College of Engineering Department of **Mechanical & Industrial Engineering**

College of Engineering School of Electrical Engineering & Computer Science

To Predict ► To Design ► To Perform

ME, ECE Capstone Design Programs

On-Line Phased Array Ultrasonic Testing (PAUT) System to Detect Scarfing Defects Esosa Agbongiator, Asad Al-Ghaithi, Dakota Havard, Michael Wascom, Tongyao Wu, Saiyada Zamin

Objective

Design a proof of concept on-line PAUT system to detect scarfing defects in pipe developed by a faulty weld trimming tool.

Background

A phased array ultrasonic testing (PAUT) system is an advanced technique of a conventional ultrasonic testing system in which multiple beams are pulsed at different time delays to create an image.

LGU

Figure 1: PAUT System

Figure 2: PAUT System Readings **Engineering Specifications**

		ional Doguiromente Evaluation		
	Functional Requirements		Explanation	
	Control Probe Position		Ability to adjust	
	Dissipate Heat from Wedge		To prevent failure	
	Operate Safely		Consider worker safety	
	Measurable Specifications		Value	
	Pipe Diameter		20 inches	
	Maximum Probe Temperature		140°F	
	Temperature of Pipe			254°F
	September	October	November	
	 Research Concept Development 	ModelingDesign Analysis	Design Revision	• P
_	Development			

Engineering Analysis Wedge Figure 3: Temperature Figure 4: Scan Plan Distribution at Steady State **Curved Rail** Figure 6: Stress Applied on Rai gure 5: Rail Deflection Due to Load Manufacturing and Assembly 2 Figure 8: Assembled System (3)Figure 9: Probe Holder • Purchasing Manufacturing · Assembly

Safety and Testing

Figure 10: Base Structure - Support

Figure 11: Probe Adjustment System Accuracy and Stability

Figure 13: Scanning System - Couplant

