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Concerns over bioterrorism and emerging diseases have led to the
widespread use of epidemic models for evaluating public health
strategies. Partly because epidemic models often capture the
dynamics of prior epidemics remarkably well, little attention has
been paid to how uncertainty in parameter estimates might affect
model predictions. To understand such effects, we used Bayesian
statistics to rigorously estimate the uncertainty in the parameters
of an epidemic model, focusing on smallpox bioterrorism. We then
used a vaccination model to translate the uncertainty in the model
parameters into uncertainty in which of two vaccination strategies
would provide a better response to bioterrorism, mass vaccination,
or vaccination of social contacts, so-called ‘‘trace vaccination.’’ Our
results show that the uncertainty in the model parameters is
remarkably high and that this uncertainty has important implica-
tions for vaccination strategies. For example, under one plausible
scenario, the most likely outcome is that mass vaccination would
save �100,000 more lives than trace vaccination. Because of the
high uncertainty in the parameters, however, there is also a
substantial probability that mass vaccination would save 200,000
or more lives than trace vaccination. In addition to providing the
best response to the most likely outcome, mass vaccination thus
has the advantage of preventing outcomes that are only slightly
less likely but that are substantially more horrific. Rigorous esti-
mates of uncertainty thus can reveal hidden advantages of public
health strategies, suggesting that formal uncertainty estimation
should play a key role in planning for epidemics.

susceptible-exposed-infected-removed model � trace versus mass
vaccination � host–pathogen interaction � Bayesian hieracrchical model

The predictions of epidemic models are widely used in planning
for public health responses to both bioterrorism and emerging

diseases (1). An important source of uncertainty in such predictions
is uncertainty in parameter values. Even simple epidemic models
can capture disease dynamics remarkably well (2, 3), however, so
most modeling studies have relied on informal methods for quan-
tifying uncertainty in parameter values (3–9). In this article, we
formally estimate the uncertainty in the parameters of a model of
smallpox bioterrorism, and we show how such uncertainty estimates
can reveal hidden risks of public health decisions.

To describe the dynamics of smallpox, we use the well known
susceptible-exposed-infected-removed (SEIR) model (2):
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R0 is the number of secondary infections produced by a single
infected individual, � is the rate at which infectious individuals I
cease to be infectious because of recovery or death, and N is the
population size, here assumed to be of a single city. Hosts begin in
the uninfected, nonimmune class S and move to the exposed but not
yet infectious class E at a rate R0� . Exposed but not yet infectious
individuals move to the infectious class at rate �. To fit the model
to mortality data, we also introduce the parameter �, the fraction
of removed individuals that die of the disease.

The SEIR model has several useful features for estimating
uncertainty in the predictions of epidemic models. First, because
the model is based on assumptions that are approximately true
for many diseases (2), it can be used for diseases other than
smallpox (7, 9, 10), emphasizing the generality of our approach.
Second, although the SEIR model has only four parameters, it
provides a good fit to data for historical smallpox epidemics (3).
The number of parameters in our model is important because
concerns over the complexity of disease spread have caused
some researchers to instead construct complex models with tens
to hundreds of parameters (4–6). Estimating the values of a large
number of parameters, however, requires a large amount of data,
making it impractical to formally quantify parameter uncertainty
for complex models. Because the SEIR model in contrast
includes only four parameters, estimating the overall uncertainty
in its parameters is relatively straightforward. Moreover, as we
discuss further below, uncertainty in model predictions is likely
to be even higher for models with many parameters.

