction more than the bound derived below,
although we do not deal with this possibility here.

Based on this random ODE community SIR model, we will derive bounds for the
variance of disease risk as a function of species richness, under different assumptions
about the transmission mode of the disease.

2.2 Measures of epidemic severity

2.2.1 The next generation matrix

For many classes of multi-host epidemic models the severity of the epidemic can
be captured through the “Next Generation Matrix” (NGM) (Diekmann et al. 1990).
Denoting the NGM matrix as G, its elements Gi j can be interpreted as the expected
number of new infections an individual of type j produces among susceptibles of
type i , over its entire infectious duration. Letting φ

(1)
i denote the number of infected

individuals of type i in the first generation during the initial disease outbreak, then
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the expected number of infected individuals of type i in the second generation is
φ

(2)
i = ∑

j Gi jφ
(1)
j . For the entire community, we have that G pushes the initial

outbreak vector forward to the second generation vector, φ(2) = Gφ(1), where φ(m) =
[φ(m)

1 , . . . , φ
(m)
n ]T .

For our model, the NGM can be derived from the Jacobian J of the İi with
respect to all I j , evaluated at I j = 0, the so-called disease-free equilibrium. Letting
s(J) = max({Re(λ), λ ∈ σ(J)}) where σ(J) is the spectrum of J , the disease-free
equilibrium is unstable whenever s(J) > 0. When the disease-free equilibrium is
unstable then small outbreaks of the disease will spread into full epidemics.

For the system in Eq. (1), direct calculation gives that Ji j = βi j pi − αiδ(i − j),
where δ(i − j) is the Kronecker delta function. This implies that J = T − Σ , where
T is referred to as the “transmission matrix” and represents the rate at which new
infections are being created. Σ is a diagonal matrix whose nonzero elements are αi

and is referred to as the “recovery matrix”, and represents that rate at which infected
individuals recover. Given this partition of J we define the NGM as G = TΣ−1;
intuitively this can be thought of as “rate of infection over rate of recovery”.

It can be quickly verified that the elements of G for Eq. (1) areGi j = βi j
αi
. However,

given our assumption that βi j = ci j
2 (βi i + β j j ) it is convenient to reparameterize G

in terms of its diagonal elements Ri = βi i
αi
. The NGM for a community with n host

species then has the form:

Gn =

⎡

⎢⎢⎢⎣

p1R1 . . .
c1n p1
2

(
R1 + αn

α1
Rn

)

...
. . .

...
cn1 pn
2

(
Rn + α1

αn
R1

)
. . . pn Rn

⎤

⎥⎥⎥⎦ (2)

Observe that, at the disease-free equilibrium, pi = Ki when transmission is density-
dependent and pi = Ki∑

i Ki
when transmission is frequency-dependent.

2.2.2 Community R0 and community invasion factor

Having calculated the NGM Gn , the question now is how best to extract information
from it about the severity of the epidemic. The canonical choice would be to take
its spectral radius, ρ(Gn), as was done by Diekmann et al. in their 1990 paper on
the definition of R0 for heterogeneous populations. This choice was motivated by the

observation that, for any matrix norm || · ||, ρ(Gn) = limm→∞ ||Gm
n || 1

m , so in a certain
sense the spectral radius of Gn captures the average, long-term growth factor of the
initial outbreak. Furthermore, it can be shown that sign(s(J)) = sign(ρ(Gn) − 1),
where s(J) denotes the modulus of the largest eigenvalue of J . This means that the
spectral radius of Gn also captures the stability of the disease-free equilibrium. For
brevity we do not include a proof of this fact, but a straightforward one can be found
in the appendix of Diekmann et al. (2009).

