

College of Engineering Department of Mechanical & Industrial Engineering

St. Lillian ACADEMY

Team #9: Portable Lightweight Wheelchair Jay Patel, Navinderbir Sondh, Joseph Tanner, William Tujague

Background Information

Our primary customer is the mother of an 11-year old girl with **Cerebral Palsy (CP)** which is a neurological disorder impairing the voluntary control of muscle movement.

Objective Statement

Design a wheelchair that increases convenience for the handler when traveling with the occupant while maintaining a high level of safety, support, and comfort for the occupant.

Safety Considerations

Manufacturing Safety:

Follow LSU's Equipment Specific Safety Rules and General Machine Shop Policy.

Clients' Medical Safety:

Secure occupant safely, incorporate an ergonomic design to prevent injuries to the occupant, and use hypoallergenic and moisture resistant material selection.

Engineering Specifications			
Objectives/ Specifications	Target	Achieved	
Weight	\leq 30 lbs.	34 lbs.	
Collapsed Dimensions	46 x 30 x 16 (inches)	44 x 28 x 16 (inches)	
Collapse Time	< 30 seconds	25 seconds	
Assembly Time	< 30 seconds	36 seconds	Intering Fertilities
Number of Steps	< 4 steps	7 steps	Maxi
Load Bearing Capacity	120 lbs. Satisfies RESNA WC-1: Section 8	120 lbs. (S.F. of 1.5) RESNA WC-1: Section 8	 The winder de sting
August September October			
 Met with Client 	 Engineering Specifications 	 CAD Modeli Analysis 	ng • •

Sponsors: Elissa McKenzie, Jack Rettig

Push Button Ratchet Joints Cup Holder Brakes Lateral Supports 4-pt. Harness Knee Pommel Lab Belt Locking Mechanisms

Footplates

Collapsed Position

Engineering Analysis

imum Deflection: 0.05 in

ne maximum deflection in the seat base ill never exceed 1/16 in based on ANSYS eflection analysis. It was required to add iffeners to strengthen the seat base and ack.

November

Testing Methods Manufacturing Plans

- December
- Conceptual Design Order Parts and **Materials**

Individual Component Testing: Individual members were tested under tensile, bending, and torsional loading conditions.

- **RESNA** Testing:
- 120 lb. test dummy was used to imitate body centers of mass for dynamic testing.

January

- **IRB** Certification **Build Testing** Apparatus
- Begin

To Predict > To Design > To Perform

ME, ECE Capstone Design Programs

Testing Results

RESNA:

Load Capacity: Pass Drop Test (2 in): Pass Impact (25 kg): Pass

Component:

Tension: 140 lb-f Bending: 300 lb-in Torsion: 100 lb-in

Manufacturing

Welding

Testing

February

manufacturing Prototype

Manufacture and Assemble

- - Testing

Client

Advisor: Dr. Dorel Moldovan

LSU IRB Approved Surveys were conducted to evaluate the qualitative components of our design. **Aesthetics:**

Comfort: Ease of Use:

4.6/5 4.8/5 4.4/5

Project Budget and Spending

 $\boldsymbol{\theta}_{tip}$ $\theta_{f}: 20.7^{\circ}$ $\theta_{\rm b}$: 28.9° $\theta_s: 24.2^\circ$

Other, \$151.06, 6% Shop Services,

\$332.72, 14%