A common method of quantifying the effects of parameter
uncertainty on the predictions of epidemic models is sensitivity
analysis, in which one or a few parameters are varied, whereas the
others are held constant (4, 6). Sensitivity analysis, however,
generally underestimates overall parameter uncertainty. We there-
fore instead use Bayes’ Theorem, which allows us to formally take
into account uncertainty in all parameters (see supporting infor-
mation, which is published on the PNAS web site):

P�R0, �, �, �, �2�data�

� ��R0����������������2�L�data�R0, � , � , � , �2� . [2]

Here, �2 represents the random variation in the data beyond
what can be explained by the SEIR model. The uncertainty in the
model’s parameters then is represented by the spread in the
posterior distribution of the parameters given the data, P(R0, �,
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�, �, �2 � data), which depends on the prior uncertainty in the
parameters, � (R0), � (�), � (�), � (�), and � (�2), and on the
likelihood of the data, L(data � R0, �, �, �, �2).

We used Bayes’ Theorem in the following way. First, we
constructed priors for the parameters from literature data on
smallpox progression (Methods and supporting information).
Second, we calculated the likelihood of the parameters from
data on 13 past smallpox epidemics (listed in Table 3). Third, we
combined the likelihood and the priors to calculate the joint
posterior distribution of the parameters, according to Bayes’
Theorem, Eq. 2. We thus allowed for uncertainty in all model
parameters, and we combined information from all available
data. Although alternative approaches also might have allowed
us to combine data, such approaches are generally less efficient
(see supporting information). Similarly, although previous re-
searchers also have used multiple data sets, in so doing they have
assumed that the uncertainty in some (5, 7, 8, 11) or all (3, 9)
other parameters is zero. As we will show, this assumption leads
to serious underestimates of parameter uncertainty. Also, in
estimating a single value of R0 from multiple epidemics, we are
effectively assuming that contact networks were the same in
different populations. Although this assumption is undoubtedly
unrealistic, allowing for population-specific values of R0 very
likely would lead to even more uncertainty in the parameters.
Because our intent is to demonstrate that uncertainty is high,
assuming a common value of R0 thus is conservative.

To show how uncertainty in parameter values can lead to
uncertainty in evaluations of public health responses to epidem-
ics, we translated parameter uncertainty into uncertainty in the
relative efficiency of two different vaccination strategies. The
two strategies are mass vaccination, under which the entire
population is vaccinated at the beginning of the epidemic, and
trace vaccination, under which vaccinations are given only to
those who contact infected individuals. Although mass vaccina-
tion is the policy of the U.S. and U.K. governments (12, 13), trace
vaccination was used in the final stages of smallpox eradication
(12, 14) and, recently, some researchers have argued that it will
be as effective as mass vaccination while, of course, being
cheaper (4, 5). These two strategies are not the only possibilities,

but they allow us to clearly show how uncertainty in parameters
is translated into uncertainty in strategy evaluations.

The particular vaccination model that we used was developed
by Kaplan et al. (11). For our purposes, this model is convenient
because it is essentially the SEIR model with the addition of
either mass or trace vaccination (see Supporting Text for details
of the Kaplan et al. model). The Kaplan et al. (11) model thus
inherits assumptions of the SEIR model, such as exponential
sojourn times in each stage and homogeneous mixing of indi-
viduals, that are not necessarily realistic. We therefore empha-
size that we use this model not because it is necessarily the best
model, but because our aim is to illustrate the effects of
parameter uncertainty on evaluations of vaccination strategies
rather than to identify the best of all possible strategies. We
therefore compared the two vaccination strategies in the fol-
lowing way. First, we drew a large number of sets of parameter
values from the posterior distribution of the SEIR parameters.
Second, we used each set of parameters in simulations of the
Kaplan et al. (11) model, first under trace vaccination and second
under mass vaccination, to calculate the difference in the
number of people dying between the two strategies for each
parameter set. Our evaluation of the relative efficiency of the
two strategies thus considers both the most likely difference in
the number dead and the uncertainty in the difference in the
number dead.

Results and Discussion
Our results show that the overall uncertainty in the parameters
of the SEIR model is remarkably large (Table 1). Part of the
reason is that, when fitting the model to the epidemic data, it
becomes harder to distinguish among epidemic curves as R0
increases (Fig. 1). The prior uncertainty in the parameters,
however, also contributes substantially to the overall uncer-
tainty. To illustrate this effect, in Fig. 2 we show that the marginal
distribution of R0 is much wider when we allow for uncertainty
in all parameters than it is when we allow for uncertainty only in
R0 and the error parameter �2.

