
Infectious Disease Modelling 7 (2022) 690e697
Contents lists available at ScienceDirect
Infectious Disease Modelling

journal homepage: www.keaipubl ishing.com/idm
Epidemic time series similarity is related to geographic
distance and age structure

Tad A. Dallas a, *, Grant Foster a, Robert L. Richards b, Bret D. Elderd b

a Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
b Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70802, USA
a r t i c l e i n f o

Article history:
Received 6 September 2022
Received in revised form 20 September
2022
Accepted 21 September 2022
Available online 12 October 2022
Handling Editor: Dr HE DAIHAI HE

Keywords:
Epidemic similarity
SARS-CoV2
Age structure
Distance decay
* Corresponding author. University of South Caro
E-mail address: tdallas@mailbox.sc.edu (T.A. Dal
Peer review under responsibility of KeAi Comm

https://doi.org/10.1016/j.idm.2022.09.002
2468-0427/© 2022 The Authors. Publishing services
BY license (http://creativecommons.org/licenses/by/
a b s t r a c t

Objective: More similar locations may have similar infectious disease dynamics. There is
clear overlap in putative causes for epidemic similarity, such as geographic distance, age
structure, and population size. We compare the effects of these potential drivers on
epidemic similarity compared to a baseline assumption that differences in the basic
reproductive number (R0) will translate to differences in epidemic trajectories.
Methods: Using COVID-19 case counts from United States counties, we explore the
importance of geographic distance, population size differences, and age structure
dissimilarity on resulting epidemic similarity.
Results: We find clear effects of geographic space, age structure, population size, and R0 on
epidemic similarity, but notably the effect of age structure was stronger than the baseline
assumption that differences in R0 would be most related to epidemic similarity.
Conclusions: Together, this highlights the role of spatial and demographic processes on
SARS-CoV2 epidemics in the United States.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The most recent pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has highlighted the pressing
need to understand how epidemics emerge and spread, and how epidemic models may be used for control and mitigation
efforts. Models are used to estimate parameters of interest, which are then used to calculate composite properties (e.g., basic
reproduction number R0 (Brauner et al., 2021; Ives & Bozzuto, 2021);) and to simulate epidemics under different mitigation
scenarios (e.g. (Baker et al., 2020; Hinch et al., 2021; Sun et al., 2020),). However, these composite pathogen properties are not
properties of the pathogen alone, but are conditional on the host population. Differences in susceptibility and contact patterns
among individuals is critical to pathogen transmission and epidemic trajectories (Yin et al., 2017). Measures of R0 e quan-
tifying the approximated number of secondary cases from a single case in a wholly susceptible host population e based on
temporal case counts can hint at these differences in individual contact and transmission, but could also suggest differences in
pathogen strain diversity and numerous other factors contributing to epidemic dynamics (Corcoran et al., 2020; Ives &
Bozzuto, 2021). Understanding the processes that lead to differing epidemic dynamics is a pressing research need, as
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many of these underlying drivers of estimated R0 may potentially change over time or with different intervention strategies
(Islam et al., 2021).

The SARS-CoV-2 pandemic has created a situation where it may be possible to start to disentangle the role of different
factors on resulting epidemic trajectories. For one, county-level data on infectious case counts provide a means to compare
how epidemics progressed at the county scale, and to compare epidemic trajectories between counties. At a basic level, this
allows for the comparison of epidemic trajectories to differences in R0, as the larger difference in R0 would suggest that the
epidemics should be quite dissimilar in their trajectories. For one, R0 may be estimated from the epidemic time series itself,
such that epidemics with similar R0 would naturally have similar dynamics. However, R0 is a simple composite measure
estimated from a time series that may belie the influence of mitigation efforts and fluctuating epidemic dynamics (e.g.,
COVID-19 case counts appeared in distinct waves, while R0 estimates do not use all waves (Ives& Bozzuto, 2021)). Apart from
similarity in R0 leading to similar epidemics, differences in epidemic trajectories may be driven simply by geographic space
between two epidemics. That is, epidemics should be more similar in nearby counties than in distant counties. This could be
driven by several interwoven drivers, which may not be reflected in differences in estimated R0, including spatial autocor-
relation in demographics, climatic effects on transmission, differences in mitigation efforts, or the movement of infectious
individuals.

