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    INTRODUCTION 

 Dynamic population models are a valuable tool for 
researchers to ask and answer questions of ecological, 
evolutionary, and conservation concern. Their utility 
becomes especially apparent when asking questions of 
an applied nature. For instance, population models have 
been used extensively to examine the growth and spread 
of invasive and endangered species (e.g., McEvoy and 
Coombs  1999 , Franklin et al.  2000 , Parker  2000 ) and 
to design species management plans (e.g., Crouse et al. 
 1987 , Doak  1995 ). Within the realm of population mod-
els, there is a wide variety to choose from. The type of 

model chosen is partially determined by the questions 
asked and the data available. The spectrum of analyses 
range from count- based approaches that directly track 
population change (Dennis et al.  1991 ) to individual- 
based models that predict population dynamics derived 
from the fates of individuals (Grimm  2005 ). Between 
these two extremes lay matrix models, which have been 
broadly adopted since fi rst introduced (Leslie  1945 , 
Lefkovitch  1965 ). 

 Matrix models, like all methods, have their limita-
tions. A well- recognized problem with constructing a 
matrix model is how to best divide individuals into age, 
size, or stage classes (Vandermeer  1978 , Moloney  1986 ). 
Integral projection models (IPMs) present a solution 
to this problem by assuming that individuals within a 
population exist along a continuous spectrum of  one 
or more quantitative traits, most often size (Easter-
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ling et al.  2000 , Rees and Ellner  2009 , Coulson  2012 , 
 Metcalf  et al.  2013 , Merow et al.  2014 a  , Rees et al. 
 2014 ). This avoids the often arbitrary division of  dis-
crete classes associated with matrix models while reduc-
ing the number of  parameters that need to be estimated 
from the data (Easterling et al.  2000 , Ellner and Rees 
 2006 ). Given the advantages of  IPMs, they have been 
rapidly adopted (e.g., Williams and Crone  2006 , Coul-
son et al.  2011 , Miller et al.  2012 , Wallace et al.  2013 ), 
expanded upon (Kuss et al.  2008 , Williams et al.  2012 ), 
and summarized by recent how- to guides (Ellner and 
Rees  2006 , Coulson  2012 , Metcalf  et al.  2013 , Merow 
et al.  2014 a  , Rees et al.  2014 ). 

 Generalized linear models (GLMs), either fi xed- 
effects GLMs or “mixed” models that include fi xed and 
random effects (GLMMs: Bolker et al.  2009 ), form the 
backbone of  most IPMs, providing a framework to 
predict demographic vital rates (e.g., survival, growth, 
reproductive output) based on continuous state vari-
ables such as size. Note that the IPMs discussed here 
differ from “integrated projection models”, another 
demographic technique with the same acronym (Kéry 
and Schaub  2012 ). Integrated projection models com-
bine demographic data with population count data 
(Davis et al.  2014 ). For IPMs, the vital rate GLMs or 
GLMMs have most often been fi t using frequentist or 
maximum likelihood statistical approaches. Recently, 
a few IPM studies have employed Bayesian statistical 
methods to estimate vital rate functions (Rees and Ell-
ner  2009 , Diez et al.  2014 , Merow et al.  2014 b  , Ohm 
and Miller  2014 ). A general overview of  why and how 
one would use a Bayesian approach to integral pro-
jection modeling is currently lacking. A goal of  this 
paper is therefore to provide such an overview, includ-
ing a worked example and corresponding code (see 
Appendix) of  an IPM parameterized using a Bayesian 
approach. 

 Before delving deeper into the motivation for a Bayes-
ian approach, we fi rst need to defi ne it. Bayes’ theorem 
states that:  

  (1)       

where the posterior probability of the model parameters 
θ given the data is proportional to the prior probability 
of the parameters π(θ) times the likelihood of the data 
given the parameters   L (Data | θ)   . Because the posterior 
probability is typically “sampled” numerically rather 
than calculated analytically, its estimation can be com-
putationally complex. However, the development and 
availability of freeware programs (e.g., WinBugs, Open-
Bugs, JAGS, and STAN) and a proliferation of ecologi-
cally oriented books (e.g., Clark  2007 , McCarthy  2007 , 
Kéry  2010 , King et al.  2010 , Link and Barker  2010 , 
Hobbs and Hooten  2015 ) have made Bayesian analysis 
broadly accessible to ecologists. In the context of integral 
projection modeling, the goal of a Bayesian approach 
would be to generate posterior distributions for the vital 

rate parameters θ, which provide the “instructions” for 
population dynamics. Using estimates of the vital rate 
parameters, posterior distributions of other metrics asso-
ciated with the IPMs such as population growth rate and 
its sensitivities can be easily derived, as we demonstrate 
below. 

 Relative to the more common frequentist and max-
imum likelihood approaches, hierarchical Bayesian 
approaches provide greater fl exibility in fi tting vital 
rate models, allowing for more realistic error struc-
tures (for all parameters, not just “response” variables) 
and the ability to accommodate multiple data sets. 
The basic process consists of  specifi cation of  the vital 
rate models, Bayesian analysis of  the vital rate mod-
els, and building the IPM given the vital rate results 
(Fig.  1 ). We suggest and emphasize throughout that a 
Bayesian approach provides several important advan-
tages in the construction and analysis of  IPMs that 
strengthen the biological inferences gleaned from the 
data, although all these advantages may come at the 
cost of  greater time and effort required to custom- 
build these models.  

 Bayesian methods provide a natural fi t for demo-
graphic modeling in general (Hobbs et al.  2015 ) and 
for IPMs in particular for several reasons. First, inten-
tionally or not, demographic data are typically collected 
in a hierarchical fashion, including multiple individu-
als tracked longitudinally across multiple years, span-
ning plot-  and site- level spatial variation. Thus, in 
addition to “observation error”, there is biologically 
meaningful random variance, or “process error”, asso-
ciated with individual identity, time, and space. These 
sources of  variation can be accounted for even if  the 
underlying mechanisms have not been identifi ed (e.g., 
which climatic factors cause year- to- year fl uctuations). 
Although maximum likelihood- based approaches can 
be used to account for some types of  random variance 
in vital rates (e.g., Williams and Crone  2006 , Rees and 
Ellner  2009 ), they tend to break down for hierarchically 
rich models with multiple, nested sources of  variance; 
Bayesian methods, by contrast, are ideally suited for 
hierarchical data (i.e., “hierarchical Bayes”, Gelman 
and Hill  2007 ). 

 A second advantage of  Bayesian analysis is the ease 
of  combining multiple data sets or experiments (Clark 
 2003 , Clark et al.  2005 , Clark and Gelfand  2006 , Hanks 
et al.  2011 , Elderd et al.  2013 , Davis et al.  2014 ). A vast 
majority of  ecological processes are best described 
by linking multiple sets of  data, which is easily done 
under a Bayesian framework (Hille Ris Lambers et al. 
 2005 , Ladeau and Clark  2006 , Cressie et al.  2009 ). 
Demographic models must capture the entire, poten-
tially complex life cycle of  the study organism; this 
will often require that demographers cobble together 
independent observations from different components 
of  the life cycle. We suggest that the ability to analyze 
multiple, independent data sets within a single frame-
work is a key advantage for the construction and anal-

P (θ |Data)∝π (θ)L (Data | θ)
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 FIG. 1 .              Flowchart diagram of  steps taken to fi t the collected data to a Hierarchical Bayesian ( HB ) model and then, using the 
model parameters, to construct an Integral Projection Model ( IPM ). 
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ysis of  IPMs. Traditionally, size- dependent GLM or 
GLMM vital rate functions for growth, survival, and 
reproduction—the building blocks of  an IPM—are 
fi t independently. Integrating the analyses of  multiple 
vital rates within a single statistical framework allows 
for direct estimation of  temporal or spatial correlations 
between vital rates based on their joint distribution 
(Evans et al.  2010 , Evans and Holsinger  2012 ). Failure 
to account for temporal vital rate correlation can result 
in misestimation of  the stochastic population growth 
rate and other well- known quantities derived from 
demographic models (e.g., sensitivities and elasticities; 
Doak et al.  2005 ). While Bayesian approaches to esti-
mating vital rate correlation have been used to param-
eterize a matrix model (Evans et al.  2010 ), there have 
been few attempts to combine Bayesian estimation of 
the joint posterior distribution with an IPM. Further-
more, combining multiple data sets can be a powerful 
way to indirectly estimate demographic transitions that 
are diffi cult to observe (Clark  2003 ), as we demonstrate 
below (see The recruitment model)  . 

 Third, Bayesian methods provide a powerful way to 
quantify and propagate uncertainty. The goal of  most 
demographic analyses is to estimate the asymptotic 
population growth rate (λ in a deterministic environ-
ment or λ S  in a stochastic, temporally varying envi-
ronment), its associated sensitivities or elasticities, 
and other demographic quantities such as reproduc-
tive values, stable state distribution, and generation 
time; all of  these can be viewed as derived quantities 
of  the vital rates. A major challenge in demographic 
studies is to appropriately model the propagation of 
uncertainty from the underlying vital rates (the val-
ues estimated directly from the data) to the quantities 
derived from them; again, Bayesian methods are ideally 
suited for this purpose (e.g., Ghosh et al.  2012 , Gel-
fand et al.  2013 ). Due to equivariance (any function of 
a random variable is also a random variable), quanti-
ties derived from the posterior are also random vari-
ables with associated distributions (Hobbs and Hooten 
 2015 ). By using a Bayesian approach, the calculation 
of  the posterior probability distribution of  the popu-
lation growth rate correctly calculates the underlying 
uncertainty (Ruete et al.  2012 ). Traditionally, estimates 
of  the confi dence interval associated with population 
growth rates ( Caswell  2001 ), which are based on limit 
approximations, tend to underestimate uncertainty. 
Bayesian estimates of  the growth rate also provide a 
direct probability- based measure of  the chance that 
a population will grow or decline. Thus, a Bayesian 
approach allows for the propagation of  uncertainty in 
estimates of  population viability, which is important for 
deciding on policy or management directions (Merow 
et al.  2014 a  ). Further, the process- related uncertainty in 
derived quantities such as stochastic population growth 
rate can be partitioned into ecological sources such as 
random temporal or spatial effects. By knowing the 
sources of  the variation, ecologists can better under-

stand and predict population dynamics and land man-
agers and other applied practitioners can better devise 
management strategies. 

 Fourth, Bayesian methods provide a framework for 
incorporating prior information about vital rates (e.g., 
from preliminary studies, other locations, or other 
related species), which may be particularly valuable 
when data are scarce. Prior information allows for the 
quantitative application of  previous knowledge rather 
than simply qualitatively stating in the discussion section 
whether the current fi ndings are similar to or different 
from previous studies (Hille Ris Lambers et al.  2005 ). 
If  no prior information is available, non- informative or 
vague priors can be seen as a starting point to begin an 
analysis. Indeed even the notion of  a non- informative 
prior is a misnomer as every prior will contain some 
information about a parameter or a transformation of 
a parameter (Hobbs and Hooten  2015 ). If  investigators 
are uncomfortable choosing a prior, the easiest way 
to minimize prior infl uence is to overwhelm the prior 
with data. However, a Bayesian approach consists of  an 
iterative process such that the well- known saying holds 
true that “today ’ s posterior becomes tomorrow ’ s prior.” 
Thus, the use of  informed priors capitalizes on previous 
data to estimate a posterior and is a potentially power-
ful approach to demographic analysis, especially from 
an adaptive management perspective (Walters  1986 , 
Hobbs et al.  2015 ). 

