

Team 74: IEEE Region 5 Robotics Competition Julia Goodridge, Jordan Holland, Azam Mojy, Christian Pilgrim, Julie Reinecke, Daniel Sagona, Landon Weber

Competition Overview

Objective Statement:

To create a mobile, autonomous robot capable of traversing the competition board through edge, obstacle, block, and mothership detection, while prioritizing block sorting, depositing, transporting and letter recognition.

Competition Specifications:

- Round Length 6 minutes
- Competition Board 8 x 8 Feet
- Block Location Provided via JavaScript file
- Mothership Location Unknown
- Obstacle Location Unknown
- Minimum Object Clearance 6 inches
- Block width 1.5 inches cubed
- Obstacle height 3.57 inches
- Mothership Height 1.25 inches
- Mothership Ramp Width 8 inches
- Cannot be idle > 10 seconds

Competition Constraints:

Specification	Outcome
Weigh < 40 pounds	Robot weighs: 12.5lbs
Fit within 1 cubic foot	Robot dimensions: 11.5in x 11in x 11.5in
Non chemical/explosive PWR SUPP	Lithium Polymer Battery
LSU Issued Project Budget	Total robot cost: \$1,572

Point Allocation System:

- +5 points per block picked up
- +15 points per block when placed in the mothership
- +30 points per block placed in the correct slot in the mothership
- +75 points for a perfect run
- +25 for returning to starting position after perfect run
- -5 points deducted per obstacle hit

Round 1	Round 2	Round 3
2 blocks, 5 obstacles	4 blocks, 10 obstacles	6 blocks, 15 obstacles
175 points max	275 points max	375 points max

Project Timeline:

IEEE Competition **Rules Released** September

Finalized Robot Design October

Sponsors: LSU ECE Department

College of Engineering School of Electrical Engineering & Computer Science

Concept Design

Overall Functional Requirements:

Specification

Outcome

Autonomy	Achieved via Ultrasonic, IR Sensors & Arduino
Multidirectional Movement	Achieved via drivetrain system
Avoid Obstacles	Achieved via drivetrain and IR Sensors
Intake Blocks	Achieved via drivetrain, sweeping arm & IR senso
Store Blocks	Achieved via sorting belts & sorting flap
Deposit Blocks	Achieved via storage bays & string release
LED Finishing Light	Fabricated LSU LED PCB
Start & Stop Buttons	Installed via PCB board

Functional Decomposition:

Robot Design Prototypes:

Original Solidworks Model

Final Prototype

Completed Part Research November

Order Materials & Parts January

Complete Component Testing February

To Predict > To Design > To Perform

ME, ECE Capstone Design Programs

Category Breakdown
Aluminum sheets & rods, plexiglass & shop use
Ultrasonic sensors, Infrared Sensors, and cameras
Batteries, charger & PCB Fabrication
Continuous servo motors, wheels & gears
Raspberry Pi 3 B & Arduino MEGA 2560
Battery Bag and fans
Fundraised for spare, replacement & additional pa

MECHANICAL 23%

\$367

Conclusion:

^{1%} \$20

\$70/

Prior to the LSU IEEE Robotics Competition, the robot met all IEEE measurable specifications but not all functional requirements due to time constraints and obstacles encountered during multiple aspects of robot fabrication. After winning the LSU IEEE Competition, our team competed in the IEEE Region 5 Competition in Lafayette. The robot was able to move around the board, but was unable to place in the competition due to sensor malfunctions. Since competition, our final robot now meets all functional requirements, except for letter based block sorting.

- ✓ Block Intake
- ✓ Obstacle Avoidance
- ✓ Edge Avoidance
- ✓ Block Storage

- ✓ Camera Letter Recognition
- X Letter based sorting/depositing

✓ Weighs 12.5 lbs. ✓ 11.5 X 11 X 11.5"

Complete Robot Construction March

2019 IEEE Competition April

Advisor: Dr. Ramachandran Vaidyanathan

