## To Predict > To Design > To Perform

## ME, ECE, BE Capstone Design Programs

## Team 28: Tiger-R.E.A.L.M. (Real-time Electromagnetic Apparatus for Levitation and Manipulation)

### Background



| Engineering Specifications  |                                        |                   |
|-----------------------------|----------------------------------------|-------------------|
| Dimensions                  | 16.5″x9.5″x15.5″                       | ■16.5″x9.5″x15.5″ |
| Amperage                    | 44A to Electromagnets                  | •42.2A            |
| Levitation                  | <1cm fluctuations in levitating height |                   |
| "Real-Time"                 | <200ms response time                   | ■ 4kHz            |
| Total Manufacturing<br>Cost | <\$2000                                | •\$1812.13        |
| Weight                      | <50 lbs                                | • 46 lbs          |
| Levitating Height           | 5.75 in with 10A/magnet                |                   |

### Constraints

Per US Patent 9061761 B2 our design is constrained to the following:

- Placement and use of Side Magnets
- Placement and use of Electromagnet(s) at bottom of base
- Four walls forming a see-thru enclosure
- Levitating magnet must incorporate a scaffold assembly
- All wiring must be isolated from the user
- All wiring must be strain relieved

### Objective

To design and manufacture a device which provides stable and repulsive magnetic levitation and allows for vertical and lateral displacement of a levitating magnet.

**Concept Generation** 

August

September

October

Commencement Meeting with Project Sponsor

Began Preliminary Testing

used to quantify each electromagnets B

On axis approximation is characterized

 $B = \frac{\mu_0 I n}{2}$ 







College of Engineering Department of

# Evan Daigle, Ryan Gonzalez, Jake Kottenbrook, Yi Qin, Jackson Ward



## Mechanical & Industrial Engineering

# Heating and Cooling ---- 50% Base Electromagnets are cooled by forced convection, both directly and through the Heatsink. Temperature varied with time and current at various duty cycles as shown.

### **Magnetic Trapping**

• A magnetic trap is created by a quadrupole arrangement of base magnets A saddle point is created at the center of the trap and results in a single point of stable

Variable field strength results in changing force magnitude and direction

## **Real-Time Controls**

| Current in Electromagnet Vs. PWM Control                                                                                                                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Base 1<br>Base 2<br>Base 3<br>Base 4                                                                                                                                                           |  |  |
|                                                                                                                                                                                                |  |  |
| 40 50 60 70 80 90 100<br>PWM Control Duty Cycle (Percent)                                                                                                                                      |  |  |
| trap is controlled by an on board MCU<br>to senses the position of the levitator and adjust<br>ontrol position directly in the vertical axis and lateral<br>lisplay current per electromagnet. |  |  |
| oling Testing Complete Final Presentation                                                                                                                                                      |  |  |
|                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                |  |  |
| April May                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                |  |  |
| Control System Final Report Due<br>Debugging                                                                                                                                                   |  |  |
|                                                                                                                                                                                                |  |  |