 Finally, from a more philosophical perspective, 
Bayesian approaches assume that each parameter is a 
random variable drawn from a distribution. By con-
trast, frequentist approaches assume that a param-
eter ’ s value is fi xed and the exact estimate becomes 
better resolved as sample size increases (Walters  1986 , 
Hobbs et al.  2015 ). In a demographic context, this is 
the difference between a single value for a vital rate, 
estimated with increasing precision as sample size 
increases, and a distribution of  uncertainty refl ect-
ing the inherent variability of  the vital rate (Ellison 
 2004 , Hobbs and Hilborn  2006 ). The philosophical 
arguments surrounding Bayesian statistics have been 
debated elsewhere (e.g., from an ecological perspec-
tive, Dennis  1996 , Ellison  1996 ). Here we focus on the 
practical advantages in demographic contexts, which 
we suggest are substantial. 

 While each of  these four arguments—modeling pro-
cess error, combining data sets, propagating uncer-
tainty, and incorporating prior information—could 
apply in many ecological settings, their combined effect 
makes Hierarchical Bayesian approaches particularly 
powerful in the construction and analysis of  IPMs. The 
fi rst three of  these four issues will be encountered by 
every ecologist who undertakes a demographic analy-
sis, and the fourth is one that we suggest more demog-
raphers should carefully consider. Having established 
the “what” and “why” of  Bayesian IPMs, we now focus 
on methodological aspects of  how these methods are 
implemented.  
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  METHODS 

  Integral projection models 

 Here we provide a brief  introduction to IPMs and 
direct the reader to several recent overview papers for 
further information (Rees and Ellner  2009 , Coulson 
 2012 , Merow et al.  2014 a  , Rees et al.  2014 ). Since IPMs 
are an example of  an integro- difference equation (IDE), 
additional reading on Bayesian analysis of  IDEs may be 
helpful (e.g., Wikle  2002 , Wikle and Hooten  2010 ). 

 The standard, deterministic IPM takes the following 
form, in which we describe population structure in terms 
of size ( x ,  y ):

  (2)        

 The variable  n ( y ,  t  + 1) represents the number of  y - sized 
individuals at time  t  + 1. The abundance of  y - sized plants 
changes from one time step to the next depending on the 
survival, growth, and reproduction of a population of 
 x - sized individuals over the integral from  U  to  L , which 
are upper and lower limits, respectively, of possible sizes. 
There are two paths from size  x  to  y .  p ( x ,  y ) comprises 
the survival- growth component of the IPM and can be 
decomposed into two functions that determine the prob-
ability of survival of an  x - sized individual,  s ( x ), and the 
likelihood that the individual will grow from size  x  to size  y  
over a single time step,  g ( x ,  y ), such that  p ( x ,  y ) =  s ( x )  g ( x ,  y ). 
The reproductive component,  f ( x ,  y ), represents the pro-
duction of individuals of size  y  from individuals of size  x . 
The specifi c form of  f ( x ,  y ) depends upon the organism ’ s 
life history. For example,  f ( x ,  y ) may include the number 
of offspring produced as a function of size, the probability 
of recruit survival, and the size distribution of surviving 
recruits. The IPM framework is highly fl exible and can 
easily accommodate additional, discrete demographic 
states and temporal and spatial environmental variability, 
as we demonstrate below. Together, the survival–growth 
and reproduction components form the “kernel” of the 
IPM, which is a surface of all possible demographic tran-
sitions over the course of a single time step.  

  Bayesian IPM 

 To demonstrate Bayesian approaches to IPM con-
struction and analysis, we use our demographic studies 
of  the tree cholla cactus,  Opuntia imbricata  [Hawarth] 
D.C. at the Sevilleta National Wildlife Refuge, a Long- 
Term Ecological Research (LTER) site in central New 
Mexico, USA. This long- lived, iteroparous plant is 
native throughout the Chihuahuan desert and arid 
grassland habitats of  Texas, Oklahoma, New Mexico, 
and Colorado, USA. Further information about the nat-
ural history of  the species and study area are provided 
elsewhere (Miller et al.  2009 , Ohm and Miller  2014 ).  

  Cholla long- term demographic data 

 Most of the demographic data (the “long- term” data) 
came from 10 years (2004–2014) of longitudinal obser-
vations of 798 censused plants in three groups of plants 
that were distributed across multiple plots or spatial 
blocks. The fi rst group consisted of 134 naturally occur-
ring plants distributed over four spatial blocks that were 
censused from 2004 to 2008 (these were the high elevation 
control plants described in [Miller et al.  2009 , Ohm and 
Miller  2014 ]). A second group of 517 naturally occurring 
plants distributed over six 30 × 30 m plots was censused 
from 2009 to 2014; an additional 147 plants in two addi-
tional plots were added to this census from 2011 onward. 
These eight plots were searched each year, and new 
recruits were added to the census as they were detected. 
The third group of observations came from seed addition 
experiments described below. In late May/early June of 
each year, we recorded for each plant: survival, three size 
measurements (height [cm], maximum crown width [cm], 
and crown width perpendicular to the maximum [cm]), 
and number of fl ower buds. Size measurements were 
converted to the volume of a cone (cm 3 ), where length 
was plant height and radius was 0.5 × the mean of the 
maximum and perpendicular crown widths. In total, the 
data set included 2732 observed inter- annual transitions 
spanning the tree cholla size distribution.  

  Seed addition experiment 

 To estimate germination, recruitment, and growth/
survival of  new recruits, known quantities of  seeds were 
added to 0.25 × 0.25 m plots in January 2004. These 
plots were revisited in September of  2004 and 2005, after 
germination was triggered by monsoon precipitation, at 
which time recruits were counted and tagged and their 
sizes recorded as above. New recruits were censused 
again in May 2005 and 2006, to estimate survival from 
late summer germination until the regular spring census 
period. Further details of  fi eld methods are provided in 
Miller et al. ( 2009 ). Because seed maturation and disper-
sal happen in fall and winter and because late- summer 
monsoons are a key driver of  germination, a seed initi-
ated in May of  year  t  would be detected as a new recruit 
not in May of   t  + 1 but more likely May of   t  + 2, at the 
earliest. Thus, there is a 1- year time lag in the regener-
ation phase of  the life cycle. In addition, we observed 
new recruits in seed addition plots in September 2005 
and none in control (no seed) plots, indicating potential 
for at least a 2- year seed bank (recruits detected in May 
of   t  + 3). The age- structured seed bank will introduce 
discrete states to the cholla IPM (see below).  

  IPM structure 

 The tree cholla IPM consists of  continuously size- 
structured plants ( N ( x ,  t )) plus two discrete seed states 
to capture recruitment in years  t  + 2 and  t  + 3 from 

n(y,t+1)=

U

∫
L

[p(x,y)+ f(x,y)]n(x,t)dx
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seed production in year  t . Because the long- term demo-
graphic data included random temporal and spatial 
heterogeneity (repeated observations across years and 
plots), our IPM is temporally and spatially stochastic 
(Rees and Ellner  2009 ). Dynamics of  the 1- year- old (yo) 
and 2- yo seed banks ( B  1  and  B  2 , respectively) in plot  p  
and year  t  are given by:

  (3)       

  (4)        

 The functions  P   Fl  ( x ) and  F ( x ) give the probability of fl ow-
ering and number of fl owers produced, respectively, for an 
 x - sized plant. The vectors  θ  ( t ) and  κ  ( p ) contain random 
deviates representing temporal and spatial variability, 
respectively. The integral is multiplied by the number of 
seeds per fruit ( s ) and probability of transitioning from the 
plant to the seedbank (δ) to give the number of seeds that 
enter the 1- yo seed bank. After the late- summer monsoon 
rains, plants recruit out of the 1- yo seed banks with prob-
ability  g  1  or transition to the 2- yo seed bank with proba-
bility (1− g  1 ). Seeds in the 2- yo seed bank are assumed to 
either germinate (probability  g  2 ) or die. 

 Continuous- size dynamics are given by:

  (5)        

 The fi rst term indicates recruitment from the seed banks 
to size  y , where   η (y)∼N(μR,σR)    and µ  R   and σ  R   are the 
mean and standard deviation, respectively, of the size 
distribution of new recruits at the time of the census. 
Mortality between late summer germination and the 
May census is accounted for with survival probabil-
ity ϕ. The second term refl ects growth from size  x  to  y  
( G ( y ,  x ))  , conditioned on the probability of survival at 
size  x  ( S ( x )) and integrated over all sizes. Future size  y  
follows a Gaussian distribution where mean µ  G  ( x ) is the 
expected future size of an  x - sized plant and σ  G   is the stan-
dard deviation of the residual variance about the growth 
function. As above,  θ ( t ) and  κ ( p ) incorporate process 
noise from spatial and temporal variability. These ran-
dom effects only appear in the vital rates estimated from 
long- term data; we were unable to model process noise in 
the parameters derived from short- term studies, such as 
germination and seedling survival.  

  Bayesian parameter estimation 

  The vital rate model.—  The long- term data were used 
to estimate the posterior density of  four potentially 
 co- varying IPM vital rates (growth, survival, probabil-
ity of  fl owering, and the number of  fl owers produced), 
which we modeled as functions of  size. Throughout the 
text, we will refer to the model described below and 
outlined in Fig.  2  as the “vital rate model.” The bio-

logical sources of  variance (process error) in the long- 
term vital rate data include individual heterogeneity, 
plot/spatial block, and year, all of  which could be mod-
eled in a single hierarchical Bayesian (HB) framework. 
We illustrate the approach by modeling random plot- 
to- plot and year- to- year variance, including potential 
for vital rate correlations across years. For instance, a 
good year for growth would also be a good year for any 
vital rate that was positively correlated with growth. 
Numerous examples in the literature show the impor-
tance of  accounting for the correlation between vital 
rates when estimating population growth trajectories 
(e.g., Doak  1995 , Morris and Doak  2002 , Evans et al. 
 2010 ).  

 To account for temporal correlation between vital rates, 
we adopted an approach (“hierarchical centering”) used 
in a matrix model by Evans et al. ( 2010 ) whereby each of 
the individual vital rates is linked by a “model- wide” effect 
of year (Fig.  2 ). Other methods can be used to estimate 
the correlation matrix and the corresponding covariance 
matrix associated with vital rates such as directly esti-
mating the covariance matrix or using the scaled inverse- 
Wishart (Clark  2007 , Gelman and Hill  2007 , Kéry and 
Schaub  2012 ). These methods can become quite compli-
cated as the dimensions of the covariance matrix increase 
and may lead to a mis- estimation of the correlation 
coeffi cients when they occur at the extremes of [−1, +1] 
(Gelman  2006 , Huang and Wand  2013 ). Given the above, 
we decided to incorporate a “model- wide” approach of 
Evans et al. ( 2010 ) into our hierarchical model. To assess 
potential for spatial correlations in the vital rate data 
(e.g., plots that are good for growth are also good for sur-
vival), we examined the correlogram of the residuals of 
the spatio- temporal model described below for eight geo-
referenced plots. We found no spatial pattern and the 95% 
credible intervals (CIs) for each spatial lag overlapped the 
expected value for Moran ’ s I given complete randomiza-
tion (Cressie  1993 , Dantin and Fortin  2014 ). This was 
not surprising given that the plots were relatively close 
together (mean distance = 200 m, SD = 138 m). We there-
fore model spatial variance independently for each vital 
rate. However, for other studies where correlation exists 
between sites, modeling spatial correlation is possible. 

