To Predict > To Design > To Perform

ME, ECE, BE Capstone Design Programs

Objective

To design and manufacture a compact device capable of lifting a corroded pipe safely off of its support. To design and manufacture a device to permanently fasten an I-Rod pipe support on to an existing supporting beam.

Engineering Specifications

Lift Device	I-Rod fastener
Pipe Size 2-20"	Pipe Size 2-20''
10 years of service	3-30" I-Rods long
6.2 tons lift capacity	1" and 1.5" I-Rods in diameter
6'' – maximum lifting heights	W14x26; W12x26; W10x22 I-b
	supports
50 lbs – maximum device weight	ST3x8.625 and WT3x10 for s
	supports
2 or less operators	Galvanized steel or stainless st
5 – safety factor (to fail)	10 years in service
250 use per year frequency	

Analysis

Force Required to Lift Pipe

$$y = -\frac{Pl^3}{48EI} + \frac{5wl^4}{384EI}$$

damage or deflection

Finite-element analysis of the pipe saddle shows that while lifting 6.15 tons, the maximum stress is 21 ksi, which provides a factor of safety of roughly 3.3 for the 70 ksi filler metal.

Sponsor: Tony Brouillette

College of Engineering Department of Mechanical & Industrial Engineering

and supported pipe through computational analysis.

Advisor: Dr. Sunggook Park