In its original derivation, however, the NGM is derived as an infinite-dimensional
forward operator Gn for the dynamical system underlying the epidemic model (Diek-

123



2060 P. Shaffery et al.

mann et al. 1990). Its repeated application, denoted Gm
n , produces the exact trajectory

of the epidemic for discrete time-steps m. However in 2.2.1 our derivation of Gn is
based on a linearized version of the underlying model, and its iterated application
does not produce the true epidemic, only a short-time approximation of it. From that

perspective, the large-m behavior of ||Gm
n || 1

m is less relevant than when m = 1.
Furthermore, the spectral radius ρ(Gn) is a mathematically inconvenient definition

of epidemic severity. The spectral radius lacks a number of properties found in matrix
norms, which make it challenging to derive results about them for general random
matrices. For example: spectral radii do not obey a triangle inequality; it is possible
that ρ(M + N) > ρ(M) + ρ(N) for matrices M and N . As we show, properties like
a triangle inequality will be important in proving our results.

For these reasons we will instead rely on the spectral norm ||Gn||2, to measure
epidemic severity. This can be understood as measuring the maximum second gen-

eration growth factor of the infective population, since ||Gn||2 = maxφ
||Gφ(1)||
||φ(1)|| . We

therefore term this measure the “community invasion factor”, to distinguish it from
the community R0, ρ(Gn).

2.2.3 Comparing spectral norm and spectral radius for epidemic randommatrices

We would like to assess whether our definition of epidemic severity ||Gn|| is “equiv-
alent” to the canonical choice (ρ(Gn)). Equivalency of metrics can have several
meanings, but here we will consider just two. First, we test the extent to which
exchanging ρ(Gn) and ||Gn||2 will preserve the ordering; i.e., whether for two ran-
dom matrices Gn and G′

n with ρ(Gn) ≤ ρ(G′
n) we also have that ||Gn||2 ≤ ||G′

n||2
(termed “monotonicity”). Second, we compare how effectively ρ(Gn) and ||Gn||2
predict total epidemic size for numerically solved trajectories of epidemic model (1)
(termed “predictiveness”). If ρ(Gn) and ||Gn||2 are equivalent in these ways, then
we can meaningfully refer to “high” or “low” community R0, regardless of which
definition we use.

To assessmonotonicity and predictivenesswewill look at the sampling distributions
of ρ(Gn), ||Gn||2, and numerical epidemic size under four cases: assuming either a
small community (n = 5) or a large community (n = 50), and either realistic or
unrealistic distributions for the Ri , Ki , and αi . The realistic parameter distributions
are drawn from natural systems and follow Mihaljevic et al. (2014). In this case about
95% of the Ri fall in the range 0–12 and we see that the spectral radius (community
R0) stays below 1 (Fig. 1). This is because we are using the frequency dependent case
of the NGM,where its elements are scaled by a pi that grows asO( 1n ). Therefore in the
unrealistic case we assigned each parameter a Gamma density with shape and scale
parameters chosen to produce a wide range of community R0 values which covers
community R0 = 1. In all cases we set ci j = .05 (following the value chosen in
Mihaljevic et al. (2014)).

After drawing from these sampling distributions we quantify predictiveness using
simple linear regression:weperform linear regression betweenρ(Gn) and total percent
infected, and between ||Gn||2 and total percent infected (Fig. 1). To quantify mono-
tonicity we use the Kendall Tau rank correlation coefficient (Fig. 2). Kendall Tau
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tests the extent to which two random variables have a monotonic relationship, without
specifying the functional form of that relationship. It is calculated by comparing pairs
(ρ(Gn), ||Gn||2) and (ρ(G′

n), ||G′
n||2). If ρ(Gn) ≥ ρ(G′

n) and ||Gn||2 ≥ ||G′
n||2

the comparison is said to be “cordant”, otherwise they are termed “discordant”. All
pairs of samples are compared (for n samples we make n(n − 1)/2 comparisons)
and the Kendall Tau coefficient is then calculated by τ := nc−nd

nc+nd
, where nc is the

number of cordant comparisons and nd is the number of discordant ones. A value of
τ = ±1 implies a perfectly monotonic relationship (either increasing or decreasing,
respectively).