 We estimated the parameters associated with growth, 
survival, probability of fl owering, and the number of 
fl owers produced from a connected suite of hierarchical 
models (Fig.  2 ). Here we illustrate our approach with the 
growth sub- model. The associated details regarding the 
three other vital rates correlated with growth are quite 
similar and are provided in the Appendix. 

 For growth, we modeled the natural log of future size 
(volume)   yG

i,p,yr+1
    of  individual  i , in plot  p , in year  yr  + 1 

given its current log size  x   i , p , yr   as:
  (6)       

       
       

B1 (p,t+1)=sδ
U∫
L

PFl (x,𝛉 (t) ,𝛋(p))F (x,𝛉 (t) ,𝛋(p))

N (x, p ,t) dx,

B2 (p,t+1)=
(
1−g1

)
B1(p,t)

N (y, p, t+1)= (g1B1(p,t)+g2B2(p,t))η(y)ϕ

+
U∫
L

S(x,𝛉(t),𝛋(p))G(y, x, 𝛉(t),𝛋(p))N(x, p, t)dx.

yG
i,p,yr+1 ∼N

(
μG

i,p,yr+1,σG
)

,

μG
i,p,yr+1 =αG

yr
+βGxi,p,yr+γGεyr+ξG

p
,

αG
yr
∼N

(
μG
α

, σG
α

)
,
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 Here,   yG
i,p,yr+1

    has a mean   μG
i,p,yr+1

    and standard deviation 
σ  G  . The mixed- effects linear relationship of future size to 
current size,  x   i , p , yr  , consists of a random intercept,   αG

yr
   , that 

varies by year, a fi xed slope of β  G  , a model- wide effect, ε  yr   
which connects each of the vital rates that co- vary (Fig.  2 ), 
the response of growth to year effects γ  G , and the variabil-
ity between plots or spatial blocks,   ξG

p
   . The random inter-

cept, which accounts for the year- to- year variability asso-
ciated with growth, has a mean   μG

α
    and standard deviation 

  σG
α

   . We also considered models that allowed for temporal 
variability in both the intercept and slope β  G  . However, 
these models failed to  converge (see below for defi nition), 
perhaps due to lack of parameter identifi ability (Kéry 
 2010 ). The model- wide year effect, ε  yr  , has a mean of 0 
and a standard deviation of σ ω . The growth response to 
year effects, γ  G  , can only take on values of −1 and +1 and 
determines whether the model- wide year effect is posi-
tively or negatively correlated with an arbitrarily assigned 
vital rate (Evans et al.  2010 , Evans and Holsinger  2012 ). 
The vital rate chosen has no effect on the correlation or 
covariance structure (Doak et al.  1994 ). For the long- term 
demographic data, we set γ = 1 for the number of fl owers 
produced and allowed γ to vary for the other three vital 
rates based on a  Bernoulli random variable, which for 
growth is Ξ  G  . Spatial variability associated with plot or 
spatial block has a mean of zero and a standard deviation 
of   σG

ξ
   . We used vague prior  distributions (Table  1 ) for each 

of the parameters above.  
 The Bayesian posterior (Eq.  1 ) given the above 

becomes:

         

 Here  n   G   is the number of individuals measured in a plot 
each year, YR is the number of years measured, and P is 
the number of plots. The future size of the plants given 
their current size is represented by the data vector  Y   G  .  

  The recruitment model.—  The vital rate model described 
above does not capture the regeneration process. As 
in many other demographic studies, regeneration and 
recruitment are the least understood transitions of the 
cholla life cycle. In particular, we have little direct infor-
mation on the dispersal of seeds from maternal plants to 
the seed bank (probability δ in Eq.  3 ). Here we highlight 
how Bayesian methods allow us to combine information 
from multiple data sets to draw an indirect inference for 
this latent (unobserved) parameter; we refer to this esti-
mation process as the “recruitment model”. We also use 
the recruitment model to demonstrate the application of 
an informed prior based on preliminary data. 

 The recruitment model combines fi eld and experimen-
tal data to estimate the number of recruits observed in the 
cholla census plots during 2014. Given what we know about 
seed banking in this species, new recruits detected in 2014 
must refl ect a combination of recruitment from the 1- yo 
seed bank (seeds produced in 2012, banked in 2013, detected 
as recruits in 2014) and recruitment from the 2- year- old 
seed bank (seeds produced in 2011, banked in 2012, still 
banked in 2013, detected as recruits in 2014). Our recruit-
ment model takes independent data on the total number 
of seeds produced in 2011 and 2012 (from the demography 
census) and the germination probabilities of seeds in the 
1-  and 2- yo banks (from the seed addition experiment) to 
generate an indirect inference for the probability that seeds 
transition to the seed bank (δ). Thus, even though we do 
not directly measure this probability or observe it, we can 
still estimate this latent variable using inference gained from 
combining multiple data sets. We were limited to using 2014 
recruitment data because it was the fi rst year for which we 
were confi dent in our seedling search process. We therefore 
assume that the seed banking probability does not vary 
through time. Because the seed addition experiment was a 

εyr ∼N(0, σω),

γG =2ΞG−1,

ΞG ∼Bernoulli(πG),

ξG
p
∼N

(
0, σG

ξ

)
.
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short- term study, we additionally assume that germination 
probabilities do not vary through time. 

 The recruitment model takes the form:

  (8)       

       

       
       
       

       

        
 The total number of new recruits   yR

t,p
    in plot  p  at time  t  is 

the sum of two cohorts. The fi rst cohort (  yR1
t,p

   ) is a product 
of two binomial processes (the probability of transitioning 
from the plant to the seed bank,  δ , and germinating,  g  1 ), 
where the number of trials is total seed production in plot 
 p , year  t −2 (seed production is the product of the total 
number of fruits over all plants in the plot,  y   F    t −2, p  , and the 
number of seeds per fruit,  s ). The second cohort (  yR2

t,p
   ) is 

estimated similarly but is conditional on the probability 
of not germinating from the 1- yo bank. For each of the 
random  variables, we used standard distributions given 
the data of the number of seeds germinating in year one, 
  yg1

i    , seeds germinating in year two,   yg2
i    , the number of 

fruits  produced,   yF
t,p

   , and the number of seeds per fruit,   ys
i
   . 

 As pointed out earlier, the use of informed priors rep-
resents a distinct advantage of Bayesian analysis since 
it allows for the combination of previous knowledge 
with newly collected data (Clark  2007 , King et al.  2010 , 
Hobbs and Hooten  2015 ). We used surveys of fruits on 
the ground beneath maternal plants as a starting point for 
estimating the effective seed dispersal parameter, δ. Once 
ripe and dry, cholla fruits fall to the ground beneath mater-
nal plants, where rodents consume the seeds. We collected 
observations of the proportions of total fruits produced 
by 24 plants that were subsequently detected beneath the 
plants and remained intact (Miller et al.  2009 ). These data 
provide a rough approximation of the plant- to- seed bank 
transition rate and were therefore used to generate an 
informative prior. We modeled the fruit census data as:

  (9)       
        

 Whether a fruit  y   i   
δ   c   remains beneath a plant is a Ber-

noulli random variable given the probability δ  c  . We used 
the  corresponding median and 95% CI of   αδc    from 
Eq.  9  (Table  1 ) to construct an informed prior for δ 
(Median = 3.0% with a 95% CI that ranged from 1.76% 
to 4.77%) in the full recruitment model. 

 The resulting posterior distribution given the above 
model is:
           Here  f (α  g   1 ) and  h (α  g   2 ) represent functions of the inter-
cept values associated with germination. Although we do 
not directly estimate δ, we are able to estimate its value 
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(10)    

 FIG. 2 .              Directed Acyclic Graph ( DAG ) for the Bayesian 
hierarchical model for growth between years that  accounts for 
spatial variability between plots and allows for temporal cor-
relation between cholla life history events. Circles represent 
distributions and solid boxes represent data. Dashed boxes 
represent the three other associated vital data, which are not 
fully represented here (see Appendix). Parameters are defi ned 
in Table  1  and the text. 
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indirectly given the informed prior and the other related 
demographic data collected.  

  Other parameters.—  Two additional parameters were 
estimated separately: new recruit size and precensus 
recruit survival. The data were collected as part of  a 
2005–2006 census of  recruits. Full details of  the associ-
ated models are presented in the Appendix.  

  Defi ning priors.—  To start a Bayesian analysis, we need 
to fi rst choose a prior distribution for each parameter 
(Fig.  1 ). Lacking relevant prior information, we chose 
“fl at” or “vague” priors (uniform or normal distributions 
with large variance) for most of the estimated parame-
ters. To gauge the impact of an informative prior on the 

posterior, it is common to conduct a prior sensitivity 
analysis where different sets of priors are used and the 
resulting posteriors are compared (Gelman et al.  2003 , 
Elderd et al.  2013 ). For the vital rate model, we used 
only vague priors and, thus, did not conduct a sensitivity 
analysis. However, the recruitment model contained an 
informed prior (for δ). Thus, we conducted a prior sen-
sitivity analysis to determine the prior ’ s infl uence on the 
posterior estimates of the model.  

  Assessing model convergence and fi t.—  To obtain pos-
terior estimates of  the demographic parameters, we fi t 
models using Markov chain Monte Carlo (MCMC) 
simulations via JAGS, a popular and freely available 
Bayesian software package (Fig.  1 ). For each model, 

 TABLE 1 .    Median and 95% credible intervals (CIs) for the parameters used to construct the integral projection matrix. 