The uncertainty in the parameters has important conse-
quences for uncertainty in the relative effectiveness of the two
vaccination strategies. When the likelihood is calculated from

Table 1. Prior and posterior medians (with 95% central credible intervals, the Bayesian counterpart to the
frequentist’s confidence interval) of parameters for the SEIR model of smallpox

Parameter Prior
Posterior

(SEIR model)
Posterior (SEIR with

heterogeneity)

R0,e 4 (0.7, 23.7) 7.1 (5.0, 15.3) 6.8 (5.4, 10.4)
R0,u 4 (0.7, 23.7) 17.5 (5.9, 59.5) 16.3 (7.2, 36.6)
�e — 0.021 (0.017, 0.032) 0.021 (0.017, 0.026)
�u — 0.146 (0.110, 0.222) 0.139 (0.110, 0.185)
% Fatality, �e 0.14 (0.03, 0.35)* 0.12 (0.08, 0.19) 0.12 (0.09, 0.16)
% Fatality, �u 0.45 (0.08, 0.95)* 0.37 (0.30, 0.50) 0.36 (0.30, 0.43)
Latency period–up to prodromal 12.1 (7.9, 17.6) 10.3 (6.3, 15.9) 8.8 (5.8, 13.1)
Latency period–prodromal 2.5 (1.3, 4.3) 2.3 (1.2, 3.9) 2.1 (1.1, 3.7)
Infectious period, 1�� 15.8 (10.9, 22.0) 13.4 (8.8, 19.6) 11.5 (7.7, 16.1)
Old World heterogeneity ke 2.8 (0.10, 14.8) — 358 (198, 976)
New World heterogeneity ku 2.8 (0.10, 14.8) — 2,712 (415, 17,579)

Note that, although the 95% central credible interval on R0 has a smaller range for the heterogeneity model than for the model
without heterogeneity, the median value is approximately the same for the two models. The similarity of the medians suggests that the
major effect on the marginal distribution of R0 of allowing for heterogeneity in susceptibility is a reduction in the long tail, which is
confirmed by an examination of the full distribution (see supporting information). Also, following standard terminology (2), the
heterogeneity parameter k is the inverse of the squared coefficient of variation of the distribution of susceptibility. The large values
shown here therefore indicate very low levels of heterogeneity. SEIR with heterogeneity refers to a version of the SEIR model that
includes heterogeneity in susceptibility (see supporting information). The prodromal period occurs between the onset of fever and the
beginning of a rash. The subscript e stands for exposed, Old World populations, whereas the subscript u stands for unexposed, New
World populations.
*Intervals based on 500,000 simulated draws from a mixture reflecting the hyperprior structure.
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Old World epidemics, the most likely outcome is that trace
vaccination will result in �100,000 more deaths than mass
vaccination (Fig. 3A) out of a population of 10 million. Focusing
on the most likely outcome, however, conceals substantial
probabilities of even larger differences (Fig. 3A); specifically,
there is at least a 17% probability that trace vaccination will
result in an excess of 200,000 or more deaths over mass vacci-
nation. Similar effects occur when R0 is instead estimated from
New World epidemics (Fig. 3B), except that the increase in the
number dead under trace vaccination is higher still, and so the
consequences of uncertainty are even more severe. As we show
in supporting information, this uncertainty is due mostly to
uncertainty in the number of dead under trace vaccination,
apparently because trace vaccination is especially sensitive to
variability in the rate of spread of the disease. The qualitative
advantage of mass vaccination holds even when trace vaccination
rates are considerably higher (Figs. 9 and 10). The risk of trace
vaccination therefore may be much higher than is apparent from
a consideration of most likely outcomes alone; moreover, mass
vaccination may prevent outcomes that are only slightly less
likely than the most likely outcome but that are substantially
more horrific.

