College of Engineering Department of **Mechanical & Industrial Engineering**

College of Engineering School of Electrical Engineering & Computer Science

To Predict ► To Design ► To Perform

ME, ECE Capstone Design Programs

LSU

Team 24: NASA Human Exploration Rover Challenge

Nicholas Caruso Natalie Cousin Darren Dehesa Blake Elkins **Richard Hensarling**

Kathleen Edwards Hayden O'Neal Luke Landaiche

Jack Rettig ExconMobil 35 SOLIDWORKS

Background

Student competition at NASA in Huntsville, Alabama on April 12-14, 2018.

- · Design, build, test, and race human powered rovers on simulated planetary terrain course.
- Win points by completing obstacles and tasks.

Objective Statement

Design, manufacture, and test a robust human powered vehicle using fundamental and advanced engineering practices to complete the NASA competition mission objectives, in order to gain points and place first.

Engineering Specifications

Specification	Target	Actual
Maximum Speed	≥10 MPH	\checkmark
Turn Radius	≤ 15 ft	\checkmark
Vehicle Weight	< 170 lbs	×
Width	≤ 5 ft.	\checkmark
Fender Area	\geq 120 in ²	\checkmark
Collapsed Dimensions	≤5x5x5 ft³	\checkmark
Driver Clearance	\geq 15 in. from grade	\checkmark

Concept Selection

Oct 3 – Oct 18

Concept Generation

Sep 19 - Oct 2

Sponsors: Jack Rettig represented by Dr. Dimitris Nikitopoulos

CAD Model Versus Actual Prototype

Main Component Analysis

Frame

Loads Applied:

- 1500 lb. impact load
- 375 lb. at upper supports from suspension Fixed at seat supports

Results:

- Max Stress: 27.7 ksi seat supports
- · Yield Strength of 6061-T6 Aluminum: 40 ksi Factor of Safety: 1.44

Wheel

Loads Applied: 1500 lb. impact between spokes

Results:

- · Since tetrahedrals are unreliable, results were only used qualitatively
- · Max Stress: above yield at curve of supports · Increased the thickness of the spokes at this location

Testing

Testing Plans

Vehicle Turn Radius - Rover must be able to turn within the constraint in order to progress through the course Vehicle Stability - Steep inclines/rough terrain require rover to be stable with a well-positioned center of mass Vehicle Speed - Find the top vehicle speed and time to get there to accurately predict course time Proficiency - Rover needs to allow drivers to complete tasks,

as well as obstacles Dye Penetrant/Fillet Weld Bend Test - Examine weld fusion and porosity of welded Aluminum

Budget

Manufacturing

Water jet - Frame bracing, crankset supports, wheel spokes

CNC mill - Wheel hubs, connecting yokes, etc. CNC lathe - Suspension and frame connections Wire EDM - Control arm connectors Manual lathe - Shafts, collars, rear frame connectors

End mill - Rear wheel hubs, various frame components, boring/drilling

TIG and MIG welding - Aluminum and carbon steel

Engineering Analysis Purchasing Dec 1 – Mar 31 Oct 19 - Nov 30

Manufacturing/Assembly Dec 15 – Apr 1

Apr 1 – Ap<u>r 11</u>

April 12-14, 2018