 Parameter  Median (95% CI)  Prior distribution 

 1- year germination intercept,   αg1     −5.12 (−5.348, −4.908)  N(0, 1000) 

 2- year germination intercept,   αg2     −5.46 (−5.742, −5.200)  N(0, 1000) 

 Precensus intercept, α φ    −1.66 (−2.343, −1.065)  N(0, 1000) 

 Plant- to- seedbank intercept, α δ  

 Informed prior  −3.09 (−3.467, −2.729)  N(−3.48, 3.33) 

 Uninformed prior  −3.04 (−3.436,−2.656)  N(0, 1000) 

 Mean seeds per fruit,  s   125 (122.9, 127.9)  U(0, 500) 

 Mean size of new recruit, µ  R    3.251 (−3.674, −2.835)  U(−50, 50) 

 SD of new recruit size, σ  R    0.74 (0.517, 1.192)  U(0, 100) 

 Mean survival intercept,   μS
α
     0.55 (−0.307, 1.578)  N(0, 1000) 

 SD of survival intercept,   σS
α
     0.92 (0.478, 2.148)  U(0, 10) 

 Survival slope, β  S    0.36 (0.310, 0.420)  N(0, 1000) 

 Spatial SD for survival,   σS
ξ
     0.17 (0.006, 0.596)  U(0, 1000) 

 Mean growth intercept,   μG
α

     0.87 (0.585, 1.142)  N(0, 1000) 

 SD of growth intercept,   σG
α

     0.18 (0.009, 0.495)  U(0, 10) 

 Growth slope, β  G    0.91 (0.899, 0.924)  N(0, 1000) 

 Spatial SD for growth,   σG
ξ

     0.06 (0.015, 0.133)  U(0, 1000) 

 SD of growth, σ  G    0.85 (0.825, 0.868)  U(0, 1000) 

 Mean probability of fl owering intercept,   μPFl

α      −20.21 (−22.473, −17.876)  N(0, 1000) 

 SD of probability of fl owering intercept,   σPFl

α      1.67 (0.980, 0.495)  U(0, 10) 

 Probability of fl owering slope,   βPFl     1.81 (1.636, 1.978)  N(0, 1000) 

 Spatial SD for probability of fl owering,   σPFl

ξ
     0.41 (0.209, 0.807)  U(0, 1000) 

 Flowers produced intercept,   μF
α
     −6.02 (−7.006, −5.023)  N(0, 1000) 

 SD of fl ower intercept,   σF
α
     0.27 (0.030, 0.689)  U(0, 10) 

 Flowers produced slope, β  F    0.68 (0.597, 0.757)  N(0, 1000) 

 Spatial SD for fl owers produced,   σF
ξ
     0.25 (0.140, 0.469)  U(0, 1000) 

 SD of fl owers produced, σ  F    0.85 (0.793, 0.903)  U(0, 10) 

 Model- wide year effect, σ ω   0.241 (0.028, 0.559)  U(0, 1) 

   Note:       The last column contains the prior distribution for each of the parameters.   
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we obtained three separate chains, each for 18 000 iter-
ations. The initial conditions for each chain were ran-
domly chosen. The fi rst 5000 iterations were discarded 
as burn- in to eliminate any transients associated with 
the initial conditions. All other iterations were retained 
to estimate the associated posterior distribution. We did 
not thin the chains (i.e., keep every m th  iteration of  the 
chain), which is routinely done in ecology (Link and 
Eaton  2012 ). Link and Eaton ( 2012 ) show that thinning 
is ineffi cient and reduces the precision of  the MCMC- 
based estimates. Others have also argued that all sam-
ples from the MCMC chain contain information about 
the parameter and, thus, all samples should be retained 
(King et al.  2010 ). 

 We assessed MCMC convergence using standard 
metrics to examine both within- chain and between- 
chain convergence. First, we calculated the Brooks- 
Gelman- Rubin statistic or   ̂R   , which compares with-
in-  and between- chain variation (Brooks and Gelman 
 1998 ). Values close to 1 indicate good between- 
chain convergence and values greater than 1.1 sug-
gest convergence problems (Gelman and Hill  2007 ). 
We also used the Heidelberger- Welch diagnostic, 
which assesses convergence of  each chain by testing 
for stationarity (Heidelberger and Welch  1983 ). The 
test is one of  many available in the R coda package 
( Plummer et al.  2006 ). Specifically, the Heidelberger- 
Welch diagnostic tests whether or not the sample chain 
is stationary such that the within- in chain ’ s mean does 
not change over the MCMC sample. After discarding 
the burn- in iterations and assessing convergence, all 
chains were combined and visually inspected before 
proceeding. 

 To assess overall model fi t to the data, we carried out 
posterior predictive checks (Gelman et al.  1996 , Gelman 
and Hill  2007 , Kéry  2010 ). Posterior predictive checks 
use a standard discrepancy statistic, such as the sum of 
squared deviations of observed values from predictions, 
to examine how well the fi tted model can generate data 
that are similar to the actual data. The simulated data 
and the actual data are compared by measuring the lack 
of fi t of both data sets to model predictions (Gelman and 
Hill  2007 , Kéry  2010 ). Large differences in the lack of fi t 
between the two data sets indicate that the model misfi ts 
the actual data and the model may need to be modifi ed 
(Fig.  1 ). Lack of fi t can be examined visually or be used 
to compute a Bayesian  P - value, which quantifi es the fre-
quency with which the discrepancy for the simulated data 
is greater than the discrepancy for the actual data. Values 
near 0.5 indicate that the model does a good job of fi tting 
the data (Kéry  2010 ).  

  Bayesian model selection.—  To determine if  the model that 
included temporal correlations and spatial heterogeneity 
best fi ts the data, we also fi t three additional, simpler 
models that lacked explicit vital rate correlation, plot 
variance, or both (Table  2 ). We used  K - fold cross valida-
tion, where  K  = 10, to evaluate the models (Hooten and 

Hobbs  2015 ).  K - fold cross- validation consists of dividing 
up the data set into  K  smaller sub- sets. One sub- set is left 
out,   Y    k  , and the rest of the data,   Y   − k  , are used to train the 
model. The parameters derived from the model using the 
training data set,   Y   − k  , are used to predict the responses of 
the   Y    k   subset or the test data. Each of the  m  iterations of 
the posterior estimates of the model ’ s parameters,  Θ  ( m )  is 
used to compute the cross- validation score, calculated as:

  (11)         

 We multiplied the standard score by −2 so that the model 
with the lowest score corresponds to the model that best 
fi ts the data as is standard for other traditional model 
selection metrics such as Akaike information criterion, 
AIC, or Deviance information criterion, DIC (follow-
ing the convention of Hooten and Hobbs  2015 ). Cross- 
validation will tend to reject complicated models given 
that these tend to score poorly when predicting beyond 
the data used for fi tting (Cressie et al.  2009 ). We did 
not use the more well- known metrics such as DIC or 
Watanabe- Akaike information criterion, WAIC, since 
these model selection criteria are not suitable for mixture 
models (i.e., models arising from a mixture of distribu-
tions such as multiple normal processes) or models with 
spatial or temporally correlated data, respectively (Gel-
man et al.  2014 , Hooten and Hobbs  2015 ). Additionally, 
DIC tends to select overly complicated models and is 
not recommended for hierarchical models (Hooten and 
Hobbs  2015 ). 

 All of the models were coded in R (R Core Team  2013 ) 
and the MCMC chains were obtained using JAGS and 
the R2JAGS package (Su and Yajima  2014 ). Data and 
code for the vital rate and the recruitment model are 
included in the Supplemental Information.   

  Building the IPM from the vital rates 

 Analyzing an IPM generally requires that the projec-
tion integral be discretized into an approximating matrix 
(Ellner and Rees  2006 ). The dimensions of  the matrix 
and the behavior of  the model near its size boundaries 

kCV=−2
K∑

k=1

log

(∑M

m=1 P(Yk |Y−k, 𝚯(m))

M

)
.

 TABLE 2 .    Model comparison using  K - fold cross validation 
( K  = 10) scores for the hierarchical vital rate models of the 
cholla long- term demographic data (survival, growth, proba-
bility of fl owering, and fecundity). 

 Model  Cross- validation 
score 

 No correlation and no spatial heterogeneity  17 184.4 

 Correlation and no spatial heterogeneity  17 123.6 

 No correlation and spatial heterogeneity  17 180.8 

 Correlation and spatial heterogeneity  17 121.0 

   Note:       Note that the lowest score denotes the model that best 
fi ts the data (Eq.  11 ).   
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are topics that warrant careful consideration and have 
been discussed elsewhere (Williams et al.  2012 ). We 
analyzed the tree cholla model with an approximating 
matrix of  size 200 × 200. We set the lower and upper 
bounds of  the continuous size distribution to 10% less 
than and greater than the observed minimum and max-
imum, respectively. 

 The stochastic population growth rate λ S  and the vital 
rate sensitivities were derived from the posterior of the 
parameter estimates. The stochastic population growth 
λ S  rate is given by the long- run geometric mean of annual 
growth rates (Caswell  2001 , Rees and Ellner  2009 ):

  (12)       

where  N   t   is the total population size and  E  represents the 
expected value. This quantity has an analytical approxi-
mation (Tuljapurkar  1982 ) but many demographic stud-
ies rely on numerical simulation, as we do here. See Rees 
and Ellner ( 2009 ) for further guidance on estimating λ S  
from stochastic IPMs. To calculate the posterior distribu-
tion of λ S , we drew 500 sets of values from the posterior 
distribution of the vital rate coeffi cients (Table  1 , Fig.  1 ). 
For each parameter set, we simulated population dynam-
ics (Eqs  3–5 ) for 5000 yrs and took the geometric mean 
growth rate of the latter 4500 yrs (discarding the fi rst 10% 
as transient dynamics). For a single parameter set, the 
IPM kernel varied from year to year based on random 
draws from the distributions of temporal variance, and 
from plot to plot based on random draws of plot vari-
ance (Eqs  3–5 ). The distribution of λ S  across parameter 
sets therefore refl ects the total uncertainty in the popula-
tion growth rate, including estimation error of the vital 
rate coeffi cients and two types of process error: plot- to- 
plot and year- to- year variance in demography, including 
vital rate correlations across years (year- to- year variance 
is implicit in λ S , the growth rate for populations in tempo-
rally variable environments). As a prior sensitivity anal-
ysis, we compared the posterior probability distributions 
for δ and λ S  using the vague and informed priors for the 
plant- to- seed bank transition probability. We also com-
pared λ S  between the alternative candidate models fi t to 
the vital rate data (Table  2 ) to assess how accounting for 
vital rate correlations and spatial variance affected the 
predictions of the IPM.  

  Perturbation analysis of IPM parameters 

 Prospective perturbation analysis of  IPMs can be 
important for predicting population responses to envi-
ronmental change (Williams et al.  2015 ) and human 
intervention (Wallace et al.  2013 ), or for inferring the 
direction and strength of  natural selection on demo-
graphic rates (Childs et al.  2011 , Coulson  2012 ). There 
are at least three types of  perturbation (sensitivity or 
elasticity) analyses that could be conducted with an 
IPM: perturbation of  the kernel values, the vital rate 
coeffi cients, or the means of  the vital rate functions 

(Rees and Ellner  2009 ). For populations in temporally 
varying environments, such as ours, sensitivities and 
elasticities of  the population growth rate to temporal 
variance in kernel values or vital rate coeffi cients can 
also be calculated (Rees and Ellner  2009 ). As with the 
population growth rate, the joint posterior distribution 
of  the demographic parameters can be used to quantify 
uncertainty in any of  these quantities. We calculated the 
posterior distributions of  the sensitivities of  λ S  to the 
vital rate coeffi cients (∂ λ  S   / ∂ θ  i  ), including the intercepts 
and slopes of  the size- dependent functions (Table  1 ). 
For each parameter, we calculated sensitivities of  λ S  to 
the parameter for each of  500 draws from the joint pos-
terior distribution. Sensitivity calculations were based 
on the analytical approximations of  Rees and Ellner 
( 2009 ). Code for all IPM construction and analysis is 
provided in the Appendix.   

