College of

To Predict » To Design » To Perform Engineering
Department of
Mechanical & Industrial Engineering

ME, ECE, BE Capstone Designh Programs

Obiectives Multithreaded Fault Injector

e Dynamically simulate soft errors in Maxim Ban kStOn1 Travis LeCompte Trial Automation

multithreaded program execution Sponsors: Dr. Lu peng e Analysis of programs reguires many
e Provide documentation and user interface for trial runs (millions or billions, each

system taking substantial time)
e Goal Is to use system to analyze Big Data e |[mpractical to execute each by hand
applications e Solution: Python wrapper file to
Multi-threaded Fault Injector automate execution, aggregate output
Multithreading Into database files for analysis
e Acts as friendly user interface

Conceptual Design

Root Process l

/ \ Track Execution Inject Faults User Interface Acce pt ance Testin g
Child 1 Child 2 Testing T

/S O\ / N Code Samples e Test individual units " — .
corruptIntData_1bit(fault_index, inject_once, , _ byte_val, inst_data) { ® Move .I:Orward When T

if(!is_kulfi_enabled) return ()inst_data;

bPos:

Grandchild 1 Grandchild 2 Grandchild 3 Grandchild 4 IncrementFaultSiteHit(fault_index); _ _ _ _ all tests succeed
T A g e |nject into single bit data

ijo_flag_data = 1;

. . R type T
e Split large task into smaller, parallel tasks e One for each data type Unit Testing

fault_injection_count++;
printFaultInfo(”1-bit Int Data Error”, bPos, fault_index, ef, tf);

e Extremely common in Big Data (1, 4, 8, 16, 32, 64 bits) Thread Testing

} else {

}

} e More children, greater depth

Integration Testing

INTERCEPTOR(1int, pthread_create, pthread_t* thread, t pthread_attr_t* attr, * . *), *ar
pthread_mutex_lock(&mux) ;
REAL(pthread_create)(thread, attr, start_routine, arg);
1 O 1 1 1 O 1 O log(pthread_self(), sthreat); Root Process Root Process Root Process
0 . pthread_mutex_unlock(&mux) ;
Blt FIIp prlntf(Intercepted thread creation thread %lu [yvned thread %lu\n threa se * '

> o Bt At eteal L i S e Intercept and log

Original Data Corrupt Data Dt i AT e Lo o e, s, s information l VAR l

(value = 13) (value = 12) . e Stores thread information Child 1 Child 2

INTERCEPT_FUNCTION(pthread_join);

| | . e nc:)wp"c:jreadrtlode(pth}ead_self(), 9): In tree
e Fault In data during execution l

e Caused by radiation (internal and external Injection Testing
to machine) Example output e Test each individual method
FULE Thjhceich Campein sEhiLs) e Test dynamic injection

Max interval: 10000000
Reading configuration from environment variables.
Next fault CountDown = -1

Sp eC I fl C atl O n S Should initialize randseed = ©
Bit position for faults=-1
Dump BB Trace=8
Intercepted thread creation: thread 140367842170688 spawned thread 140367817524992

BUIId for Ubuntu 16 and Intercepted thread creation: thread 148367842170688 spawned thread 1463678069132288 Concl USIOn

Intercepted thread (140367817524992) joining with status ©

System C/C++ T R o Interceptor Output Safety Concerns e All original specs

1403678421706688 (B) 1492748495 662696
140367809132288 (0) 1492748495 662949

Handle f()ur threads 140367817524992 (@) 1492748495 662863 ® PrOteCt user data SatISerd
Threads Total # fault sites enﬁriZ%;tgg]eC:égg RS RS Thread Tree OUtPUt o PrOteCt user hardware ® Works Wlth Sample Blg

Minimum o grn o e R .
 fault iniect Total & S5-bit Int Dete Fault srtes emmarated : & e Protect other processes Data applications
Injection method Dynamic fault injection L - e e (A0 s e R Current Injection Statistics e Ready for full scale

Total # 64-bit IEEE Float Data fault sites enumerated :

Automate tnal Total # Ptr fault sites enumerated : apphcaﬂon
User Interface execution and result
aggregation

Grandchild

Adviser: Dr. Gabriel de Souza