The simplicity of the SEIR model means that its prediction of
the most likely outcome may be inaccurate, whereas the corre-
sponding predictions of more complex models may be more
accurate (16). Nevertheless, any such advantage of a more
complex model may be outweighed by an increase in uncertainty,
because the good fit of the SEIR model to smallpox data means
that a more complex model would not fit the data much better.
To illustrate this point, we extended the SEIR model to allow for
heterogeneity in susceptibility (see supporting information),
which is widely believed to be important in disease dynamics (2),
and repeated our Bayesian calculation. The levels of heteroge-
neity in susceptibility needed to explain the data are very small
(Table 1), suggesting that the additional parameter provides
little additional explanatory power and, therefore, that the
model without heterogeneity is sufficient to explain the data.
Moreover, for the model with heterogeneity, the marginal
distribution of R0 is very similar to that for the model without
heterogeneity; as Table 1 shows, the main effect is a modest
reduction in the tail of the distribution (see supporting infor-
mation for the full distribution. Note that, for the heterogeneity
model, the parameter R0 is actually R� 0, the average value of R0

across host individuals. For convenience, we refer to both
parameters simply as R0). As a result, the uncertainty in the
effectiveness of the two vaccination strategies very nearly is the
same for the two models (supporting information). Indeed,
under the heterogeneity model, the chance that the excess in the
number of deaths under trace vaccination is at least 200,000 is
15%, which is close to the value of 17% for the model without
heterogeneity (see supporting information for the full distribu-
tion of outcomes under the heterogeneity model). Increasing
realism still further, to encompass the tens to hundreds of
parameters of complex models (4–6), might well increase the
uncertainty, because any small decrease in uncertainty due to a
slight improvement in the fit to data would be outweighed by a
large increase in uncertainty due to fitting many additional
parameters. When uncertainty estimates are made for other
diseases, however, enough data may be available to justify more
complex models (7, 8, 10, 17, 18).

A related point is that we have considered only two simple
vaccination schemes, yet some authors have argued for more
complex responses (4), such as vaccinations that are targeted at
particular spatial locations. Such arguments, however, have been
based on complex models, for which rigorous uncertainty esti-
mates are unavailable. As we have shown, formally allowing for
uncertainty can reveal hidden risks of vaccination strategies, and
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Fig. 1. Impact of changing R0 on epidemic dynamics in the SEIR model (Eq.
1). All other parameters are fixed. As R0 increases (by ones from one line to the
next), the cumulative death curves are increasingly similar.
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Fig. 2. Effects of prior knowledge on uncertainty in the disease transmission
rate R0. We distinguish between epidemics in Old World populations and New
World populations because epidemics were more severe in New World pop-
ulations, apparently because of differences in previous exposure and social
structure (15). Because it is not clear which group is more similar to contem-
porary populations, we consider each separately. Shown are the estimated
posterior density of R0 for Old World and New World populations, respec-
tively. The curved black line shows the prior distribution. The gray histogram
shows the case in which we assume that there is no uncertainty in any SEIR
model parameter except R0 (‘‘fixed’’), whereas the black-outlined histogram
shows the case in which we instead assume that all model parameters are
uncertain, and we have integrated out all of the other parameters (‘‘vari-
able’’). The gray histogram thus is equivalent to assuming that disease pa-
rameters besides R0 have zero uncertainty, showing that such an assumption
conceals substantial uncertainty. Note differences in scales on the axes.
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so we suspect that evaluations that do not include formal
estimates of uncertainty may not be robust. Our point thus is not
that mass vaccination will necessarily provide the best response,
but instead that our evaluation of which strategy is better may
change if we carefully quantify the uncertainty in a model’s
parameter values.

