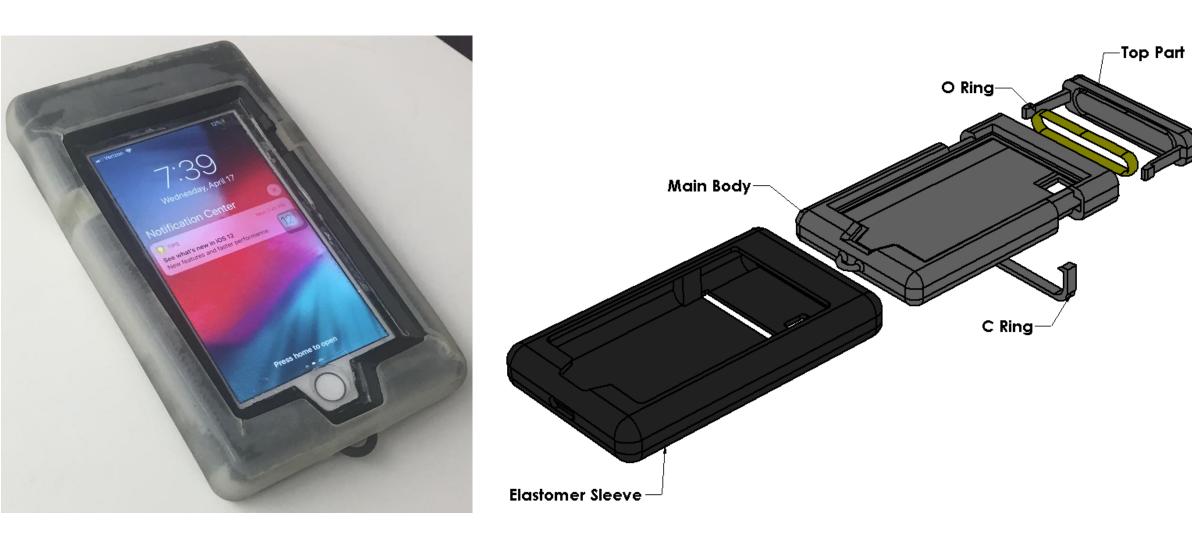
# ME, ECE Capstone Design Programs

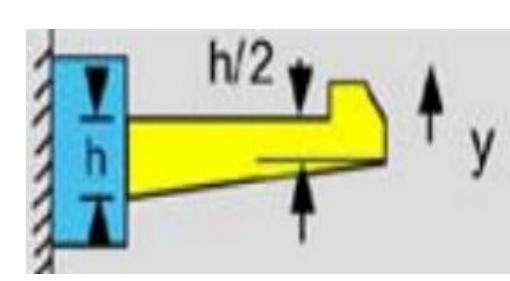
# Team #38 Certified Cases for Ruggedized Prices William Belleu III, Beau Brown, Travis Epps, Andrea Willis

#### **Objective Statement**

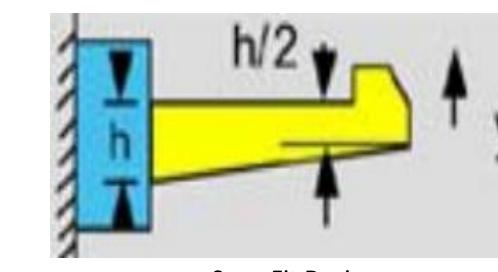

- To design and manufacture an iPhone case that is cost effective, \$100-\$200 per case, and certifiable for use in Class Division 2 hazardous locations
- To develop a business plan for mass-production of the case.

