To Predict > To Design > To Perform

ME, ECE, BE Capstone Design Programs

Team #50: Development of a software tool for the design and optimization of thin-film solar cells Khoa Duong, Jay Karasiuk, Eric Rodriguez

Project Objective

Develop a software tool to calculate the total optical absorption efficiency of a thin-film solar cell through a graphical user interface.

Enable the user to optimize the design of their thin-film solar cell.

Background

Thin-film solar cells are a 2nd generation photovoltaic (PV) technology for the conversion of light energy to electrical power. They are more flexible and cheaper to produce than 1st generation crystalline silicon solar cells; however, thin-film solar cells are less efficient.

The three most common types of thin-film solar cells are cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and amorphous silicon (a-Si).

Simulation Parameters

Material Layer properties: parameters referring to the individual material per layer in the solar cell stack

- Thickness (nm)
- Stack order/position
- Optical constants
- Set of tabulated values that define the optical qualities of a given material

Wave vector properties: parameters referring to the light wave incident to the solar cell stack

- Wavelength range
- Angle of incident
- Polarization
 - TE (or s) electric field is perpendicular to the plane of incidence
 - TM (or p) magnetic field is normal to the plane of incidence

Sponsor: Georgios Veronis

College of Engineering Department of **Mechanical & Industrial Engineering**

	Testing				
sualization of a solar cell stack h N layers with wave vector λ at	Test by incrementing or decrementing the incidence angle (0 to 90°) as well as the active layer's optical constant. Absorption, reflection, and transmission should fluctuate consistently and approximately match expected values.				
gle of incident φ, where each er n has distance d _n and each erface has a sum of n distances	After development, experimental results for a solar cell stack will be simulated with the same configuration parameters.				
	Further testing accomplished by integrating multiple transfer matrix methods to check for consistency at the final output stage.				
s of 2x2 matrices using					
n of the wave vector	WavelengthAbsorption0.77714320Angle-Angle0.01828500.01828510Transmission0.2045800.2045800.1719Wavelength0.78635320- </td				
on and phase shift for					
	Graphical User Interface				
gation trix	The GUI reads all user parameters and calculates the reflection, transmission, and absorption of a solar cell design.				
$\begin{pmatrix} e^{jb_k} & 0\\ 0 & e^{-jb_k} \end{pmatrix}$	Results are shown by wavelength or by the incidence angle in a graphical representation.				
	TMM4_GUI				
al Transfer Matrix.	Lower Colection				
	Layer Selection Wavelength Material: Thickness (nm):				
$(z_{N-1})P(z_{N-1},z_N)I(z_N)$	300 : 1 : 800 Ag 25 P3HTPCBMBlendDCB 250 aSi 35 Set Thickness				
mponents: Reflection	Angle 18 Move Up Move Down				
$\left. \cdot \frac{1}{T_{11}^{tot}} \right ^2$	 ● TE, s ● TM, p ● Overall 				
ciency.	Overall Absorption Incident Layer: Substrate: 0.273135 Air Air Select Select Select				
	Current GUI in development				

Adviser: Georgios Veronis

Absorption	0.78635	Wavelength	Absorption	0.20336
		320		
Reflection	0.041752	Angle	Reflection	0.78947
		85		
Transmission	0.1719		Transmission	0.0071667