From Fig. 1 we see that, for the realistic parameter distributions, both metrics pre-
dict epidemic severity fairly well, however the canonical choice ρ(Gn) outperforms
our candidate somewhat, for all cases. We attribute this to the stability interpretation
of ρ(Gn), which provides some information about the long-time behavior of the epi-
demic, whereas ||Gn|| provides information purely regarding the short term growth
rate. Figure 2 indicates that the relationship between ρ(Gn) and ||Gn||2 is fairlymono-
tonic (and increasing), as desired. We note that Kendall Tau does decrease somewhat
as species richness n grows large, we understand this behavior by observing that when
n = 1 the spectral radius and spectral norm are exactly equal and so the Kendall Tau is
1. As n grows, the increasing volume of possible matrices Gn means that it becomes
more probable for spectral norm to decrease while the radius increases, or vice versa.

While these results do not indicate that our proposed metric of epidemic severity
should replace ρ(Gn), they do suggest that it will suffice for our analysis of variance
reduction. Clearly ||Gn||2 is not as predictive of epidemic size as ρ(Gn), however
the correlation is strong enough that variance reduction effects present in ||Gn||2
should still manifest in direct measurement of epidemic spread. Furthermore, given its
relationship with ρ(Gn) it may be possible to reformulate our results for the canonical
metric as well, although we will not do so here.

3 Results and proof

Going forward we will use the notation r(Gn) = ||Gn||2. Recall that our model rep-
resents an approximation of natural community assembly processes wherein a host
community is populated with randomly selected species from a global pool of poten-
tial members (Mitchell et al. 2002). In our model each host species is uniquely defined
by the random triple of positive reals (Ri , αi , Ki ). While we allow for dependence
between the members of a single triple, we assume that any two distinct triples (i.e.
species) are independent.With this randomness, our NGM (2) is thus a randommatrix,
and its spectral norm is a random variable, whose distribution is induced by the dis-
tribution of (Ri , αi , Ki ). We can now define a variance reduction effect as occurring
if VarRi ,αi ,Ki [r(Gn)] is decreasing in n, the number of unique host species.

Our main result is the following:

Theorem 1 Let R = [R1, . . . , Rn]T , α = [α1, . . . , αn]T , and K = [K1, . . . , Kn]T
be random, real valued vectors with independent elements. Assume that for all n, the
support of R, α, and K is such that Ri ≤ Γ , 0 < A1 ≤ αi ≤ A2, and Ki ≤ κ . Let
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Fig. 1 Estimated relationship between total epidemic size and ρ(Gn) (spectral radius) and ||Gn ||2 (spectral
norm). Epidemic size was defined as total number of individuals infected over the course of the epidemic
(
∑

i
∫
Ii (t)dt) as a percentage of community abundance (

∑
i Ni ), and was calculated with M = 100

randomdraws of ρ(Gn), ||Gn ||2, and percent infected. Epidemic sizewas calculated by numerically solving
Eq. (1) using Runge-Kutta (4,5) for 100 time steps of size δt = 1. Subplot headers indicate epidemic metric
(canonical “spectral radius” or proposed “spectral norm”) and underlying parameter distribution (realistic
or unrealistic)

G(R,α, K ) be a matrix-valued function defined in Eq. 2, under frequency-dependent
transmission, i.e. pi = Ki∑

i Ki
. Then Var[||G(R,α, K )||2] ∼ O(n−1/2 + 1).

Before we begin the proof of this result, it is constructive to look at why we might
intuitively expect it to be true. First, in the case of frequency-dependent transmission,
the pi ∼ O(n−1).We can then “pull out” a factor of 1

n from Gn bywriting Gn = 1
nG

′
n .

This implies that Var[r(Gn)] = 1
n2
Var[r(G′

n)]. Second, we observe that for many
classes of random matrices M one has that Var[r(M)] ∼ o(n). Intuitively this can be
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Fig. 2 Estimated Kendall Tau and joint sampling distribution for M = 100 samples of ρ(Gn) and ||Gn ||2.
Subplot headers indicate underlying parameter distribution (realistic or unrealistic)

understood as a concentration of measure result (Tao 2012). An n×n matrix is a high-
dimensional object, even formoderate n, andmatrix norms are continuous in thematrix
elements. As n grows, a large change in the norm (or radius) requires increasingly
large numbers of elements to experience substantial, “coordinated” deviations. Such
deviations are improbable for sufficiently large n, and so the bulk of the probability
mass concentrates near the mean.

