

College of Engineering Department of **Mechanical & Industrial Engineering**

Team #03: Corrosion Mitigation and Quantification Juan Amaya (ME), Sean Chance (ME), Elliott Mire (ME), Debby Syefira (ME)

Background

- Lower sections of structural steel beams are experiencing accelerated corrosion rates due to petroleum coke and moisture.
- Factors that can affect the corrosion rate are metal properties, chemical attack and atmospheric conditions.

Objective Statement

Research and develop cost effective solutions for mitigating corrosion. Test and validate the solutions to have one installed on site.

Engineering Specification		
Corrosion Rate Allowance	<5 mils/year	\checkmark
pH of The Corrosive Material	6-8	\checkmark
The Height of Coke Buildup	0"-36"	~
Temperature of Substrate	Amb-≈100°F	~
Relative Humidity	60-90+%	\checkmark
I-Beam Dimension	W8x31	\checkmark

Epoxy Coatings

Metallurgical Upgrade/Metallic Coatings

CAD Model and final assembly for stress corrosion cracking test for welded samples

Budget (\$20,000)

Estimated Cost for Installation: \$7,800 Budget Available: \$10,674

November

Engineering Analysis

Safety Consideration

- Coating SDS
- Installation vendor with good safety record
- Appropriate lab and site PPE
- metallurgical Mechanical properties of upgrade

September

Research Problem Concept Generation

Concept Evaluation & Selection

October

Drawings & Designs

Sponsors: Paul Koenig (Oxbow Calcining)

Field Testing

Objective: To obtain corrosion rate on metal/welded samples and measure performance of coated samples

- 1. Install each sample in field
- 2. Measure weight loss, hardness, and thickness over time
- 3. Observe microstructure

Thickness Readings of Coated Coupons

Dudick 325

\$56.00

Miscellaneous

\$560.00

Metal

Samples

\$440.00

Testing Cost

To Predict > To Design > To Perform

ME, ECE Capstone Design Programs

Testing & Analysis

Laboratory Testing

Objective: To obtain coating ranking in terms of effectiveness using a potentiostat and accelerated testing by heat cycles

Dudick 800: 0

Monitoring Stainless Steel Weld Cracking using NDT

Phased Array Ultrasonic Testing for internal cracks on weld

Microstructure of Coated Coupons

Sherwin Williams 8200

Testing & Analysis

Testing, Analysis, & Evaluation

Advisers: Dr. Sunggook Park