  RESULTS 

  Bayesian model selection, diagnostics, and parameter 
estimates 

 The cross- validation scores for the model that consid-
ered temporally correlated parameter values and spatial 
heterogeneity received the most support from the data 
compared to the alternative models (Table  2 ). However, 
the second- ranked model that contained temporally cor-
related parameters but no spatial variance had a cross- 
validation score close to the best fi t model. All diagnostic 
tests indicated that both models fi t the data well. For the 
spatio- temporal model, the trace plots showed that the 
Markov chains converged to the same area of parameter 
space (Fig.  3 A shows one example for the slope of the 
growth function, β  G  ; see also the Appendix). Addition-
ally, all values of   ̂R    were less than 1.1 (Fig.  3 B) and each 
of the chains passed the stationarity tested posed by the 
Heidelberger- Welch diagnostic, further indicating that all 
of the Markov chains converged. The posterior predictive 
checks and Bayesian  P - values also showed that the best 
fi t and the second best fi t model provided a good fi t to the 
data. Fig.  4  shows an example of a predictive check for 
the growth sub- model (Eq.  6 ) and other metrics indicat-
ing that the growth data met the assumption of normally 
distributed residuals with constant variance.   

 When considering the infl uence of an informed prior, 
we directly examined the effects of the prior on the prob-
ability of a seed transitioning into the seed bank, δ. The 
estimates were not appreciably different if  we used a vague 
prior vs. an informed prior (Fig.  5 , Table  2 ), though there 
was a slight shift of the posterior toward the informed 
prior (lower seed transition probability), which is to be 
expected. Overall, the likelihood dominated the posterior 
for the plant- to- seed bank transition rate.  

 Given the above model diagnostics and model compar-
ison results, the combined chains were used to calculate 
parameter estimates associated with the IPM (Table  1 ) 
and compare the models to the data (Figs.  6  and A2). 

log
(
λS

)
=E

[
log

(
Nt+1

Nt

)]
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Fig.  6  shows the 95% prediction interval (PI) for each 
of the vital rates. The PI forecasts the distribution of 
future observations of a vital rate, accounting for its 
expected value and variance. By contrast, the 95% CI, 
shown in Fig. A2, encompasses the uncertainty associ-
ated only with the mean estimate of the vital rate, and 
is therefore narrower than the PI. As shown in Figs.  6  
and A2, the best fi t model does a good job of fi tting the 
data, although there were a few individual transitions or 
probabilities that occurred outside the prediction interval 
envelope, particularly for growth (Fig.  6 B). These poten-
tial outliers could represent measurement error or the 
extremes of individual variation.   

  IPM results 

 The posterior probability distribution for the stochas-
tic population growth rate (λ S ), accounting for all sources 
of uncertainty in the demographic data, indicated that 
the tree cholla population is predicted to decline (Fig.  7 ). 
The informed prior for the plant- to- seed bank transition 
rate had virtually no infl uence on the stochastic growth 
rate. Mean λ S  was 0.96, suggesting that, on average, the 
population is expected to shrink by 4% per year. The 95% 
CI and almost the entirety of the posterior distribution 
fell below 1.0; thus, the probability that this population 
is stable or growing is virtually zero. The posterior distri-
bution of stochastic growth rates predicted by the best 
fi t vital rate model (Table  2 ) was very similar to the dis-
tribution predicted by simpler but poorer fi tting models 
that did not explicitly account for spatial variance or vital 
rate correlations (Fig.  7 B). Accounting for spatial vari-
ance widened the posterior distribution of λ S , increasing 
uncertainty. Also, accounting for vital rate correlation 
tightened the distribution, reducing uncertainty. These 

effects, however, were very slight. Overall, the results give 
the qualitative impression that the best fi tting vital rate 
model generated predictions that are nearly identical to 
those of poorer fi tting models. The results further sug-
gest that most of the uncertainty in λ S  stems from estima-
tion error and not process variability, since turning “off” 
spatial heterogeneity had virtually no effect.  

 The posterior distributions of the sensitivities of λ S  to 
the vital rates are shown in (Fig.  8 ). Parameters governing 
size- dependent growth and survival, and particularly the 
slope of the relationship between current and future size 
(β  G  ), dominated the sensitivities (Fig.  8 A). All parameters 
related to regeneration, including fl owering, seed produc-
tion, seed survival, and germination, affected population 
growth very weakly (note scales of Figs.  8 A and  8 B). The 
parameter for the plant- to- seed bank transition (δ) was 
among these, explaining why its prior had no infl uence 
on the population growth rate. Among the parameters 
of the recruitment model, λ S  was most responsive to 
the slope of the fl owering function, which controls how 
steeply the probability of fl owering increases with size 
(Fig.  6 C). Vital rate sensitivities were generally negatively 
correlated with their spatial and temporal variances such 
that higher- sensitivity vital rates exhibited lower vari-
ability (Fig.  9 ). For most vital rates, temporal variability 
exceeded spatial variability. Fertility was the exception 
with equal spatial and temporal variability.     

  DISCUSSION 

 Our results suggest that hierarchical Bayesian approaches 
are both a viable and valuable method for parameterizing 
IPM models. Specifi cally, our models, implemented with 
freely available software packages, accurately described 
growth, survival, and fecundity for a long- lived species 

 FIG. 3 .              (A) A trace plot for the slope of  the growth model (β  G  ), a representative parameter (the other parameters showed 
similar patterns). The trace plot shows that all three chains, represented by different shades of  gray, overlap considerably. A subset 
of  the chains is plotted (≈10%) for ease of  graphical presentation. (B) Distribution of  values of  the Brooks- Gelman- Rubin (R̂) sta-
tistic for convergence of  the  MCMC  chains across all parameters. R̂ values less than 1.1 indicate parameter convergence. Given 
the above and other diagnostics (e.g., Heildelberger- Welch), we conclude that the chains have converged and that the samples are 
independent draws from the distribution of  β  G  . 
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with a complex life history, including process variability 
stemming from unmeasured factors that vary across years 
and plots. Once integrated into IPMs, these vital rate mod-
els allowed us to estimate demographic quantities, such 
as λ S  and their sensitivities to the vital rate parameters, of 
great interest for both basic and applied reasons. Through 
their reliance on GLMs or GLMMs, IPMs have a natural 
interface with hierarchical Bayesian methods of statistical 
modeling. Exploring and exploiting this interface, as we 
have done with the cholla case study, reveals several advan-
tages, including the ability to: incorporate data from multi-
ple studies to infer unobservable processes; accommodate 
complex variance and covariance structures; incorporate 
prior information about poorly known demographic tran-
sitions; parse out the uncertainty associated with process 
and measurement error; and propagate all uncertainty in 
the vital rates into a probability distribution for the pop-
ulation growth rate and its sensitivities. Taken in isolation, 
any one of these features may be perceived as an incre-
mental improvement over more traditional frequentist or 
maximum likelihood methods of IPM parameterization. 
We suggest, however, that their cumulative effect yields a 
quantitatively rigorous and satisfyingly probabilistic way 
to study population dynamics. 

 Furthermore, while many of these advantages would 
similarly apply to matrix models, the IPM framework 
facilitates more direct biological interpretation since life 
history functions are collected into vital rate sub- models 
that require far fewer parameters to be estimated from 
data. For example, we modeled spatial and temporal vari-
ance in survival via the intercept of a size- dependent func-

 FIG. 4 .              Posterior predictive check of  the growth estimates 
where (A) the growth residuals and the predicted values do not 
show a pattern indicating a good fit of  the model to the data. 
This is further confirmed by (B) the centering of  the residu-
al histogram and (C) the sum of  squares ( SSQ )  comparison 
 between the actual data given the model fit and new data 
 generated from the model. Gray line in (C) is 1:1. The Bayes-
ian  P - value for the  SSQ  plot equals 0.52. The fit for the other 
variables in the model is comparable. 
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 FIG. 5 .              Plot of  the posterior densities of  the plant- to- 
seedbank transition (δ) estimated using the vague prior (dark 
grey solid line) and the informed prior (black solid line). The 
prior distribution based on survey estimates is also plotted 
(dark grey dash- dot line). 
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tion rather than considering the survival rates of differ-
ent size classes as independent parameters, as in a matrix 
model. Thus, the parameter savings of an IPM combine 
powerfully with HB methods to quantify spatio- temporal 
 heterogeneity,  covariance, and uncertainty in vital rates 
per se. 

 A hierarchical Bayesian approach provides a nat-
ural solution to the problem of  rigorously modeling 
the uncertainty in population level inferences, as the 
tree cholla data demonstrate. Demographic models are 
often constructed from a patchwork of  different data 
sources. For tree cholla, building the IPM required 
that we combine data on the survival, growth, and 
reproduction of  individuals marked for long- term cen-
sus along with shorter- term observations of  the seed 
content of  fruits and germination, size, and survival of 
seedlings in seed addition experiments. We additionally 
used a prior probability informed by preliminary data 
and a latent- state modeling approach to infer a value 
for one component of  the life cycle for which we had 
limited direct information, the maternal plant- to- seed 

bank transition. Each of  these data sources included 
estimation uncertainty and one of  them (the long- term 
census data) additionally included multiple sources of 
process error (spatial and temporal variability) with 
potential for correlated responses across vital rates. In 
our experience, the complexity of  the tree cholla data 
is typical for demographic studies of  natural popula-
tions. Ultimately, our goal as population ecologists is 
to draw inferences about the dynamics of  our study 
populations from observations made at the level of 
individuals, with a population model (in this case, an 
IPM) as the vehicle of  inference. Appropriately mod-
eling the uncertainty in population- level inferences 
that stems from the uncertainty in each of  the model ’ s 
moving parts can be challenging with more common 
frequentist or maximum likelihood approaches and is 
often not even attempted given how cumbersome the 
process can be (Clark  2003 ). Because the Bayesian 
framework is explicitly grounded in probability, confi-
dence in IPM predictions falls out of  the analysis quite 
naturally. 

 FIG. 6 .              Fit of  the model to the data. The solid lines are the best fi t lines and the dashed lines represent the 95% Prediction 
Intervals ( PI s) for (A) survival, (B) growth, (C) probability of fl owering, and (D) fertility. The  PI s show the uncertainty associated 
with forecasting future estimates of the vital rate parameters. These estimates are often much wider than the associated Credible 
Intervals ( CI s), which show the uncertainty associated with estimates of the mean (Appendix S1: Figure S2). In (A) and (C), points 
show binned means. 
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 Differences in the methodologies between Bayesian 
and frequentist approaches also arise when interpreting 
the output. From a frequentist perspective, any quan-
tity derived from the data, including population growth 
rate, represents an estimate of the “true” value of that 
parameter, which is fi xed. The associated confi dence 
intervals, often calculated via bootstrapping, only repre-
sent the uncertainty associated with measurement error, 
although non- Bayesian approaches have been developed 
to estimate both measurement and process errors (De 
Valpine and Hastings  2002 ). From a hierarchical Bayes-
ian perspective, the estimate of population growth rate 
represents a random variable, which has an associated 
distribution. That is, there is no single “true” value and 
the population growth rate could take any value within 
the distribution. For example, some of the variability in 
λ S  (Fig.  7 ) refl ects the fact that some plots are more favor-
able than others for population growth; this is biologi-
cally meaningful spatial heterogeneity that a Bayesian 
approach allows us to quantify. Interestingly, quantifying 
this source of variability suggested that spatial hetero-
geneity was generally less than temporal heterogeneity 
(Fig.  9 ) and contributed little to the total uncertainty in 
λ S  (Fig.  7 B). Instead, most of the uncertainty was due to 
estimation error, or the variance in parameter estimates 
that arises from fi nite sampling. Temporal variability, 

per se, cannot affect the variance of λ S  because, for any 
amount of temporal variability, the stochastic growth 
rate converges on a single value (Eq.  12 ) in the absence 
of other sources of uncertainty (Tuljapurkar  1982 ). The 
dominance of estimation error in the posterior of λ S  sug-
gests that our confi dence in the population growth rate 
will become more fi nely resolved as the study continues 
and more data accumulate. 