If such a result were to hold for G′, then asymptotically wewould seeVar[r(Gn)] ∼
O(n−1). However these results typically hold only for specific classes of random
matrices, such as Hermitian matrices with independent, mean-zero random entries
(Tao 2012) or sums of fixed matrices with random coefficients (Anderson et al. 2010).
The NGM in (2) is not Hermitian, and it has dependence between its entries; ran-
dom matrices with correlated elements can behave idiosyncratically (Schenker and
Schulz-Baldes 2005). Our proof then, amounts to showing that these shortcomings
are not sufficient enough to overwhelm the concentration of measure (i.e. the variance
reduction effect) entirely, although they do reduce its severity.
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3.1 Outline of proof

We begin by properly defining G′
n :

G′
n = 1

K̄

⎡

⎢⎢⎢⎣

K1R1 . . . c1n K1
2

(
R1 + αn

α1
Rn

)

...
. . .

...
cn1Kn

2

(
Rn + α1

αn
R1

)
. . . KnRn

⎤

⎥⎥⎥⎦ . (3)

Where we have defined K̄ = 1
n

∑n
i=1 Ki , which is nearly constant for large n. Observe

that G′
n is effectively the “density-dependent version” of 2 and therefore the effect of

switching from density to frequency dependence is to induce the scaling Gn = 1
nG

′
n ,

and subsequently Var[ρ(Gn)] = 1
n2
Var[ρ(G′

n)]. This 1
n scaling is what produces the

variance reduction effect; we therefore expect that a variance reduction effect will
occur only in the frequency-dependent case. Absent this scaling, i.e. when disease is
density dependent, a variance amplification should occur.

For convenience we will adopt the notation r(R,α, K ) = ||G′
n(R,α, K )||2. Next

we observe that, by the Law of Total Variance:

Var[r(R,α, K )] = Eα,K [VarR[r(R,α, K )|α, K ]]+Varα,K [ER[r(R,α, K )|α, K ]]
(4)

Our proof will show that the first term on the right hand side of Eq. 4 grows no
faster than O(n3/2), while the second term is bounded by O(n2). The desired result
then follows from the 1

n2
scaling due to frequency dependence.

3.2 Bounding E˛,K [VarR[r(R,˛, K)|˛, K]]

Our result follows from the following theorem:

Theorem 2 (Concentration Inequality for Lipschitz Functions) Let X1, . . . , Xn be
independent, real-valued random variables with |Xi | ≤ A, for all 1 ≤ i ≤ n. Let
F : Rn → R be a convex, Lipschitz function with Lipschitz constant L. Then for any
t one has that:

P[(F(X) − E[F(X)])2 ≥ t] ≤ exp
( t

2A2L2

)

This result is a well-known consequence of Talagrand for 1-Lipschitz functions
(Boucheron et al. 2013), that has here been scaled to accommodate L-Lipschitz func-
tions. We observe that, since G(R + R′,α, K ) = G(R,α, K ) + G(R′,α, K ), then
r(R,α, K ) satisfies the norm axioms over R. Since norms are equivalent over finite
dimensions this immediately implies that r(R − R′,α, K ) ≤ Lα,K ||R − R′||2, i.e.
that r(R,α, K ) is Lipschitz in R with respect to ||R||2. Simple integration of the right
hand side of Theorem 2, together with Ri ≤ Γ , gives the following:

VarR[r(R,α, K )|α, K ] ≤ 2Γ 2L2
α,K
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A straightforward calculation shows that L2
α,K is bounded by C ∼ O(n3/2)

(see Appendix 5.1), where C is independent of α and K . We can therefore bound
Eα,K [VarR[r(R,α, K )|α, K ]] by the same term, which concludes the proof.

3.3 BoundingVar [E[r(R,˛, K)|˛, K]]

Here we will use the fact that r(R,α, K ) ≤ ||G′(R,α, K )||F , where ||M||F =√∑
i, j M

2
i j is the Frobenius matrix norm. Therefore Var [E[r(R,α, K )|α, K ]] ≤

E[E[r(R,α, K )|α, K ]2] ≤ E[||G′(R,α, K )||2F ]. The last term on the right hand
side is simply the expectation of a sum of bounded terms, and hence grows no faster
than O(n2). We therefore have that Var [E[r(R,α, K )|α, K ]] ∼ O(n2), as desired.

