

### College of Engineering Department of Mechanical & Industrial Engineering

## **Project #50: Polymer Hybrid Manufacturing** Dominic Cordaro, April Gaydos, Christian Lashover, Alexander Ledo, Samir Sanchez, Giovanni Sequeira

### Objective

To integrate an Ambit Polymer Extrusion System with an existing Haas CNC Mini Mill and demonstrate the advantages and limitations of hybrid manufacturing by producing a large-scale test article.

#### Background

Hybrid manufacturing utilizes both subtractive and additive manufacturing in a single system to incorporate the benefits of both processes. The Ambit is a prototype product designed to retrofit CNCs with these advanced capabilities.

#### **Engineering Specifications**

| Specification              | Target Values  | Measured Values  |  |
|----------------------------|----------------|------------------|--|
| Build Plate<br>Temperature | 20 °C – 135 °C | 90 °C            |  |
| Extruder<br>Temperature    | 220 °C         | 220 °C           |  |
| Layer Height               | < 0.15 inches  | .05 inches       |  |
| Spindle Speed              | 35 - 200 RPM   | 50 - 97.5 RPM    |  |
| Extrusion Rate             | 70% - 130%     | 70% - 130%       |  |
| Feed Rate                  | 24 - 150 IPM   | 24, 80 - 149 IPM |  |

### **Functional and Process Requirements**

| Satisfied |
|-----------|
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |

Polymer Hybrid Manufacturing System Located at LSU Additive Manufacturing and Machining Facility

#### **Pilot Te** Goal: F varianc parame





Shapiro- $H_0$  so da distribut within c control

### September

Research & Concept Generation

Concept Selection & Test Plan Development

October

Material Sele & Analysis

**Sponsor: Mr. Andrew Mallow** 







## **Polymer Hybrid Manufacturing System**

#### **1. Dryer and Hopper**

Closed loop system used to dry, store, and supply polymer pellets at desired temperatures

#### 2. Emergency Stop

Shut down electric power to all moving and heated subsystems connected through the power enclosure

**3. Heated Build Plate** Adheres printed part's first layer to the heated surface for additive and subtractive processes

#### 4. Ambit PE-1

Prototype polymer extrusion head compatible subtractive manufacturing systems

### **5. User Interface**

Process monitoring via temperature sensors and camera, data collection



|                                                                                                                             |                      | Parameter and Quality Evaluation                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------|
| <b>Test – Center Point Run</b><br>Find the distribution and<br>ce of data recorded based on<br>eters below.                 |                      | S 14 Avg=13.43                                                                                      |
| Spindle Speed                                                                                                               | Feed Rate            |                                                                                                     |
| 50 RPM                                                                                                                      | 24 IPM               | LCL=8.96                                                                                            |
| Pilot Test Print Species<br>D-Wilk test fails to<br>lata is normally<br>uted and all same<br>control limits she<br>l chart. | o reject<br>ples are | <section-header><section-header><section-header></section-header></section-header></section-header> |
| ovember                                                                                                                     |                      | December > January                                                                                  |
| ection, Modeling                                                                                                            | Ambit I              | nstallation, Controls Integration & M                                                               |

Product Ordering

| Response Surface Test Print Parameters |               |           |
|----------------------------------------|---------------|-----------|
| Test                                   | Spindle Speed | Feed Rate |
| 1                                      | 52 RPM        | 80 IPM    |
| 2                                      | 52 RPM        | 150 IPM   |
| 3                                      | 52 RPM        | 115 IPM   |
| 4                                      | 97 RPM        | 150 IPM   |
| 5                                      | 70 RPM        | 150 IPM   |
| 6                                      | 97 RPM        | 115 IPM   |
| 7                                      | 70 RPM        | 115 IPM   |
| 8                                      | 70 RPM        | 115 IPM   |
| 9                                      | 97 RPM        | 80 IPM    |
| 10                                     | 70 RPM        | 80 IPM    |

January ation &

# To Predict > To Design > To Perform

# ME, ECE Capstone Design Programs



## NCAM Vational Center for

| Advanced Manufacturing                                                                                                                                                                                |               |           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|--|--|
| Outcomes                                                                                                                                                                                              |               |           |  |  |
| <b>Optimal Outcomes</b>                                                                                                                                                                               | Spindle Speed | Feed Rate |  |  |
| % Elongation (1.61%)                                                                                                                                                                                  | 111 RPM       | 115 IPM   |  |  |
| Ult. Tensile Strength (16.15 MPa)                                                                                                                                                                     | 110 RPM       | 118 IPM   |  |  |
| Reduced Layer Time (35 s)                                                                                                                                                                             | 75 RPM        | 124 IPM   |  |  |
| Near Net Shape – Width (± 0.06 in)                                                                                                                                                                    | 127 RPM       | 130 IPM   |  |  |
| Near Net Shape – Height (± 0.07 in)                                                                                                                                                                   | 70 RPM        | 121 IPM   |  |  |
| Horiz Vert Factor<br>Spindle Speed %<br>Feed Rate %<br>Contour Current Y Lo Limit Hi Limit<br>Ultimate Tensile Strength [Mpa]<br>10<br>120<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 |               |           |  |  |

The contour profile and response surface plot were populated using the outcomes of the tensile testing performed (ASTM D638) through response surface methodology

| Conclusions                                                                                                                                                                                                       |                                                                                                                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Advantages                                                                                                                                                                                                        | Limitations                                                                                                                                                                                      |  |
| <ul> <li>15x faster than a desktop<br/>3D printer</li> <li>Suited for large build<br/>volumes</li> <li>Direct control during<br/>operation including<br/>changing layer time to<br/>affect layer bonds</li> </ul> | <ul> <li>Transition time</li> <li>High variance throuprints</li> <li>Minimal document regarding parameter their effects</li> <li>Maintenance – difficostly</li> <li>Unreliable system</li> </ul> |  |

#### **Recommendations:**

- Implement and evaluate a quality control plan
- Scale to larger equipment allowing for increased layer time and decreased operator parameter control



Manufacturing, Controls Integration & Product Ordering

February

Testing, Validation and Quality Analysis

#### Advisers: Dr. Palardy, Dr. Ikuma