#### Background

- Shell Geismar Plant- Class 1 Division 2 Group B Hazardous Location
- iPhones must be sealed from the atmosphere to ensure an explosion does not occur
- Cases currently in use cost \$650 per case

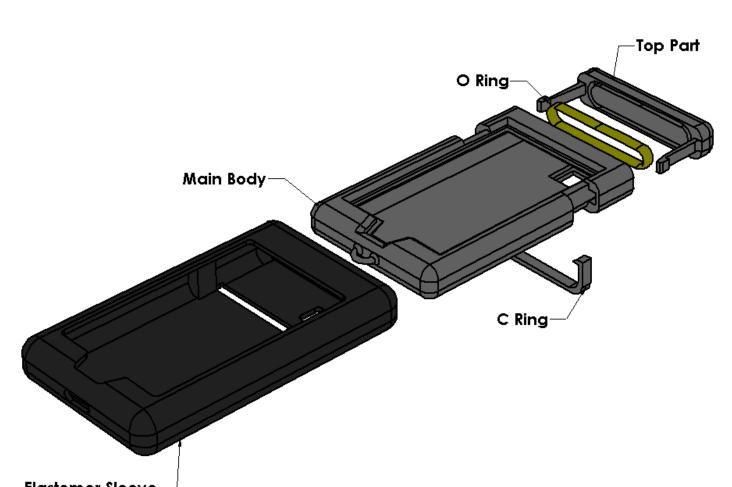

Research

#### **Engineering Specifications Specification** Value Measurement 99 of 100 **Touch Sensitivity** 100 touches Number of touches to get response ≥ 33° 60° Slip Angle Height of Survivable Drop 3 feet ≤ 10 feet 400% Relative Volume of Case to iPhone ≤ 300% Volume 212% ≤ 200% Relative Weight of Case to iPhone Weight Number of Parts in Case ≤ 5 parts Number of Materials in Case ≤ 5 materials · Number of Assembly Cycles until Failure 1460 cycles 1500 cycles Unit Cost per Case \$106.84 ≤ \$200 **Certification Specification** Value Measurement Depth of Water Case Remains Sealed 25 mm 75 mm Height of Survivable Drop 3 feet 3 feet (· ·) Max Surface Temperature of Outside of < 175° F 113° F Case Develop Problem Statement and Engineering Spece Ptember




#### **Engineering Analysis**

- Force to compress O-ring:
  - F=30 lbf
- **Snap Fits** 
  - Length= 1.00 in
  - h= 0.125 in
  - Deflection: y=0.125 in
  - Deflection Force: P=0.347 lbf
- Impact Force from 10 ft drop:
  - $F_{impact} = 515 lbf$
- **Material Indices** 
  - $M_1 = E/\rho$   $M_2 = \sigma_v/\rho$




FEA of Impact Load on Case



F/2 **Snap Fit Design** • Manufacturing Starts January

#### **Prototype Design**



## Manufacturing/ Assembly Plan

Shell

- **3D Printing: Markforged X7 and Stratasys Objet 260** 
  - Elastomer Sleeve & O-ring- Tango
  - Main Body & Bottom-Kevlar reinforced Onyx
- Assembly
  - Adhesive for Screen protector: Durable Resin



### **Testing/ Safety**

- Testing
  - Fatigue of snap-fit legs
  - O-ring test
  - Creep test
  - Leak test
  - Drop test
  - Slip Angle test Safety
    - Case must be sealed when in a hazardous

location

Check case for leakage after impact



Leak test after drop

Budget

#### **Mass Production**

- **Certification Cost:** \$21,700
- **Screen Protector:** \$0.10 per case
- **Injection Molding**

O-ring

- Mold cost: \$37,000
- Price per case: \$3.53
- Tooling: \$3,000
- Price per ring: \$0.36

| No.   | Unit               | No.     | Unit  |
|-------|--------------------|---------|-------|
| Units | Cost               | Units   | Cost  |
| 50    | \$1,238            | 500     | \$127 |
| 100   | \$621              | 1,000   | \$66  |
| 200   | \$312              | 10,000  | \$10  |
| 315   | <mark>\$200</mark> | 100,000 | \$5   |



Contingency Manufacturing

Integrated System Testing Prototype Sent to Intertek for Testing

- Subassembly Testing February-March
- Snap Fit Fatigue Leak Testing

Creep

. 6.300e+03 . 5.727e+03 . 5.155e+03

- Develop Plan for Mass Production
- Advisor: Dr. Guoqiang Li



Free Body Diagram of Top Part of Case

- Prototype Material/ Parts Ordering

Obtain UL Standard 121201 Concept Generation and Selection