3.4 Numerical experiments

To test the extent to which the above derived bounds are indeed useful for under-
standing of the actual behavior of Var[||G(R,α, K )||2], we performed some simple
Monte Carlo simulations of random realizations of the spectral norm of our NGM (2)
with realistic distributions of parameter values for the case of frequency-dependent
transmission, following Mihaljevic et al. (2014).

We assumed that the joint distribution of Ki , Ri , and αi was such that Ri and αi

were conditionally independent, given Ki . Ki was then sampled from a log-normal
distribution, in accordance with Preston’s law of abundance distributions (Verberk
2011). Given Ki we then sampled αi and Ri from truncated normal distributions
(with support over [.1, 5] and [0, 10], respectively), conditioned on the values ki =
ln(Ki ). The mode of the αi was proportional to exp(ki − 2), while for the Ri it is
simply proportional to ki . The constant of proportionality between αi and exp(ki −
2) is well established, following relationships between species abundance and life
span. In addition, we allow for correlations between species susceptibility Ri and log-
log-abundance ln(ki ), which we denote aR . Although we did not explicitly encode
“pace-of-life” traits into this model, the parameter aR allows us to implictly consider
their impact on variance reduction as fast-lived species often have high equilibrium
abundances (Dobson 2004)

Using these sampling distributions we estimated separately each term in Eq. (4): the
expectation of the conditional variance (Eα,K [VarR[r(R,α, K )|α, K ]]) and the vari-
ance of the conditional expectation (Var [E[r(R,α, K )|α, K ]]) for both frequency-
and density-dependentNGMs. Furthermore, for each type ofNGMwe considered four
test cases: both a low and medium susceptibility-abundance correlation case (aR = .5
and aR = 2) , as well as a low and high between-species infection case using ci j = .05,
and ci j = 1. These are the values used in Mihaljevic et al. (2014) and the upper limit
for the ci j discussed in Dobson (2004), respectively.

Finally, for the low aR , low ci j case, and for each transmission mode, we consider
two cases where the susceptibility of added host species increases or decreases with
n, to better characterize how variance reduction behaves when community growth is
not entirely random (Fig. 5). In this case we set aR = 0, and instead sampled Ri
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with from a truncated normal distribution (with support on [0, 2]) with mean E[Ri ] ∝
cRn + 1 where cR was set to ±.05 for the positively and negatively correlated cases
(respectively). Figure 6 shows an example of the behavior of the total variance, as well
as the coefficient of variation for the low c, low aR case for both transmission modes.

For the frequency-dependent NGM we see a clear variance reduction effect in
every case (Fig. 3). While the actual estimated values of the terms were substantially
lower than the bounds given in Theorem 1 (which were not plotted for legibility),
we do see that the predicted qualitative behavior holds. Notably, in every case the
mean conditional variance is strictly decreasing for n > 10. Thus, under relatively
low species diversity, one sees a variance amplification effect. Yet, in each case the
variance of the conditional mean (which produced the constant term in Theorem 1) is
smaller than the mean of the conditional variance. At higher diversity levels (n > 10),
the sum of these two terms, the total variance of the community R0, will therefore
decrease rapidly in n: a variance reduction effect, as we can see in Fig. 6. As expected,
we see that an opposite, variance amplification effect occurs for the density-dependent
NGM (Fig. 4).

This occurs because the effect of switching from frequency to density dependence
is to multiply the NGM by a factor of n, which scales the variance by n2. The concen-
tration ofmeasure is overwhelmed by this scaling, so the variance increases with n.We
see a similar effect in Fig. 5 when susceptibility and richness are positively correlated.
Since the positive correlation case assumes that Ri ∼ O(n), the reason for variance
amplification is the same as for Fig. 4. Note, however, that in the density dependent,
negative correlation case we see that the variance amplification tapers for large n. This
is because Ri is bounded below by 0, and so as n grows that Ri become small with
high probability, counteracting the effect of density-dependence on the elements of
the NGM.

