To Predict > To Design > To Perform

ME, ECE, BE Capstone Design Programs

Heat Capacitance Testing Device: Team #35 Steven Adams (EE), Tathagata Das (ME), Trevor Favrot (ME), Brooke Larsen (ME), Kenneth Lockett (ECE), Tommy Nguyen (ME)

Objective Statement

Design and construct an automatic heat capacitance testing device that requires little human interaction.

Background

Before hot tapping on process lines, a heat capacitance test is performed. This method requires operators to heat up the pipe surface with a blowtorch and monitor its cool-down with a temperature gun. This exposes a flame directly to a hydrocarbon-filled pipeline creating a potentially hazardous situation.

Phillips 66 has tasked Team #35 to design and build a prototype heat capacitance testing device to replace the current test.

Engineering Specifications Goole/Constraints

Goals/Constraints	
Weight	< 50 pounds
Volume	< 3 ft ³
Elbows	90°
Working Clearance	12"
Watt Density	Max Watt Density
Pipe Surface Temperature	500° F
Diameters	6"-24"
Piping Specification	Carbon Steel
Safety Requirements	Auto Shutoff
Operational Requirements	Clear Output
	Status Indicator
	Constant Monitoring
Budget	\$5,500

Predicted Cost: \$2,784 Total Project Cost: \$5,150.95 Remainder: \$349.05

Sponsors: Jennifer Farque, Drew Francois

College of Engineering Department of

Mechanical & Industrial Engineering

Frame TIG welded using 308L filler