To Predict > To Design > To Perform

ME, ECE, BE Capstone Design Programs

Electrostatic Levitator Team #31: Justin Cotten, Matthew Guidry, David Jordan, and Jared McDuffey

Objective:

To design an electrostatic levitation device to stably levitate a small metal sphere within a vacuum chamber for the study of material properties.

Background:

Governing Equations:

Laplace Equation in Cylindrical Coordinates:

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{\partial^2 V}{\partial z^2} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = 0$$

Laplace Equation in Spherical Coordinates:

$$\nabla^2 V = \frac{\partial^2 V}{\partial r^2} + \frac{2}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial V}{\partial \varphi} + \frac{\cot \theta}{r^2} \frac{\partial V}{\partial \theta} = 0$$

Voltage simulation based on design

Engineering Specifications:

- Vacuum Pressure: 10⁻⁶ 10⁻⁷ Torr
- Power Supply: 10kV Vertical, 3kV Horizontal
- ± 100µm Vertical Stability
- ± 45µm Horizontal Stability
- Chamber/Electrode Material: 304 Stainless Steel
- Insulating Material: MACOR
- **Test Sphere Materials:**
 - Aluminum, Nickel, Titanium
 - 1 4 mm diameter spheres

Safety:

- Meets IEEE Standards for High-Voltage lab setting
- Congruent with LSU Lab Testing Policies
- High-Voltage training necessary for operation
- Ultra-High Vacuum training necessary for operation

Sponsors: Wenjin Meng, Dimitris Nikitopoulos, and Phil Sprunger

Budget		Controls 24%
Chamber Contents	\$971.07	
Controls	\$12,166.90	
Power Supply	\$37,100.00	Power Supp
TOTAL	\$50,237.97	74%
October	November	December January

October	November	December	Januar
 Begin Concept Generation 	 Begin Design Complete Drawings, Simulations 	 Complete Design Phase 	 Order Materials/ Equipment

College of Engineering **Department** of **Mechanical & Industrial Engineering**

College of Engineering Department of Mechanical & Industrial Engineering

- Full System Test Sphere Levitation, Vertical/Horizontal control

	2

Conclusions & Recommendations:

- Fully functioning prototype designed and constructed
- Achieved PID constants with a sufficiently fast rise time with minimal noise, meeting Engineering Specifications of ±100µm, ±45µm for stability
- More full system testing necessary to refine control system

Advisor: Dorel Moldovan