Finally, in both Figs. 3 and 4 we see that the qualitative scaling predicted by our
bounds appears to hold for largen, evenwhen the actual numerical value of our bound is
much larger than the observed variance values. Importantly, however, in the frequency
dependent casewe see that themean conditional variance decays slower than our bound
would predict, and that for large c the mis-fit becomes worse. This is predictable from
the viewpoint of random matrix theory, as the off-diagonal terms of the NGM Gn

exhibit correlation with each other. Were all matrix elements independent, variance
reduction of both the community invasion factor and the community R0 would be
guaranteed by the Wigner Semicircular law (Tao and Vu 2014). The parameter c has
the effect of reducing the impact of these correlated parameters, so when c is very
small the matrix is more well-behaved, and the scaling behavior appears at smaller n.

4 Discussion

Our results have shown that, for frequency-dependent diseases, there exists terms
C1 ∼ O(n−1/2) andC2 ∼ O(1) such thatVar[r(R,α, K )] ≤ C1+C2. It is challenging
to make claims about the relative size of C1 and C2 for a general randomized NGM,
and in cases where R is tightly determined by α and K , C2 may dominate the bound,
so variance reduction may not appear. However, in numerical experiments conducted
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Fig. 3 Monte Carlo estimates of the mean conditional variance (blue, solid line) and the variance of the
conditional mean (yellow, dashed line), the first and second terms (respectively) in Eq. (4), under the
assumptions of the frequency-dependent NGM. In addition we plot the scaling behavior of the mean
conditional variance predicted by its bound (green, dotted line). We see that in all cases a variance reduction
effect occurs in the mean conditional variance, as is predicted by Theorem 1. Furthermore, in all cases we
see that the mean conditional variance dominates the variance of the conditional mean, which explains why
variance reduction is so pronounced in the sum of the two terms (color figure online)

with realistic distributions of R, α, and K we observed that for values of n less than 50,
C1 dominates C2, and so variance reduction occurs. On the other hand, when disease
is density-dependent our upper bound increases as O(n3/2) accordingly. In this case
it is possible for either variance reduction or amplification to occur without violating
our bound, although our numerical experiments suggests that variance amplification
occurs for realistic biological parameter values.

These results can be contrasted with the explanation of variance reduction found in
Mitchell et al. (2002), which observed a variance reduction in their experimental data,
and attributed it to decreasing variability in community composition, i.e. a selection
effect. Since the variance in community composition would presumably behave the
same under either frequency or density dependent transmission, our results suggest
that this explanation is incomplete. Rather, disease transmission mode mediates the
relationship between community composition. In the case of frequency dependent
transmission and high total community abundance, the introduction of a highly-
competent host species will have a similar effect to the addition of a less competent
host species, since the pathogen contact rate experienced by either will be fairly low.
On the other hand, under density dependence the behavior of an epidemic will be more
sensitive to community composition, and so a wider range of epidemic outcomes will
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Fig. 4 Monte Carlo estimates of the mean conditional variance (blue, solid line) and the variance of the
conditional mean (yellow, dashed line), the first and second terms (respectively) in Eq. (4), under the
assumptions of the density-dependent NGM, as well as the predicted behavior of the mean conditional
variance (green, dotted line, partially covered by the conditional variance in some plots). In this case
variance reduction is overwhelmed by the O(n) scaling of the NGM due to density-dependence, and a
variance amplification results (color figure online)

be likely. The outcome will in part be determined by the probability of including one
or more highly-competent hosts.

Mathematically this difference manifests in the presence or absence of an O(n−1)

scaling factor in the NGM. The core of our theorem demonstrates that, in the density
dependent case the matrix norm of our NGM concentrates in such a way that variance
goes asO(n3/2). Switching from density to frequency dependence then introduces the
O(n−1), scaling the variance of the norm of the NGM such that it goes as O(n−1/2).
This also suggests that anymodelswhere theNGMhas elementswhich scale asO(n−1)

(and where the elements are suitably independent) will lead to variance reduction. In
Fig. 5 we see that scaling the Ri with n is sufficient to produce variance amplification,
even when transmission is frequency-dependent, and that decreasing the Ri with n
can counteract variance amplification when transmission is density-dependent. Fur-
thermore, Mihaljevic et al. (2014) consider an identical model to ours but in addition
distinguish between “compensatory” population growth, where

∑
i Ki is held con-

stant (and so Ki ∼ O(n−1)), and “additive” growth, where it is not. In numerical
simulations they found that whenever population scaling was compensatory, variance
reduction occurred, even if transmission was density dependent.

