College of Engineering Department of **Mechanical & Industrial Engineering**

College of Engineering School of Electrical Engineering & Computer Science

To Predict ► To Design ► To Perform

ME, ECE Capstone Design Programs

College of Engineering

Project 46: Liquid Nitrogen Generator William Abbott, Trent Andrus, Chase Ellefson, Juan Gomez-Pineiro, Grant Landwehr, Daniel Luu, Jonathan Mire, Jeffrey Simms

Design and build a liquid nitrogen generator that produces nitrogen with a purity equal to, or above, 99.9%.

BACKGROUND

- Liquid nitrogen is useful in industrial and laboratory settings
- The LSU Cain Department of Chemical Engineering would like to have a liquid nitrogen generator to decrease need of nitrogen purchased from vendors

ENGINEERING SPECIFICATIONS

Performance	Supplied Utilities	Size	Safety
 ▼ 1 Liter/Day of LN2 ▼ 99.9% LN2 purity ★ 5 Liter storage capacity 	 Compressed Air at 690kPa Chilled Water at 283K Power: 120/208V, 20A 	_	 ✗ Insulate surfaces below 275K ▲ Sound level of 80dB
★- target value, ▲- maximum, ▼- minimum, red – specification not met			fication not met

Define Objective – Research System Design – Finalize System Design and Analysis – Parts and Equipment Selection – Complete Assembly of Subsystems – Initial Tests and Analysis – Full System Assembly – Final Tests and Analysis

Sponsors: Dr. John Flake

Advisers: Dr. John Flake

Cain Department of **Chemical Engineering**

AIR FILTRATION AND SEPARATION

1)Helium used as working fluid in
cryogenic refrigeration cycle
2)Helium gets to below nitrogen's
liquefaction point
3)Purified nitrogen enters cryocooler
4)Helium gas removes heat from
nitrogen

5)Nitrogen will reach a saturated state forming some liquid and some vapor 6)Pressure forces nitrogen out of cryocooler, through hose, and into dewar 7)Cold nitrogen chills dewar and begins to pool

SYSTEM DESIGN