A final important point is that our method is not specific to the
SEIR model. Indeed, a Bayesian approach even allows for effects
for which little quantitative information is available. For exam-
ple, in the absence of any relevant data, we have assumed that
differences between historical and bioterrorism outbreaks are
negligible, but the Bayesian framework could be used to incor-
porate such differences in the form of expert opinion. Incorpo-
rating expert opinion, however, would increase greatly the
overall uncertainty; given that we have argued that uncertainty
is likely to be high, it is conservative to assume that differences
from historical epidemics are negligible. Our framework simi-
larly allows for straightforward updating of parameter estimates
with new data in the event of an actual epidemic. Bayesian
approaches to estimating uncertainty thus may be of widespread
usefulness in planning for epidemics.

Methods
Prior Construction. Vague priors often are used when little is
known regarding parameter values. In our case, however, enough
is known regarding the progression of smallpox that it is possible
to instead construct informative priors for most parameters. The
one exception is that by definition, we have no prior information
on �, because it describes the error between the model and the
data, and so for �, we used a vague prior. Also, we did not

explicitly model the correlations between disease parameters.
Because we have no prior information regarding such correla-
tions, including them would have required vague priors, which
probably would have resulted in even higher uncertainty.

For the remaining parameters, we first chose distributions
based on standard statistical considerations. For the disease
reproductive rate R0, we used a log-normal distribution, to allow
for a long tail, as in Fig. 1. For the infectious period 1�� , and
for the rate of moving from latency to infectiousness �, we used
gamma distributions, which gave a good fit to data (19–22). The
latent period usually is split into a period between contact and
initial fever, and a period between fever and rash [contrary to
previous models (5, 11), there is little evidence for infectiousness
during the latter period (14, 22)]. We therefore included sepa-
rate priors for each transition, symbolized as �1 and �2, respec-
tively. Finally, for the fraction dying �, which by definition is �1,
we used a beta distribution, commonly used to model fractional
quantities. Because � is particularly uncertain, we placed a
hyperprior on the parameters of �’s prior, such that its mean was
drawn from a beta distribution, whereas the scale parameter was
drawn from a gamma distribution. As a result, the prior density
for � is effectively a mixture of beta densities, and, therefore, it
has longer tails than a simple beta denisity.

The parameters of the priors were taken from the smallpox
literature. For R0, we used a median of 4, the midpoint of a
range based on immunization rates before smallpox was
eliminated from general circulation (2). The credible intervals
for R0 were chosen to encompass the range of previous
estimates (3). The priors on 1�� , �1, and �2 were constructed
by fitting gamma distributions directly to literature data on
smallpox-infected individuals (19–22). Because of differences
in the epidemiological history of smallpox between continents,
we expected differences in smallpox transmission between
previously unexposed New World and previously exposed Old
World (or Old World descent) populations. We therefore fit
the model to epidemics from the two hemispheres separately
(Fig. 2), and we assumed distinct values of � for each. The
mean of the prior on � for Old World populations was
estimated from known rates, centered around a rate of 16%
and with a 95% credible interval of (3%, 35%) (Table 1). The
mean fatality rate for the New World populations was 49%,
based on mortality in an epidemic among previously unex-
posed male slaves in Puerto Rico (23). The prior variance for
the New World fatality rate then was adjusted so that 95% of
the distribution ranged from 8% to 90%.

Mathematically, the priors can be expressed as

R0,e � LN�me, �R0,e

2 � , R0,u � LN�mu, �R0,u

2 � ,

p��e
2� � 1, �e

2 	 0, p��u
2� � 1, �u

2 	 0,

� �
1

�1 
 �2
,

�1 � ��mean � 2.6, var � 0.6� ,

�2 � ��mean � 12.3, var � 6.1� ,

1�� � ��mean � 16.0, var � 8.0� ,

�e � Be�ae, be� , �u � Be�au, bu� ,
[3]
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Fig. 3. Difference in the number of deaths between trace vaccination and
mass vaccination strategies in a simulated population of 10 million. (A) Using
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New World populations. As in Fig. 2, comparison of the gray- and black-
outlined histograms shows the effects of neglecting uncertainty in parameters
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ke � ��mean � 4, var � 16� ,

ku � ��mean � 4, var � 16� .