There are a number of opportunities to improve or extend our results. A simple
improvement may be possible through a more careful calculation of the bound of
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Fig. 5 Monte Carlo estimates of the mean conditional variance (blue, solid line) and the variance of the
conditional mean (yellow, dashed line), the first and second terms (respectively) in Eq. (4), for the case
where susceptibility exhibits positive or negative correlation with increases in species richness (color figure
online)

L2
α,K (see Appendix). Other improvements are possible by considering a less general

model of between-species infections. In the case of vector borne diseases, for example,
a number of the ci j will go to zero, leaving only a handful of rows and columns
nonzero whichmay allow for tighter control of the eigenvalues through the Gershgorin
Circle Theorem. Alternately this could provide a route to derive a variance reduction
effect for the community R0. By setting enough ci j to zero such that the underlying
host community is broken into non-interacting “subcommunities” that do not grow
with n to guarantee variance reduction in the spectral radius of Gn (Schenker and
Schulz-Baldes 2005). The results of 2.2.3 suggest that variance reduction may be
expected for community R0 in a more general setting purely by correlation with the
community invasion factor (and similarly for metrics of epidemic severity such as
pathogen prevalence) (Fig. 6).

In addition to improving our bounds, they can be extended to cover several model
variants. While the presented model ignores population dyanmics, a more realistic
extension would be to assume density-dependence in birth or death rates, for example,
by including a (bi − δNi )Si term in Eq. (1), where bi and di denoted birth- and death-
rates, respectively. However, as long as the population size is at equilibrium when
the epidemic begins, introducing density dependence into birth rate is not expected to
affect our results, since this would only modifies Ṡ, and the NGM at the core of our
theorem depends only on İ . On the other hand, if we instead used density-dependent
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Fig. 6 Monte Carlo estimates of the total variance (blue, solid line) and the coefficient of variation (yellow,
dashed line) of the community invasion factor, for frequency- and density-dependent transmission in the
low aR , low c case (color figure online)

death rates (instead adding terms (di + δNi )Si , (di + δNi )Ii , and (di + δNi )Di )
this would also change the “denominator” term of the NGM, resulting in correlation
between the αi and the Ki factors. Depending on the severity of this correlation it
may reduce or reverse the variance reduction, although the numerical experiments
conducted in Fig. 3 suggest that variance reduction will occur even with some modest
correlation between these parameters.

It is also possible to consider model variants where our bounds do not hold. For
example, if we reject our assumption that the triples (Ri , αi , Ki ) are independent for
different i . While this assumption holds well for some experimentally designed host
communities, it almost certainly does not hold for most natural ecosystems. Ecolog-
ical relationships between host species such as mutualism or predation can easily
create correlations between the Ki , which may have implications for the relationships
between the αi and Ri as well. While these correlations do not rule out a variance
reduction effect necessarily, our bounds will not hold as proven and it would be dif-
ficult to make predictions about the ultimate behavior of the variance of community
R0.

While our model treats diversity as existing purely between homogeneous species,
within-species heterogeneity due to genetic variation also can have substantial effects
on epidemic dynamics (Elderd 2013; FlemingDavies et al. 2015; Dwyer et al. 1997).
Given that the community R0 is still definable in these cases (indeed its original
definition was explicitly for the case of a single, heterogeneous host species), we
expect that phenomena similar to variance reduction can also occur due to genetic
diversity, and that our results could be adapted to understand this case.
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Using a dynamical system model of epidemic spread we have provided a mathe-
matical framework for understanding the variance reduction effect in epidemics with
multiple host species. Our results suggest that variance reduction is driven more by
pathogen transmissionmode (e.g. density or frequency dependence), than by increased
overlap between communities, i.e. a selection effect. This work also shows the utility
of random matrix theory to disease ecology more generally. Where the behavior of an
epidemic in a diverse ecological community can be modeled by a dynamical system,
we expect that randomized linearizations of that model can be a rich source of insight
into disease-diversity phenomena.
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5 Appendix