 Estimation of process error is particularly important 
in the study of stochastic population dynamics, as the 
tree cholla data illustrate. All natural populations expe-
rience interannual variation in climate and stochastic 
events that vary from year to year such as fi re, fl oods, 
outbreaks of natural enemies, etc. Understanding and 
predicting population trajectories in stochastic environ-
ments requires explicit consideration of the year- to- year 
variance (process error) in demographic vital rates (Cas-
well  2001 , Rees and Ellner  2009 ). The HB perspective 
of vital rate parameters as random variables is therefore 
the necessary perspective of the stochastic demogra-
pher. Stochastic IPMs can be and have been built using 
maximum likelihood- based GLMMs for modeling tem-
poral variation in vital rates (Williams and Crone  2006 , 
Rees and Ellner  2009 ,   Williams et al.  2015 ). This has the 
advantage of familiar, easy- to- use software for mixed 
modeling (e.g., lme4 in R, PROC GLIMMIX in SAS) 

 FIG. 7 .              (A) Posterior distribution of the tree cholla stochastic population growth rate (λ S ) based on an informed (dark gray) and 
vague (light gray) prior probability for the maternal plant- to- seed bank transition probability ( Table  1 ). Solid and dashed vertical 
lines represent the mean and 95%  CI , respectively, of  λ S , which were nearly identical between the informed and vague priors. (B) 
Posterior distribution for λ S  corresponding to each of four  candidate models for demographic vital rates that include or exclude plot 
variability and temporal correlations (Table  2 ). 
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as opposed to the customization that a Bayesian analy-
sis requires. Thus, in some cases, the adequacy and rela-
tive ease of non- Bayesian approaches might make them 
a better option. However, maximum likelihood- based 
methods are less amenable to translating vital rate uncer-
tainty into uncertainty in derived quantities (Figs.  6–8 ), 
which may be particularly important in applied contexts. 
Further, maximum likelihood methods may fail entirely 
for complex data structures. For example, modeling spa-
tial process error and vital rate correlations in addition 
to temporal process error would have been much more 
challenging and perhaps impossible in a maximum like-
lihood context. 

 The posterior distribution for the stochastic growth 
rate (Fig.  7 ) allows us to make an explicitly probabilistic 
statement regarding tree cholla population dynamics: if  
the observed vital rates persist, the study population is 
projected to decline with nearly 100% probability. The 
study period (2004–2014) has included chronic drought 
and a severely cold winter in 2011, including all- time 
record low temperatures over a 4- day deep- freeze. Close 
inspection of the survival data indicated that the deep 
freeze likely caused 72% of all mortality events recorded 
during the entire study and that surviving plants had 
stunted growth. Thus, our relatively long- term study 

happened to include weather that was unusually harsh 
when considered in the context of the longer meteorolog-
ical record. The occurrence of unusually bad years likely 
amplifi ed the interannual variability in high- sensitivity 
vital rates, especially growth and survival (Fig.  8 ), which 
will generally decrease the stochastic population growth 
rate (Boyce et al. 2008)  . We hypothesize that, as the study 
continues and additional favorable years accumulate, the 
population growth rate will approach replacement levels. 

 While the hierarchical Bayesian framework works well 
with naturally hierarchical demographic data and can 
readily capture the uncertainty associated with spatio- 
temporal process error, this variability does not always 
translate to variability in population dynamics. In our 
study, the candidate model that accounted for spatio- 
temporal variability and vital rate correlations provided 
the best fi t to the demographic data with a non- spatial 
model providing similar support (Table  2 ). Since these 
two models fi t the data well, it is not surprising that their 
posterior distributions of λ S  are similar. However, the pos-
terior distribution for λ S  was surprisingly unresponsive 
to temporal vital rate correlations (Fig.  7 B). We hypoth-
esize that this occurred because the vital rates that were 
most variable across time (as well as space) were also the 
vital rates to which population growth was least sensi-

 FIG. 8 .              Posterior distributions for the sensitivities of  the stochastic growth rate to (A) parameter means (∂ λ  S   / ∂ θ  i  ) for growth 
(superscript G) and survival (superscript S) parameters and (B) regeneration parameters, including probability of  fl owering (su-
perscript  P F   l ) and fertility (superscript F); note different scales. Boxes show medians (thick black lines), inner quartiles (box bor-
ders), and 5 and 95 percentiles (whiskers) of  sensitivity values derived from the joint posterior distribution of  parameter values. 
Parameter symbols are the same as in Table  1 . 
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tive (Fig.  9 ), a result predicted by theory and observed in 
other demographic studies (Pfi ster  1998 , Pfi ster and Wang 
 2005 ). Thus, it is worth noting that much of the variability 
in individual demography so elegantly captured by a hier-
archical Bayesian approach was relatively inconsequen-
tial at the population level. Whether this holds true for 
other species will depend on how they respond to spatio- 
temporal variation in survival, growth, and fecundity. 
Understanding the consequences of process variability 
can have valuable management implications. 

 As with all methods, there are potential limitations 
associated with the implementation of a hierarchical 
Bayesian approach. Some of the perils include assessing 
parameter convergence and the use of informed priors. 
With regard to the latter, unjustifi ed informed priors rep-
resent bad choices and cannot be used alone to demean 
an approach. Also, use of an informed prior points to 
the importance of conducting a prior sensitivity analysis 
to determine just how much the prior infl uences the pos-
terior estimates. In our study, we used preliminary data 
to defi ne a prior probability for the maternal plant- to- 
seed bank transition, though we found that this informed 
prior was of little consequence (Fig.  7 A). In other cases 
where preliminary data are not available, there may be 
additional data from other studies of the same species or 
closely related ones that can or should be used as prior 
information for demographic parameter estimation. 
Given that data are particularly precious for species of 
concern, combining data via priors also represents a dis-
tinct advantage of the Bayesian approach. With regards 

to other technical issues like assessing model selec-
tion, model fi t, and parameter convergence, the needed 
Bayesian resources are expanding as instructional arti-
cles (Ellison  2004 , Hobbs and Hilborn  2006 , McCarthy 
 2007 , Hooten and Hobbs  2015 ) and books (Clark  2007 , 
McCarthy  2007 , King et al.  2010 , Kéry and Schaub  2012 , 
Hobbs and Hooten  2015 ) continue to be published. 

 New Bayesian methods also continue to arise in the 
IPM literature. For example, work by Ghosh et al. 
( 2012 ) uses point- pattern data to construct a Bayesian 
IPM, approaching estimation of  the IPM kernel from 
an entirely different direction than presented here (and 
in the vast majority of  IPM studies). Point- pattern data 
bypass individual- level vital rates and instead infer 
demographic transitions from changes in the population 
size structure from one time step to the next. Gelfand 
et al. ( 2013 ) use this method to show that point- pattern 
based IPMs can be used to scale up processes from the 
population to the region. In their paper, Ghosh et al. 
( 2012 ) highlight some of  the potential problems with 
IPMs relying on data from marked individuals and use 
this as a motivation for point- pattern approaches. The 
problem arises from computing population- level pro-
cesses using the inappropriate scale of  the individual 
(Ghosh et al.  2012 ). This is referred to as an “ecological 
fallacy” (Wakefi eld  2009 ) in which measurements taken 
at one scale are used to infer information at a larger 
scale. As Ellner ( 2012 ) points out in the commentary on 
Ghosh et al. ( 2012 ), this mean- fi eld approach is standard 
practice for most IPMs including the cholla models pre-
sented here as well as most other demographic matrix 
models (but see Forbis and Doak  2004 ). While there is 
still much to be debated about the different methods, 
the way forward may be to combine the individual- level 
vital rate data and the population size structure data 
to infer something about individual processes as well as 
population processes (Ellner  2012 ). This hybrid of  indi-
vidual-  and population- level data represents another 
area in which HB methods can excel given the strengths 
of  the method in combining multiple data sets (Clark 
 2007 , Hobbs and Hooten  2015 ). 

 Lastly, methods associated with Bayesian model selec-
tion are rapidly developing, which may increase the 
 wariness of potential users but also represents the devel-
opment of new and exciting tools. The most appropriate 
model selection criterion will depend on the data, the 
model, and the research questions (Hooten and Hobbs 
 2015 ). One of the most common criteria for Bayesian 
model selection is the DIC (Spiegelhalter et al.  2002 ), 
which works when comparing linear models but, as 
noted earlier, tends to favor more complicated models. 
The recently developed WAIC allows for a fully Bayes-
ian comparison between models (Watanabe  2013 ) and is 
recommended for use when comparing hierarchical mod-
els. However, WAIC does not perform well with models 
that account for spatial and temporal variability  (Hooten 
and Hobbs  2015 ). To compare the candidate models, 
we chose to use cross- validation. While this approach is 

 FIG. 9 .              The relationship between population growth rate 
sensitivity (∂ λ  S   / ∂ θ  i  ) and spatio- temporal variability for each 
of  the four vital rates estimated from long- term data (growth, 
survival, fl owering, and fertility). Large fi lled symbols show 
posterior means for the spatial (circles) and temporal (trian-
gles) variances ( y - axis) of  the vital rate intercepts in relation to 
their posterior mean sensitivities ( x - axis). Point clouds show 
500 draws from the posterior probability distributions. Note 
log- log scale. 
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computationally expensive and, thus, not always feasible, 
cross- validation provides a good means of determining a 
model ’ s predictive ability. Clearly, no single model selec-
tion approach may be ideal for all data sets and ques-
tions. We refer the reader to Hooten and Hobbs ( 2015 ), 
which provides an excellent overview of current guide-
lines to Bayesian model selection. 

 Rather than selecting the best model, population 
demographers may want to combine the strength of a 
set of models or focus on model averaging. Reversible- 
jump Markov chain Monte Carlo (RJMCMC) is a com-
putational algorithm that averages across models (King 
et al.  2010 , Barker and Link  2013 ). For RJMCMC, the 
MCMC chain includes a step that allows for switching 
between candidate models. For example, to conduct an 
RJMCMC for the cholla data, at each step the chain 
would choose between one of the four models consid-
ered in Table  2 . The limited use of RJMCMC may have 
stemmed from problems of implementation for com-
plicated models (Hooten and Hobbs  2015 ). Barker and 
Link ( 2013 ) recently proposed an easily implemented 
solution to this problem by using the MCMC samples 
from each model fi t in a  post-hoc  analysis. 

