College of Engineering Department of **Mechanical & Industrial Engineering**

Team# 5 : Rapidly Deployable, Modular Flood Barrier Daniel Basham (ME), Deas Pratama (ME), George White (ME)

Objective Statement

To design a rapidly deployable and modular flood prevention system that can protect a structure against flood water, and adapt to multiple terrain

Significance

A onetime flood can cause a lifetime in damage and financial strain. Many of these existing flood barriers do not protect flood waters that reach 5 ft. and expensive compared to the flood water height and the linear feet they protect against. The goal for this project is to create a flood protection system which can protect residents from standing and receding flood waters, as well as water traveling back through drains and to remove any water that has accumulated inside of the flood barrier.

Functional Requirements

1) System must be rapidly deployable

2) System must be modular

3) System must protect from hydrostatic and dynamic forces

4) System must be able to adapt to uneven terrain

5) System must prevent backflow through pipes caused by flood

6) System must be able to remove accumulated water inside perimeter

Engineering Specifications

Engineering Specifications	Target	Achieved
1) Rapidly Deployable	100 Linear feet/hour	107 Linear feet/hour
2) Working Time	7 Days	Х
3) Cost	15,000	\$ 24,500
4) Storage Space	11 ft (wide) x 12 ft (long) x 6 ft (tall)	9 ft (wide) x 11.5 ft (long) x 5.3 ft (tall)
5) Fit uneven Terrain	linear foot	Χ
6) Modularity	20 Parts/panel	38 Parts/panel
7) Flood Water Height	60 Inches	43 Inches
8) Hydrostatic Force	3,200 Pound Force (lbf.)	1,600 Pound Force (lbf.)
9) Water Velocity	2 ft/second (ft/s)	2 ft/second (ft/s)
10) Leak Rate Through Panel	0.06 GPM	3.2 GPM
11) Pipe Head of Drain plug	5 ft	13 ft

Manufacturing and Budgeting

Parts Name/Panel	Quantity	Dimension
3" PVC Frame	2 frames	8 ft (wide) x 6 ft (tall) x 3 ft (deep)
22 oz Vinyl Tarp	1 pcs	10 ft (tall) x 9 ft (wide)
Velcro	1 pcs	2 inches (wide) x 10 ft (tall)
# 15 Big Zip Zipper	1 pcs	(2 inches (wide) x 10 ft (tall)
Metal Cam Straps	18 pcs	(2 inches (wide) x 1 ft (tall)
Eurmax Galvanized Stakes	32 pcs	
	Dimension	Price
	Dimension	The
1 Panel of Flood Barrier	8 ft (wide) x 6 ft (tall)	\$ 700
35 Panels of Flood Barrier	280 ft (wide) x 6 ft (tall)	\$ 24,500

$$\frac{P_1}{\rho g} + Z_1 = \frac{P_2}{\rho g} + Z_1$$

$$P_1 = \rho g Z_1 + P_{at}$$

$$P_2 = P_{atm}$$

$$\frac{\rho g Z_1 + P_{atm}}{\rho g} + Z_1 = \frac{P_a}{\rho}$$

$$Z_2 = \frac{\rho g Z_1 + P_{atm}}{\rho g} + Z_2$$

$$Z_2 = 2 \times Z_1 + \frac{P_{atm}}{\rho g} - \frac{P_{at}}{\rho}$$

Sponsor and Adviser Dr. Warren Waggenspack

College of Engineering School of Electrical Engineering & Computer Science

ME, ECE Capstone Design Programs

To Predict > To Design > To Perform

The design failed to meet the requirements of water height and cost. The frame failed during the prototype testing. This was due to the stakes on the front legs being lifted out of the ground. The requirements of time to set up and storage were met. The engineering specifications of water velocity, and the ability to fit uneven terrain were not able to be quantified due to testing limitations. Qualitatively the design was able to handle velocity and uneven terrain. The prototype testing set up had several issues. The pool used in testing was not able to handle the loads caused by the testing; this caused the pool to shift. The issue of sealing the tarp to the wall of pool liner caused higher stress on the tarp and side frames and contributed to the leak Improvements and Recommendations on Design It would cause the vertical of stakes of apron (Ex: water bladder, water to be placed into position easier per linear foot **Improvements and Recommendations on Testing** shifting if that path is used) Stake Test Prototype Test Removal System Selected

Instructor: Dr. Keith Gonthier