But there is an inherent circularity here, in that estimates of R0 are based on the epidemic trajectories, such that pairwise
differences in R0 between counties should inherently be related to differences in epidemic trajectories. This creates an
interesting baseline for comparison. That is, differences in R0 should hypothetically relate to differences in epidemic trajectory
e barring time-varying R0 and assuming R0 can be estimated accuratelye simply because R0 is estimated from a portion of the
epidemic time series. Here, we explore how epidemic trajectories are related to differences in R0, and how other important
differences between counties may further influence epidemic trajectories. Specifically, epidemic trajectories may differ as a
function of geographic distance between counties, and differences in age structure and population size.We find that there is a
clear signal of geographic distance and demographic (population size and age structure) dissimilarity on resulting epidemic
trajectory differences for a set of 3139 US counties. We compare the strength of these relationships to the potentially circular
relationship between epidemic trajectory differences and differences in R0, finding that age structure dissimilarity is more
strongly related to epidemic trajectory similarity compared to differences in R0. Together, this suggests an important role for
age structure to epidemic emergence and progression, and highlights the importance of considering the spatial landscape of
infectious disease.

2. Methods

2.1. COVID-19 epidemic time series data

Time series case data for SARS-CoV-2 were compiled by the Center for Systems Science and Engineering at Johns Hopkins
University (Dong et al., 2020) for a set of 3139 United States counties, with recorded case counts every day for the period
between January 22, 2020, and May 9, 2022. These data were then rescaled to cases per 100,000 residents based on county
population estimates from the United States Census Bureau from 2019 (Loftin, 2019). County age structure data was also
obtained from the US Census Bureau (Loftin, 2019), and standardized to sum to one within a given county. Age structure
dissimilarity was estimated as the Euclidean distance between two counties in their age structure distributions. Estimates of
R0 were obtained from (Ives & Bozzuto, 2021), which were estimated from the epidemic time series directly.

2.2. Dynamic time warping

Dynamic time warping (DTW) is an approach to measure the similarity between two time series based on the notion that
there is not an inherent 1:1matching between values in each time series (Berndt& Clifford,1994), largely applied to problems
in speech (Amin&Mahmood, 2008) and gait (Boulgouris et al., 2004) recognition and comparison. The underlying idea is that
the speed of speech or gait could be different, while the actual underlying pattern is the same (e.g., the same words can be
spoken more quickly or with differing amounts of pauses). In our application to infectious disease, there is no reason to
believe that the pairwise difference in COVID-19 case counts between two counties is actually a measure of how similar the
epidemics are, given that the epidemics may have started at different times. This fundamental disconnect means that perhaps
it is more suitable to attempt to match the time series data based on the start of the epidemic or to use an approach which is
flexible to different epidemic start times, as we do here. By allowing an elastic transformation of the time series, DTW at-
tempts to minimize the difference between the two trajectories while accounting for phase shifts in epidemic dynamics
(Fig. 1).

DTWðx; yÞ ¼ minp2Aðx; yÞ
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here, we want to compare two epidemic time series (x and y), considering an alignment path p of all possible paths (Ax,y),
where i and j correspond to the position in the time series mapping onto the potential alignments, where q is a normalization
691



Fig. 1. The similarity of epidemic time series was estimated using dynamic time warping, where two time series (in blue and black in panel a) are mapped onto
one another (indicated by grey lines in panel a) to estimate epidemic dissimilarity. Pairwise similarity values were calculated for every pair of counties in the
United States (panel b). These pairwise values are then compressed to a low-dimensional space by using t-SNE (panel c), where each point represents a single US
county, and point color corresponds to estimated R0 from Ives & Bozzuto (2021).
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constant. The goal is to find an alignment which minimizes the overall dissimilarity between the two time series. We use the
dtw R package (Giorgino, 2009), and consider the dissimilarity between the time series to be the normalized cumulative
dissimilarity between the two time series. There is a possibility that the results could be sensitive to the inclusion of many
leading or trailing zero counts, where epidemics were on a fundamentally different timescale across US counties. While this
approach should account for this, we explore the effect of truncating the epidemic time series to include 5 leading and 5
trailing zero values before the calculation of the DTW values. Trimming the time series to remove these zero-values did not
affect our findings (see Supplementary Material).