 In conclusion, IPMs helped solve the problems asso-
ciated with dividing continuous demographic states 
into discrete classes. A hierarchical Bayesian framework 
enhances the utility of the IPM approach by accommo-
dating multiple data sets, incorporating complex variance 
structures, and robustly accounting for various aspects 
of uncertainty associated with demographic parame-
ters. In turn, Bayesian parameter estimates can be used 
to calculate robust probability distributions for standard 
demographic metrics such as population growth rate and 
its sensitivities or elasticities. Overall, by building along 
a hierarchical framework, Bayesian approaches provide 
a statistically sound way to get more information out of 
precious demographic data.  

  ACKNOWLEDGEMENTS 

 We thank J. HilleRisLambers, S. Kroiss, B. Van  Allen, F. Dil-
lemuth, A. Flick, and the Beer Bayes group at Rice  University 
for helpful discussion and comments on the  manuscript. B. 
Ochocki provided valuable computational  assistance and ad-
vice. We would also like to thank M. Hooten and an anony-
mous reviewer for their comments, which greatly improved the 
manuscript. We thank the many students who have contribut-
ed to the tree cholla demographic study and acknowledge the 
support of  the Sevilleta National Wildlife Refuge and Sevilleta 
Long Term Ecological Research (NSF DEB- 0620482 and DEB- 
1232294). Our statistical and demographic research was sup-
ported by NSF- DEB- 1316334 (BDE) and NSF- DEB- 1145588 
and DEB- 1543651 (TEXM).  

  LITERATURE CITED 

    Barker ,  R. J.  , and   W. A.   Link  .  2013 .  Bayesian multimodel infer-
ence by RJMCMC: a Gibbs sampling approach .  American 
Statistician   67 : 150 – 156 .  

    Bolker ,  B. M.  ,   M. E.   Brooks  ,   C. J.   Clark  ,   S. W.   Geange  ,   J. 
R.   Poulsen  ,   M. H. H.   Stevens  , and   J. S. S.   White  .  2009 .  Gener-

alized linear mixed models: a practical guide for ecology and 
evolution .  Trends in Ecology & Evolution   24 : 127 – 135 .  

    Boyce ,  M. S.  ,   C. V.   Haridas  ,   C. T.   Lee  , and   NCEAS Stochas-
tic Demography Working Group  .  2006 .  Demography in an 
increasingly variable world .  Trends in Ecology & Evolution  
 21 : 141 – 148 .  

    Brooks ,  S. P.  , and   A.   Gelman  .  1998 .  General methods for mon-
itoring convergence of iterative simulations .  Journal of Com-
putational and Graphical Statistics   7 : 434 – 455 .  

    Caswell ,  H.    2001 .  Matrix population models: construction, 
analysis, and interpretation .  Sinauer Associates ,  Sunderland, 
Massachusetts, USA .  

    Childs ,  D. Z.  ,   T. N.   Coulson  ,   J. M.   Pemberton  ,   T. H.  
  Clutton-Brock  , and   M.   Rees  .  2011 .  Predicting trait values 
and measuring selection in complex life histories: repro-
ductive allocation decisions in Soay sheep .  Ecology Letters  
 14 : 985 – 992 .  

    Clark ,  J. S.    2003 .  Uncertainty and variability in demography 
and population growth: a hierarchical approach .  Ecology  
 84 : 1370 – 1381 .  

    Clark ,  J. S.    2007 .  Models for ecological data: an introduction . 
 Princeton University Press ,  Princeton, New Jersey, USA .  

    Clark ,  J. S.  , and   A. E.   Gelfand  .  2006 .  A future for models and 
data in environmental science .  Trends in Ecology & Evolution  
 21 : 375 – 380 .  

    Clark ,  J. S.  ,   G. A.   Ferraz  ,   N.   Oguge  ,   H.   Hays  , and   J.   DiCostanzo  . 
 2005 .  Hierarchical Bayes for structured, variable popula-
tions: from recapture data to life- history prediction .  Ecology  
 86 : 2232 – 2244 .  

    Coulson ,  T.    2012 .  Integral projections models, their construction 
and use in posing hypotheses in ecology .  Oikos   121 : 1337 – 1350 .  

    Coulson ,  T.  ,   D. R.   MacNulty  ,   D. R.   Stahler  ,   B.   vonHoldt  ,   R. K.  
 Wayne  , and   D. W.   Smith  .  2011 .  Modeling effects of environ-
mental change on wolf population dynamics, trait evolution, 
and life history .  Science   334 : 1275 – 1278 .  

    Cressie ,  N.    1993 .  Statistics for spatial data .  John Wiley & Sons , 
 Hoboken, New Jersey, USA .  

    Cressie ,  N.  ,   C. A.   Calder  ,   J. S.   Clark  ,   J. M.   Ver Hoef  , and   C. K.  
 Wikle  .  2009 .  Accounting for uncertainty in ecological anal-
ysis: the strengths and limitations of hierarchical statistical 
modeling .  Ecological Applications   19 : 553 – 570 .  

    Crouse ,  D. T.  ,   L. B.   Crowder  , and   H.   Caswell  .  1987 .  A stage- 
based population- model for Loggerhead Sea Turtles and 
implications for conservation .  Ecology   68 : 1412 – 1423 .  

    Dantin ,  M. R. T.  , and   M.   Fortin  .  2014 .  Spatial analysis: a guide 
for ecologists .  Cambridge University Press ,  Cambridge, UK .  

    Davis ,  A. J.  ,   M. B.   Hooten  ,   M. L.   Phillips  , and   P. F.   Doherty  . 
 2014 .  An integrated modeling approach to estimating Gunni-
son sage- grouse population dynamics: combining index and 
demographic data .  Ecology and Evolution   4 : 4247 – 4257 .  

    De Valpine ,  P.  , and   A.   Hastings  .  2002 .  Fitting population mod-
els incorporating process noise and observation error .  Ecolog-
ical Monographs   72 : 57 – 76 .  

    Dennis ,  B.    1996 .  Discussion: Should ecologists become Bayes-
ians?   Ecological Applications   6 : 1095 – 1103 .  

    Dennis ,  B.  ,   P. L.   Munholland  , and   J. M.   Scott  .  1991 .  Estimation 
of growth and extinction parameters for endangered species . 
 Ecological Monographs   61 : 115 – 143 .  

    Diez ,  J. M.  ,   I.   Giladi  ,   R.   Warren  , and   H. R.   Pulliam  .  2014 .  Prob-
abilistic and spatially variable niches inferred from demogra-
phy .  Journal of Ecology   102 : 544 – 554 .  

    Doak ,  D. F.    1995 .  Source- sink models and the problem of hab-
itat degradation: general models and applications to the Yel-
lowstone grizzly .  Conservation Biology   9 : 1370 – 1379 .  

    Doak ,  D.  ,   P.   Kareiva  , and   B.   Kleptetka  .  1994 .  Modeling popu-
lation viability for the desert tortoise in the Western Mojave 
Desert .  Ecological Applications   4 : 446 – 460 .  



February 2016 BAYESIAN IPMS 143

    Doak ,  D. F.  ,   W. F.   Morris  ,   C.   Pfi ster  ,   B. E.   Kendall  , and   E. M.  
 Bruna  .  2005 .  Correctly estimating how environmental sto-
chasticity infl uences fi tness and population growth .  American 
Naturalist   166 : E14 – E21 .  

    Easterling ,  M. R.  ,   S. P.   Ellner  , and   P. M.   Dixon  .  2000 .  Size- 
specifi c sensitivity: applying a new structured population 
model .  Ecology   81 : 694 – 708 .  

    Elderd ,  B. D.  ,   G.   Dwyer  , and   V.   Dukic  .  2013 .  Population- level 
differences in disease transmission: a Bayesian analysis of 
multiple smallpox epidemics .  Epidemics   5 : 146 – 156 .  

    Ellison ,  A. M.    1996 .  An introduction to Bayesian inference for 
ecological research and environmental decision- making .  Eco-
logical Applications   6 : 1036 – 1046 .  

    Ellison ,  A. M.    2004 .  Bayesian inference in ecology .  Ecology Let-
ters   7 : 509 – 520 .  

    Ellner ,  S. P.    2012 .  Comments on: inference for size demography 
from point process data using integral projection models . 
 Journal of Agricultural Biological and Environmental Statis-
tics   17 : 682 – 689 .  

    Ellner ,  S. P.  , and   M.   Rees  .  2006 .  Integral projection models 
for species with complex demography .  American Naturalist  
 167 : 410 – 428 .  

    Evans ,  M. E. K.  , and   K. E.   Holsinger  .  2012 .  Estimating covari-
ation between vital rates: a simulation study of connected vs. 
separate generalized linear mixed models (GLMMs) .  Theo-
retical Population Biology   82 : 299 – 306 .  

    Evans ,  M. E. K.  ,   K. E.   Holsinger  , and   E. S.   Menges  .  2010 .  Fire, 
vital rates, and population viability: a hierarchical Bayesian 
analysis of the endangered Florida scrub mint .  Ecological 
Monographs   80 : 627 – 649 .  

    Forbis ,  T. A.  , and   D. F.   Doak  .  2004 .  Seedling establishment and 
life history trade- offs in alpine plants .  American Journal of 
Botany   91 : 1147 – 1153 .  

    Franklin ,  A. B.  ,   D. R.   Anderson  ,   R. J.   Gutierrez  , and   K. P.   Burn-
ham  .  2000 .  Climate, habitat quality, and fi tness in Northern 
Spotted Owl populations in northwestern California .  Ecolog-
ical Monographs   70 : 539 – 590 .  

    Gelfand ,  A. E.  ,   S.   Ghosh  , and   J. S.   Clark  .  2013 .  Scaling integral 
projection models for analyzing size demography .  Statistical 
Science   28 : 641 – 658 .  

    Gelman ,  A.    2006 .  Prior distributions for variance parameters in 
hierarchical models .  Bayesian Analysis   1 : 515 – 533 .  

    Gelman ,  A.  , and   J.   Hill  .  2007 .  Data analysis using regression 
and multilevel/hierarchical models .  Cambridge University 
Press ,  Cambridge, UK .  

    Gelman ,  A.  ,   X. L.   Meng  , and   H.   Stern  .  1996 .  Posterior predic-
tive assessment of model fi tness via realized discrepancies . 
 Statistica Sinica   6 : 733 – 760 .  

    Gelman ,  A.  ,   J. B.   Carlin  ,   H. S.   Stern  , and   D. B.   Rubin  .  2003 . 
 Bayesian data analysis .  Chapman and Hall ,  Boca Raton, 
Florida, USA .  

    Gelman ,  A.  ,   J.   Hwang  , and   A.   Vehtari  .  2014 .  Understanding 
predictive information criteria for Bayesian models .  Statistics 
and Computing   24 : 997 – 1016 .  

    Ghosh ,  S.  ,   A. E.   Gelfand  , and   J. S.   Clark  .  2012 .  Inference for 
size demography from point pattern data using integral pro-
jection models .  Journal of Agricultural Biological and Envi-
ronmental Statistics   17 : 641 – 677 .  

    Grimm ,  V.    2005 .  Individual-based modeling and ecology .  Princ-
eton University Press ,  Princeton, New Jersey, USA .  

