To Predict > To Design > To Perform

ME, ECE, BE Capstone Design Programs

Team #5: Hydraulic Steering Assist:

Background

- Crawfish season usually runs from January-May, nearly everyday of the week
- Sponsor's employees have 6-8 hours to run 1,400 crawfish traps throughout one day
- Operation takes two men: one operating the boat and the other working the crawfish traps
- Sponsor's goal for the team is to design a system that would allow one man to operate the boat hands-free while running the traps in the allotted eight hours

Objective

- To provide a system compatible with a 9 HP Go-Devil engine, engineered to: provide hands-free steering from the center of the boat
- o reduce the existing manpower of a commercial crawfishing boat from two men to one man, without sacrificing productivity

Key Qualitative Constraints & Engineering Specifications

Critical Qualitative Constraints			
Specification Number	Qualitative Constraint	Accomplis	
QC-1	One man operable		
QC-2	Meets USCG standards		
QC-3	Engine returns to center		
QC-4	Hands-free steering		
QC-5	Controlled from the center of the boat		
QC-6	Water resistant	1	

Engineering Specifications			
Specification Number	Measurable Engineering Specification	Requirement	Testing Results
ES-1	Max angle of rotation	≥ 30 degrees	35 degrees
ES-2	Boat turning diameter	≤ 40 feet	14 feet
ES-3	Actuator speed	≤ 5 in/s	0-5 in/s
ES-4	Motor power loss	≤ 1 HP	0.48 HP
ES-5	Control system lag time	≤ 2 seconds	Negligible
ES-6	Control system amperage	≤ 3 amps	2 amps
ES-7	Average # adjustments/Trap	≤ 3	1.5
ES-8	% Time spent adjusting	≤ 25%	2.3%
ES-9	% Time added by our system	≤ 25%	±18%

Anthony Vesich, Michael Dejohn, Jacob Keller, Matthew Fowler, Casey Guitreau

The final design prototype

Foot pedal controls motor direction and allows all hands for crawfishing

Limit switches allow the motor to return to center

College of Engineering Department of Mechanical & Industrial Engineering

Project Design

Compression spring to keep the motor in the water at all times

Neutral start-in-gear and kill switch provide safety features for the prototype

Team member running the crawfish traps via foot pedal

The total budget for the design team is \$3,000

Advisors: Dr. Michael Murphy/James St. Pierre

Schematic above shows hydraulic system breakdown of our design

Testing

Sponsor's employee approving of the team's prototype