

## **Team #48 Mechanical Pig for Pipeline Cleaning** Logan Goynes, Adele Perrier, Patrick Pham, Brown Putnam, Siddiq Zulendra

# Background & Objective

A pig is a device used in the oil and gas industry to remove debris from pipelines. Team 48 created and tested\* a mechanical cleaning pig to avoid getting stuck due to paraffin wax build-up in pipelines.

\*team designed and built test loop

# **Engineering Specifications**

| Pipe/Pig Diameter<br>4"         | Pig/Pipe Tolerances<br><u>+</u> 1-5%                              |  |
|---------------------------------|-------------------------------------------------------------------|--|
| Pig Length<br>6-7"              | Steps to launch/recover<br>3<br>Paraffin Wax to Remove<br>80-100% |  |
| Pig Weight<br>6-10 lbm          |                                                                   |  |
| Paraffin to Overcome<br>1-6 lbm | Pig launch/recovery time<br>10-15 mins                            |  |
|                                 |                                                                   |  |

| 1-6 lbm 10-15 mins                       | Ma                                                          | nufacturing                              |
|------------------------------------------|-------------------------------------------------------------|------------------------------------------|
| Safety Considerations                    | Test Loop                                                   | Pig                                      |
|                                          | · • • • •                                                   | Waterjet: create polyurethane            |
| Avoid pipeline damage                    | pipe, and joints                                            | polyethylene annular discs               |
| Avoid over pressuring pipeline           | Assemble test loop                                          | Turning: create threads on stee          |
| Avoid overheating pipeline               | CPVC cement sections                                        | Weld end cap onto steel batte housing    |
| Wear safety goggles and close toed shoes | Teflon tape threads                                         | Assemble electrical circuit              |
| September > October > November >         | December                                                    | January > Februar                        |
|                                          | iled analysis &<br>odiment planning<br><b>inkwater Prod</b> | Procurement Protot<br>assem<br>ucts Advi |



**College** of Engineering School of Electrical Engineering & Computer Science







A finite element analysis determined 0.404" of paraffin will stop the pig. 2-D axisymmetric elements were used.



Above: (left) free body diagram of pig face; (right) FEA results

Force due to

pressure

0.25"

Max deflection = 2.78"

# **To Predict > To Design > To Perform**

# ME, ECE Capstone Design Programs





## **Testing Results**







Above: (left) heating element calibration; (right) paraffin wax application

# Spending



### March April otype manufacturing & Testing & mbly Verification

### *viser: Dr. Ram Devireddy*