    Hanks ,  E. M.  ,   M. B.   Hooten  , and   F. A.   Baker  .  2011 .  Reconcil-
ing multiple data sources to improve accuracy of large- scale 
prediction of forest disease incidence .  Ecological Applications  
 21 : 1173 – 1188 .  

    Heidelberger ,  P.  , and   P. D.   Welch  .  1983 .  Simulation run length 
control in the presence of an initial transient .  Operations 
Research   31 : 1109 – 1144 .  

    Hille Ris Lambers ,  J.  ,   J. S.   Clark  , and   M.   Lavine  .  2005 .  Impli-
cations of seed banking for recruitment of southern Appala-
chian woody species .  Ecology   86 : 85 – 95 .  

    Hobbs ,  N. T.  , and   R.   Hilborn  .  2006 .  Alternatives to statistical 
hypothesis testing in ecology: a guide to self  teaching .  Ecolog-
ical Applications   16 : 5 – 19 .  

    Hobbs ,  N. T.  , and   M. B.   Hooten  .  2015 .  Bayesian models: a 
statistical primer for ecologists .  Princeton University Press , 
 Princeton, New Jersey, USA .  

    Hobbs ,  N. T.  ,   C.   Geremia  ,   J.   Treanor  ,   R. L.   Wallen  ,   P. J.   White  , 
  M. B.   Hooten  , and   J. C.   Rhyan  .  2015 .  State- space modeling to 
support management of brucellosis in the Yellowstone bison 
population .  Ecological Monographs   85 : 525 – 556 .    

    Hooten ,  M. B.  , and   N. T.   Hobbs  .  2015 .  A guide to Bayesian model 
selection for ecologists .  Ecological Monographs   85 : 3 – 28 .  

    Huang ,  A.  , and   M. P.   Wand  .  2013 .  Simple marginally noninfor-
mative prior distributions for covariance matrices .  Bayesian 
Analysis   8 : 439 – 451 .  

    Kéry ,  M.    2010 .  Introduction to WinBUGS for ecologists .  Aca-
demic Press ,  Boston, Massachusetts, USA .  

    Kéry ,  M.  , and   M.   Schaub  .  2012 .  Bayesian population analysis using 
WinBUGS .  Academic Press ,  Boston, Massachusetts, USA .  

    King ,  R.  ,   B. J. T.   Morgan  ,   O.   Gimenez  , and   S. P.   Brooks  .  2010 . 
 Bayesian analysis for population ecology .  Chapman and Hall , 
 Boca Raton, Florida, USA .  

    Kuss ,  P.  ,   M.   Rees  ,   H. H.   Aegisdottir  ,   S. P.   Ellner  , and   J.   Stocklin  . 
 2008 .  Evolutionary demography of long- lived monocarpic 
perennials: a time- lagged integral projection model .  Journal 
of Ecology   96 : 821 – 832 .  

    Ladeau ,  S. L.  , and   J. S.   Clark  .  2006 .  Elevated CO2 and tree fecun-
dity: the role of tree size, interannual variability, and popula-
tion heterogeneity .  Global Change Biology   12 : 822 – 833 .  

    Lefkovitch ,  L. P.    1965 .  Study of population growth in organisms 
grouped by stages .  Biometrics   21 : 1 – 18 .  

    Leslie ,  P. H.    1945 .  On the use of matrices in certain population 
mathematics .  Biometrika   33 : 183 – 212 .  

    Link ,  W. A.  , and   R. J.   Barker  .  2010 .  Bayesian inference with 
 ecological applications .  Academic Press ,  Boston, Massachu-
setts, USA .  

    Link ,  W. A.  , and   M. J.   Eaton  .  2012 .  On thinning of chains in 
MCMC .  Methods in Ecology and Evolution   3 : 112 – 115 .  

    McCarthy ,  M. A.    2007 .  Bayesian methods for ecology .  Cam-
bridge University Press ,  Cambridge, UK .  

    McEvoy ,  P. B.  , and   E. M.   Coombs  .  1999 .  Biological control 
of  plant invaders: regional patterns, fi eld experiments, and 
structured population models .  Ecological Applications  
 9 : 387 – 401 .  

    Merow ,  C.  ,   J. P.   Dahlgren  ,   C. J. E.   Metcalf  ,   D. Z.   Childs  ,   M. E. 
K.   Evans  ,   E.   Jongejans  ,   S.   Record  ,   M.   Rees  ,   R.   Salguero-Go-
mez  , and   S. M.   McMahon  .  2014a .  Advancing population 
ecology with integral projection models: a practical guide . 
 Methods in Ecology and Evolution   5 : 99 – 110 .  

    Merow ,  C.  ,   A. M.   Latimer  ,   A. M.   Wilson  ,   S. M.   McMahon  ,   A. 
G.   Rebelo  , and   J. A.   Silander  .  2014b .  On using integral projec-
tion models to generate demographically driven predictions 
of species’ distributions: development and validation using 
sparse data .  Ecography   37 : 1167 – 1183 .  

    Metcalf ,  C. J. E.  ,   S. M.   McMahon  ,   R.   Salguero-Gomez  , and   E.  
 Jongejans  .  2013 .  IPMpack: an R package for integral projec-
tion models .  Methods in Ecology and Evolution   4 : 195 – 200 .  

    Miller ,  T. E. X.  ,   S. M.   Louda  ,   K. A.   Rose  , and   J. O.   Eckberg  . 
 2009 .  Impacts of insect herbivory on cactus population 
dynamics: experimental demography across an environmental 
gradient .  Ecological Monographs   79 : 155 – 172 .  

    Miller ,  T. E. X.  ,   J. L.   Williams  ,   E.   Jongejans  ,   R.   Brys  , and   H.  
 Jacquemyn  .  2012 .  Evolutionary demography of iteroparous 
plants: incorporating non- lethal costs of reproduction into 



144 BRET D. ELDERD AND TOM E. X. MILLER Ecological Monographs 
Vol. 86, No. 1

integral projection models .  Proceedings of the Royal Society 
B   279 : 2831 – 2840 .  

    Moloney ,  K. A.    1986 .  A generalized algorithm for determining 
category size .  Oecologia   69 : 176 – 180 .  

    Morris ,  W. F.  , and   D. F.   Doak  .  2002 .  Quantitative conservation 
biology: theory and practice of population viability analysis . 
 Sinauer Associates ,  Sunderland, Massachusetts, USA .  

    Ohm ,  J. R.  , and   T. E. X.   Miller  .  2014 .  Balancing anti- herbivore 
benefi ts and anti- pollinator costs of defensive mutualists . 
 Ecology   95 : 2924 – 2935 .  

    Parker ,  I. M.    2000 .  Invasion dynamics of  Cytisus scoparius : a 
matrix model approach .  Ecological Applications   10 : 726 – 743 .  

    Pfi ster ,  C. A.    1998 .  Patterns of variance in stage- structured pop-
ulations: evolutionary predictions and ecological implications . 
 Proceedings of the National Academy of Sciences   95 : 213 – 218 .  

    Pfi ster ,  C. A.  , and   M.   Wang  .  2005 .  Beyond size: matrix pro-
jection models for populations where size is an incomplete 
descriptor .  Ecology   86 : 2673 – 2683 .  

    Plummer ,  M.  ,   N.   Best  ,   K.   Cowles  , and   K.   Vines  .  2006 .  CODA: 
convergence diagnosis and output analysis for MCMC .  R 
News   6 : 7 – 11 .  

   R Core Team .  2013 .  R: a language and environment for statis-
tical computing .  R Foundation for Statistical Computing , 
 Vienna, Austria .  

    Rees ,  M.  , and   S. P.   Ellner  .  2009 .  Integral projection models for 
populations in temporally varying environments .  Ecological 
Monographs   79 : 575 – 594 .  

    Rees ,  M.  ,   D. Z.   Childs  , and   S. P.   Ellner  .  2014 .  Building integral 
projection models: a user ’ s guide .  Journal of Animal Ecology  
 83 : 528 – 545 .  

    Ruete ,  A.  ,   K.   Wiklund  , and   T.   Snall  .  2012 .  Hierarchical Bayes-
ian estimation of the population viability of an epixylic moss . 
 Journal of Ecology   100 : 499 – 507 .  

    Spiegelhalter ,  D. J.  ,   N. G.   Best  ,   B. R.   Carlin  , and   A.   van der  
 Linde  .  2002 .  Bayesian measures of  model complexity and fi t . 
 Journal of  the Royal Statistical Society Series B   64 : 583 – 616 .  

    Su ,  Y.  , and   M.   Yajima  .  2014 .  R2jags: a package for running 
jags from R .  https://cran.r-project.org/web/packages/R2jags/
index.html   

    Tuljapurkar ,  S. D.    1982 .  Population- dynamics in variable envi-
ronments. III. Evolutionary dynamics of r- selection .  Theoret-
ical Population Biology   21 : 141 – 165 .  

    Vandermeer ,  J.    1978 .  Choosing category size in a stage projec-
tion matrix .  Oecologia   32 : 79 – 84 .  

    Wakefi eld ,  J.    2009 .  Multi- level modelling, the ecologic fallacy, 
and hybrid study designs .  International Journal of Epidemi-
ology   38 : 330 – 336 .  

    Wallace ,  K.  ,   A.   Leslie  , and   T.   Coulson  .  2013 .  Re- evaluating 
the effect of  harvesting regimes on Nile crocodiles using 
an integral projection model .  Journal of  Animal Ecology  
 82 : 155 – 165 .  

    Walters ,  C. J.    1986 .  Adaptive management of renewable resources . 
 MacMillan Publishing ,  New York, New York, USA .  

    Watanabe ,  S.    2013 .  A widely applicable Bayesian information 
criterion .  Journal of  Machine Learning Research   14 : 867 –
 897 .  

    Wikle ,  C. K.    2002 .  A kernel- based spectral model for non- 
Gaussian spatio- temporal processes .  Statistical Modelling  
 2 : 299 – 314 .  

    Wikle ,  C. K.  , and   M. B.   Hooten  .  2010 .  A general science- based 
framework for dynamical spatio- temporal models .  Test  
 19 : 417 – 451 .  

    Williams ,  J. L.  , and   E. E.   Crone  .  2006 .  The impact of invasive 
grasses on the population growth of  Anemone patens , a long- 
lived native forb .  Ecology   87 : 3200 – 3208 .  

    Williams ,  J. L.  ,   T. E. X.   Miller  , and   S. P.   Ellner  .  2012 .  Avoiding 
unintentional eviction from integral projection models .  Ecol-
ogy   93 : 2008 – 2014 .  

    Williams ,  J. L.  ,   H.   Jacquemyn  ,   B.   Ochocki  ,   R.   Brys  , and   T. E. X.  
 Miller  .  2015 .  Life history evolution under climate change and 
its infl uence on the population dynamics of a long- lived plant . 
 Journal of Ecology   103 : 798 – 808 .      

  SUPPORTING INFORMATION 

   Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/
doi/10.1890/15-1526.1/suppinfo 

   DATA AVAILABILITY  

 Data associated with this paper have been deposited in Dryad: http://dx.doi.org/10.5061/dryad.db428


