To Predict > To Design > To Perform

ME, ECE, BE Capstone Design Programs

Dust Suppression Hopper Installation Team #18: Courtney Aucoin, Anne Collins, Matthew Drago, Landon Stevens

Background

- Oxbow Calcining processes and loads petroleum coke into trucks from an overhead silo
- During loading, substantial fugitive dust was emitted

Loading with Old System

Loading with New DSH System

Objectives

- Install a Dust Suppression Hopper (DSH) to reduce fugitive dust
- Collaborate with Sioux Steel to have a DSH with a replaceable funnel designed
- Provide a loading rate within 100 tons/hour of old system
- Design a support to mount beneath silo to support DSH
- Design overfill chute to be attached to bottom of DSH and locate manufacturer

Engineering Specifications

- Dust emission reduction
- Loading rate
- Vertical clearance for DSH and support
- Max coke temperature
- Support capacity
- Max system weight
- Budget

20% 384 - 484 tons/hour 5 ft 300°F 2,500 lbf 10,000 lbf \$100,000

Materials/Manufacturing

Part	Material	Company
DSH	500 Hardox Steel	Sioux Steel
Support	ASTM A36 Steel	CCC Group
Overfill Chute	1050 Denier Nylon	Kimkits

Sponsor: Paul Koenig, Oxbow Calcining Company

DSH Installed at Oxbow

• Support consists of four vertical angle members (silver) bolted to the DSH frame (green) and welded to the existing silo (black)

College of Engineering Department of Mechanical & Industrial Engineering

• The stress results from the Autodesk Simulation Mechanical Finite Element Analysis program (FEA) of the support structure show a max stress of 18.1 ksi occurring at the corner of the DSH Frame • The displacement results from the FEA of the support design show a max displacement of 0.035 in • ASTM A36 steel has a yield stress of 36 ksi, so these results are valid

- reduction of 40%

Advisers: Dr. Ram Devireddy and Dr. Jack Helms

Testing

• Visual testing showed an obvious reduction in dust • Mass-based emission test showed a 40% reduction in dust • Flow rate test proved that the rate was maintained

	Old System	New DSH System
Rate (tons/hour)	484	425
sion Sample (ounces)	0.15	0.09

Safety

• Wear PPE on site: hard hat, orange vest, steel toes, and safety glasses (OSHA 1910.132)

• For welding, follow fire code: NFPA 654 and OSHA 1910.252 • For work at heights, use fall protection (OSHA 1926.501) • For operational safety, use manufacturer's safety chains

Project Management

Milestones

1/13/2015 – Received DSH

2/19/2015 – Completed DSH installation

3/26/2015 – Received overfill chute

4/14/2015 – Completed chute installation

Project Budget			
arting Budget	\$100,000.00		
Modeling and Imaging	\$110.00		
Dust Suppression Hopper	\$40,388.00		
Construction Cost	\$46,000.00		
Overfill Chute	\$1,100.00		
Total Cost	\$87,598.00		
maining Budget	\$12,402.00		

Conclusion

• Met our objective of reducing dust emission by 20% with an actual

• Met our objective of maintaining a loading rate within 100

tons/hour of the old system with an actual rate of 425 tons/hour • Oxbow will have the loading chute repaired and reinstalled in late May as it was damaged by a truck