Here, the hyperparameters on the fatality rate are ae, be, au, and
bu, and �, LN, and Be denote gamma, log-normal, and beta
distributions, respectively. Note that e stands for previously
exposed Old World populations, whereas u stands for previously
unexposed New World populations.

Likelihood Calculation. In fitting the SEIR model, we considered
only epidemic data because of the difficulty of fitting the
complex f luctuations typical of endemic data (10, 18). Also, we
used only 18th and 19th century epidemics (Table 3) to avoid
the complication of vaccination. In using epidemic data from
previous centuries, we are implicitly assuming that parameters
estimated from such data are relevant to contemporary pop-
ulations. Given that R0 in particular is likely to vary in a
complex way across centuries, because, for example, of changes
in social mixing or access to information regarding smallpox,
it is likely that, in fact, smallpox spread rates would be different
in contemporary populations. Nevertheless, as we describe in
Results and Discussion, allowing for differences between his-
torical and contemporary populations almost certainly would
increase the uncertainty in the parameters, reemphasizing our
main point. Moreover, in using historical data, we are follow-
ing essentially all previous smallpox modeling studies; given
that our goal is to suggest a modification to the methodology
of such studies, using historical data is appropriate.

The likelihood is then based on

Dataij � N�Deadij, � I
2�

Deadij � � I f�R0,I, � , �� .
[4]

Here, Dataij and Deadij are, respectively, the observed and
predicted number of individuals who died in the ith epidemic at
time j, and f(R0,I, �, �) is the model’s prediction of the number
of individuals recovering and dying. Because of differences
between Old World and New World populations, we allowed
some parameters to differ between them (15), and so I indicates
whether a population is Old World or New World. Note that we
assume that the errors in the fit of the model to the epidemic data

are normally distributed. Our reasoning for this choice is that the
population sizes in the epidemic data were in the hundreds; for
such sample sizes, a normal distribution typically provides a good
approximation to a binomial distribution. Moreover, the normal
distribution is computationally convenient, particularly in the
current Bayesian context. More generally, using a binomial
distribution would be equivalent to assuming that all of the error
in the fit of the model is simply binomial sampling error. A
normal distribution in contrast allows the magnitude of the error
to be independent of its mean size and, thus, is in this case a
conservative choice.

An important feature of our likelihood calculation is that,
because of the sparseness of the observations over time, we
assumed that any discrepancies between the model and the data
were due to independent recording errors. Because modeling the
(positive) autocorrelation process probably would have in-
creased overall uncertainty, this is a conservative assumption.
We thus assumed that stochasticity in transmission was manifest
between epidemics, rather than within epidemics. Previous work
(22, 24) in contrast has focused on stochasticity within epidemics,
particularly that due to small population sizes. The population
sizes in our data set, however, were large enough that such
stochasticity was probably weak (Table 3; ref. 25). A related issue
is that previous Bayesian smallpox analyses have used the even
simpler SIR model and have considered only single epidemics
(26, 27) or exponential growth of the infected class (17). By using
the SEIR model, and by considering multiple epidemics, our
estimates should better reflect overall uncertainty.

The likelihood was evaluated numerically by solving the
differential equations with standard methods (see supporting
information). Because of the complexity of the likelihood, the
posterior distribution can be formulated only up to the propor-
tionality constant and can be evaluated only pointwise. To
generate samples from the posterior, we therefore followed
standard practice in using a Markov chain Monte Carlo algo-
rithm that replaces each multidimensional random draw with a
sequence of single-parameter, or at least lower-dimensional,
draws (26). We assessed convergence by using standard Brooks-
Gelman and Geweke criteria (28, 29).

This work was supported by a grant from the Environmental Protection
Agency.
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