2.3. What is related to epidemic similarity?

Epidemic similarity was measured by comparing epidemic time series for every pair of US counties using dynamic time
warping as described above. This creates a pairwise dissimilarity matrix, a square matrix estimating epidemic similarity
between all US counties. To project this high-dimensional matrix into lower dimensions for analysis, we used t-distributed
stochastic neighbor embedding (t-SNE), a method that offers a low-dimensional projection of high-dimensional data
(Gisbrecht et al., 2015). The result of this embedding is the production of two t-SNE axes, in which each axis contains one
value per US county, and the distance along each axis relates to epidemic dissimilarity, mapping counties out along the two
axes. This allows us to relate these low-dimensional axes representing epidemic trajectory similarity to differences between
counties in terms of spatial distance, demographics (e.g., age structure and population size), and estimated epidemic prop-
erties (R0 (Ives & Bozzuto, 2021)).

We used Moran's I to quantify the effects of geographic distance and age structure dissimilarity on resulting epidemic
similarity. That is, how similar are epidemics in different counties as a function of geographic distance between counties or
differences in age structure between counties? Originally designed as a measure of spatial autocorrelation, Moran's I is
essentially a distance-weighted Pearson's correlation, allowing the relationship between a distance matrix (e.g., pairwise
geographic distance between all US counties) and a county-level trait (e.g., t-SNE axis values). We related each t-SNE axis e
representing the projected epidemic dissimilarity between two US counties e to pairwise matrices of 1) geographic distance
between US counties, 2) age structure dissimilarity, 3) absolute difference in population size, and 4) absolute difference in R0.
The underlying idea being that counties that are closer to one another, with similar age structure, and not differing greatly in
population size or estimated R0 (Ives & Bozzuto, 2021) would also be closer together along t-SNE axes. All distance and
dissimilarity matrices e describing the relative difference in geographic distance, age structure, population size, and R0
among US county pairs e were standardized to be bound between 0 and 1, and inverted, such that the largest distances
corresponded to the smallest values. This allows us to calculate z-scores based on the null distributions, and to compare these
scores across the different distance/dissimilarity matrices.

However, we are fundamentally limited by the almost inherent collinearity between some of thesemeasures. For instance,
geographic distance and age structure dissimilarity were positively related, based on a Mantel test (z ¼ 247, p ¼ 0.001),
suggesting that more distant counties also have more dissimilar age structure. We explore this further in the Supplemental
Materials, where we use Mantel tests on the pairwise epidemic dissimilarity matrix directly, instead of attempting to project
the dissimilarity into two axes using t-SNE. However, regressions of distance matrices are notoriously error-prone (Legendre
et al., 2015), which is why we present the analyses of the t-SNE axes here. By compressing epidemic similarity into a low-
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dimensional space, more traditional regression techniques can be used. The results of both analyses are qualitatively similar
(see Supplementary Materials for further discussion).

2.4. Reproducibility

R code and data to reproduce the analyses is provided at
https://doi.org/10.6084/m9.figshare.19782406.v1.