5.1 Bounding L2˛,K

To bound L2
α,K we first observe that max||R||2=1r(R, α, K ) = Lα,K . We can therefore

bound L2
α,K by bounding r(R, α, K )2 for R on the unit ball. Since r(R, α, K )2 ≤

||G ′(R, α, K )||2F , where ||M ||F =
√∑

i, j M
2
i j is the Frobenius matrix norm, we can

compute an upper bound in terms of a sumof thematrix elements. Furthermore,wewill
use the fact that ||R||1 ≤ √

n||R||2, and define η = max({1, c2
4 }) ∗ A2

A1
. This definition

of η is simple, and produces very loose bounds. Improvements may be made through
a more careful consideration of this factor.

Now, from (3) and keeping in mind that
∑

i R
2
i = 1, we have:

||G′(R, α, K )||2F =
∑

i

⎛

⎝R2
i +

∑

j

c2i j
4

(Ri + α j

αi
R j )

2

⎞

⎠

≤ η

⎛

⎝
∑

i

⎛

⎝R2
i +

∑

j

(Ri + η1R j )
2

⎞

⎠

⎞

⎠

= η

⎛

⎝
∑

i

R2
i +

∑

i, j �=i

(Ri + R j )
2

⎞

⎠

= η

⎛

⎝
∑

i

R2
i +

∑

i, j �=i

(R2
i + 2Ri R j + R2

j )

⎞

⎠

≤ η

⎛

⎝
∑

i

R2
i +

∑

i, j �=i

(R2
i + 2R j + R2

j )

⎞

⎠
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= η

⎛

⎝
∑

i

R2
i + (n − 1)R2

i + 2(||R||1 − Ri ) + ||R||22 − R2
i )

⎞

⎠

= η
(
||R||22 + (n − 1)||R||22 + 2n||R||1 − 2||R||1 + n||R||22 − ||R||22

)

≤ η
(
1 + (n − 1) + 2n

√
n − 2

√
n + n − 1

)

= η
(
2n

√
n + 2n − 2

√
n − 1

)

Which proves the claim.

Fig. 7 Relationships between epidemic size and ρ(Gn) and ||Gn || with a model that includes infection-
related deaths 5. In all cases c = .05 and aR = .5, and we set σi = .5di and αi = 10di . Epidemic size
was defined as total number of individuals infected over the course of the epidemic (

∑
i
∫
Ii (t)dt) as a

percentage of community abundance (
∑

i Ni )
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5.2 Infection-related deaths

In the simulations plotted in Fig. 1 we had assumed that no births or deaths occurred
over the course of the epidemic. In particular, this excluded the possibility of infection-
related deaths, a feature present inmostmodels ofmulti-host infections.Herewe assess
the effect of this modeling choice on the results of our numerical simulations.

We first modify Eq. (1) to include both aMalthusian birth term (bi (Si + Ii +Di )), a
base death term (e.g. di Si ) as well as an infection related deaths term, (di +αi +σi )Ii :
Our multi-host SIR epidemic model is:

Ṡi = bi (Si + Ii + Di ) − pi

n∑

j=1

βi j I j − di Si

İi = pi

n∑

j=1

βi j I j − (di + αi + σi )Ii

Ḋi = αi Ii − di Di

(5)

We assumed that bi = di , that αi = 10di , and that σi = .5di . The results of
this simulation are show in Fig. 7. We see that the primary effect of introducing σi
is to reduce average infection prevalence when n =, and to reduce the variability
of prevalence in all cases. This has the effect of reducing the relationship between
prevalence and both ρ(Gn) and ||Gn . Again we see that both perform similarly in
predicting infection size, although ||Gn|| still performs slightly worse, particularly
when n = 50.
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