To Predict > To Design > To Perform

ME, ECE, BE Capstone Design Programs

Group #15 Gasket Retention System for Subsea Collet Connector Group Members: Brandon Ankeny, Jordan Favret, Richard Sherwin Background **System Overview**

During subsea drilling, a blowout preventer (BOP) is lowered on top of a wellhead to prevent large pressure kicks called "blowouts." BOP's are large specialized valves in redundant stacks that regulate pressure during the drilling process. The mechanism that connects the BOP to the wellhead is called a connector. Due to the vertical nature of the subsea field, the gasket for the connector must be held in place with a retention system.

Sponsors: Joe Gross and Alex Salinas

The system ejects and retains the gasket with hydraulically actuated pins that move in and out by rotating on a cam system. The system works the same an ink pin does, each stroke moves the pin either in or out.

College of Engineering Department of

November 18 Engineering Analysis Performed

April High Pressure Functionality Test

Engineering Specification No welding processes Works independent of other sys Materials Meet Yield, Ultimate Streng

No Plastic Deformation, Minimal Deflect 60 lbs for 6 pins

At 1500 psi internal, no leaks in s

At 4500 psi, external pressure syster no leaks and remains structurally

Less corrosion than original des

Actuates 100% of the time

Actuates 100% of the time

Actuates 100% of the time; Actuates with 4500 psi on front end

Testing and Prototype Budget

Mechanical & Industrial Engineering

CAMERON

Engineering Specifications and Test Results

n	Verification	Results
	Achieved through design	
stems	Achieved through design	
gth per API	Tensile Test	316 Stainless Steel and Nitronic 50 passed
ection under	Pin Strength Test	No plastic deformation, .0009" max deflection
system	Internal Pressure Test	Held 1500 psi
m sustains / stable	Hydrostatic Test	Held 4500 psi with no structural damage or leaks
esign	Corrosion	Original design corroded average of .24g, new design corroded average of .18g
9	Cam Mechanism Test	20/20 passed
9	Air Low Presssure Functionality	Actuates at 110 psi
at 500 psi	High Pressure Functionality	Actuates at 500 psi with 4500 psi on front end