3. Results

Pairwise epidemic time series similarity was calculated using dynamic time warping (DTW). These pairwise estimates of
similarity were weakly related to Euclidean distance in epidemic time series, suggesting that the DTW approach was able to
capture additional information relative to a more simple distance measure (see Supplemental Materials). The matrix of
pairwise DTW values were reduced to two axes using t-SNE (Gisbrecht et al., 2015). This low-dimensional representation of
site-level epidemic similarity showed clear spatial patterns for the first two t-SNE axes (Fig. 2). Interestingly, the spatial
patterns adhere to geopolitical (i.e., US state) boundaries in some instances, a phenomenonwhich may be due to differences
Fig. 2. The spatial distribution of epidemic trajectory similarity (t-SNE decomposition of the pairwise dynamic time warping matrix). In this geographic pro-
jection of the t-SNE values, there are clearly some states which cluster, suggesting similar mitigation efforts, sampling/reporting biases, and/or epidemic
trajectories.
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between states in case reporting standards and practices (Sen-Crowe et al., 2021), but is worthy of future investigation. The
extent to which geographic distance is related to epidemic similarity is difficult to discern, as we observed spatial structure in
population age structure differences (Fig. S3), as well as clear relationships between R0 and population size (Fig. 3).
3.1. What is related to epidemic dissimilarity?

Despite these difficulties, we find a clear relationship between epidemic similarity and geographic distance, age structure
dissimilarity, and differences in population size and R0 between counties (Table 1). These relationships were estimated using
Moran's I, relating the two axes of epidemic similarity to pairwisematrices describing differences in age structure, geographic
distance, R0, and population size. Moran's I is scaled between�1 and 1, where a value of 0 represents a lack of distance-based
(or dissimilarity-based) autocorrelation (either negative or positive). All estimated Moran's I values in the current analysis
were positive, suggesting positive spatial autocorrelation for all dissimilarity and distance matrices examined here. Both t-
SNE axes e representing epidemic dissimilarity e were positively related to 1) geographic distance between US counties, 2)
age structure dissimilarity, 3) absolute difference in population size, and 4) absolute difference in R0 (Table 1). Geographic
distancewasmore related to both t-SNE axes relative to age structure, population size, and R0 based on both the raw observed
value and the corresponding standardized z-score (Table 1). Differences in R0 between counties showed the next strongest
signal in the t-SNE axes, followed by age structure dissimilarity (Table 1).
Fig. 3. The relationship between t-SNE axes and county population size, with point color corresponding to R0, highlighting the distribution of t-SNE values, the
messy relationship between epidemic similarity and county population size, and the clear scaling of R0 with county population size.
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Table 1
Moran's I analysis exploring how t-SNE axes are related to geographic distance, age structure dissimilarity, difference in population size, and difference in R0.
Mantel tests use a randomization approach to generate null distributions to compare observed (obs) to null (exp and sd) distributions. Z-scores estimate the
divergence of the test statistic from the null distribution.

covariate t-SNE axis obs exp sd p-value z-score

Geography 1 0.02963 �0.00032 0.00014 < 0.0001 216.3
2 0.01930 �0.00032 0.00014 < 0.0001 141.7

age structure 1 0.00043 �0.00032 0.00001 < 0.0001 60.5
2 0.00017 �0.00032 0.00001 < 0.0001 39.4

population size 1 0.00002 �0.00032 0.00003 < 0.0001 11.7
2 0.00004 �0.00032 0.00003 < 0.0001 12.3

R0 1 0.00339 �0.00032 0.00003 < 0.0001 110.7
2 0.00135 �0.00032 0.00003 < 0.0001 49.8
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4. Discussion

Here, we explored how geographic space, demographics, and R0 influence differences in epidemic trajectories for over
3000 United States counties. We expected e and found e that counties with similar R0 values tended to have similar epi-
demics. Independent of this, we found clear effects of geographic distance between counties and dissimilarities in county age
structure on resulting epidemic trajectories, suggesting that R0 estimated from case or mortality data (Ives & Bozzuto, 2021)
may not capture the full potential of the epidemic in a given location. Together, we highlight the importance of considering
population demographics, age-specific contact network structure, and geographic distance when attempting to estimate
epidemic trajectories. While we approach the problem as one of pairwise dissimilarity in epidemics, it may be possible to use
similar approaches to recreate an expected epidemic time series for an unsampled location given information on geography
and demography.

Spatial structure in both age structure and population sizes precludes the attribution of any form of causal link between
age structure or geographic distance and resulting epidemic trajectories. However, our findings, based on the entire epidemic
time, broadly agreewith similar studies which focused on components of the transmission process or summary statistics such
as R0. Further, the analyses can be updated as the epidemic progresses, or using different time windows to explore how time
series clustering changes temporally. It is recognized that both parts of the transmission process e encounter and suscep-
tibility e vary with individual age (Covid et al., 2020; Jones et al., 2021; Kerr et al., 2021; Magpantay et al., 2019), suggesting
that for some pathogens including SARS-CoV-2, considering the age structure is quite important to epidemic forecasting (Kerr
et al., 2021). Additionally, geographic patterns in R0 (Ives & Bozzuto, 2021), non-pharmaceutical interventions initiation and
compliance (Amuedo-Dorantes et al., 2021; Yang et al., 2021), and vaccine hesitancy (Zuzek et al., 2022) have emerged as
potential drivers for spatial variation in epidemic progression (Richards et al., 2022). By comparing epidemic trajectories
directly, using a flexible framework which allows epidemics to be sampled at different timescales, we have found that these
similarity patterns in summary values, transmission components, and intervention uptake scale up directly to the similarity
between entire epidemics.

One major result is the marked state-level clustering of epidemic similarity (Fig. 2). Previous clustering of US states was
observed early in the pandemic at the state-level (Rojas et al., 2020), potentially reflecting large scale differences in mitigation
protocols (e.g., closing bars and restaurants) or differences in testing regimes across US states. The consistent clustering at US
state level when considering counties as the unit of study suggests that state-level variation in reporting, testing, or miti-
gation may manifest to influence epidemic similarity. Understanding the cause of this clustering may help to inform miti-
gation efforts, and help to uncover differences in testing or reporting that may be important to understand spatial patterns of
infectious disease.

It is interesting that epidemic similarity showed clear signals of geographic distance, age structure, and county-level
differences in population size and R0, given that counties also varied in other marked ways. For instance, differences in
non-pharmaceutical interventions, vaccination rate variation, and other demographic factors which we recognize are
important to pathogen spread (Abedi et al., 2021; Ge et al., 2022; Zuzek et al., 2022) did not mask the effect of age structure.
One reason for this may be that age structure is serving as a surrogate for other measures of population demography not
inherently related to age-structured transmission. That is, differences in vaccination hesitancy (Zuzek et al., 2022) and risk
perception (Bruine de Bruin, 2021) may differ across age groups. One way to parse this out would be to examine epidemic
trajectory similarity in other geopolitical locations and at different spatial scales, where the relative influence of geographic
connectivity, population demographics, and pathogen strain diversity may be quite different. The incorporation of temporal
information on mitigation efforts, strain diversity, and availability of health care infrastructure is a clear next step to un-
derstanding and forecasting epidemic time series. This effort is obviously not aimed at forecasting directly, but could
potentially be used to infer approximate epidemic dynamics for future epidemics or to explore how deviations from epidemic
trajectories between neighboring counties (or those with similar age structure) may be driven by other critical variables.

The COVID-19 pandemic will not be the last pandemic (Medicine, 2022), and understanding the factors which influence
epidemic dynamics are intrinsically important to public health measures. Perhaps this current pandemic is a special case, as
comparisons in R0 between SARS-CoV2 and 1918 pandemic influenza revealed little consensus in heavily impacted cities
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(Foster et al., 2022). But it seems relevant to use approaches such as the one we do here to understand how epidemic tra-
jectories differ, both within the same pandemic and potentially for different pathogens (e.g., how dissimilar are temporal
patterns in seasonal flu epidemics in a given location?). The comparison of epidemic trajectories e especially along moving
windows as the epidemic progresses e can provide insight into the relative effects of different mitigation and control efforts.
Finally, while many approaches to forecasting epidemics rely on a single time series, this work alludes to the possibility of
incorporating information on nearby or similar time series, creating the possibility of joint epidemic forecasts.
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