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Dynamics Problem Decomposition

Dynamics

Kinematics

Kinetics

Geometric descriptions
of motion & constraints

6=5°

Loading relationships which
dictate CHANGES in motion



Dynamic Studies

Plane motion:
DOF (Degrees of Freedom)?

Dynamics:
(Kinematics & Kinetics)

Particles Rigid Bodies

7
’
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\ ; ’
20 m ] o .
—— et s r i ‘:
T~ — th 3

 m & I —add in rotational inertia (/)
e P -position {(x,y),(r,0)} (2DOF) -« (P,6) - position & orientation (3DOF)
V —velocity {(v, v),(v, v (00)} ¥ -velocity {V,, o}
A — acceleration A —acceleration {4 ,, o}

{(ax’ ay)a(ara aQ) ,(G!n, at)}




Getting Started => Particle Kinematics
* Rectilinear Motion

— Movement along a straight line in 1-2 or 3D
* 1 Degree of Freedom (DOF)* - s(t)

AY @
AY

- X

e Curvilinear Motion

— Movement of particle along an arbitrary path
through space




Rectilinear Motion Overview (Calculus/Physics Review!):

E .. | +5 A Simple Harmonic Motion
' * Position - s(2) L w
'D -' +a
ﬂ ] ¥
E * Speed - v(t) .
i? R
:i R d . A
| E S
E 1) v=—=g5 : B
K dt 5
E . N |
= Acceleration - a(t)
dV o dZS oo

(2) a= E“ =V = ? =3

A A

* Typical Functions ??

2 X

— Polynomial, Trigonometric, Logarithmic, Exponential



Rectilinear Motion Summary:

. rsA
» Position - s(7) oo
D +a
. ¥
E * Speed - v(?) E
| e ds A
E
(1) v=—= I
A |
e » Acceleration - a(?) e Alternate form ?
dv -+ d’s -
(2) a=2;= =—d—t'§'= (2*) vdv =a ds

a(t) => Solid Rocket Propulsion a(v) => aerodynamic drag
a(s), v(s) => Gravitational fields, springs, conservative forces etc.

(s,v,a & t) => t independent parameter



Given: s =2t*-8t+3

Find: Displacement fromt=1tot=3
Distance traveled fromt=1tot=3
s=20-8t+3  g1)=-3 & s(3)=-3 s(2) =-5
v=s=4t-8 v(2)=0
a=5=4 a(2) =4

Since, s(3) - s(1) =0 -> displacement = 0

Reversal @ v|., =0 distance traveled =|s(2)-s(1)|+s(3)-s(2)|

=1-5-(3)[+1(-3)-(-5)]
=2+2 =4




Rectilinear Kinematics: Accel. a function of velocity — a(v)

Given:

. A freighter moving at 8 knots when engines are stopped

. Deceleration a= -kv2 v,=8knots a=-kv®
. Speed reduces to 4 knots after ten minutes ,——_——? <s—
Find: e G

(A) Speed of the ship as a function of time v(t)

(B) How far does the ship travel in the 10 minutes it takes to
reduce the speed by 1/2 ?

Solution:
(A) With a, v & t parameters given/requested, use a=dv/dt form
d t v, d
a(v):—V:>aft=i fdf:jf V2
dt a(v) f i —ky
Vs dv f dv
t,=t(v)=[ ——t, = +0
=10)=, a(v) J; kv’
17 1{1 1
=t=—| =—|—-=|=v,=v()= (knots)
vl klv, 8 8kt + 1



Rectilinear Kinematics: Accel. a function of velocity — a(v)

. Substituting BC’s helps resolve the unknown constant k

] = 8 knot =-kv?
f = 10 (mm) =l hr | v=4 knots v, nots  a v
60 (min/hr) 6 | | '/ _ sy

8 31
= v(1/6) = 8k(1/6)+1=4 (knots) =>k=Z (n—r'n)

and the resulting expression for speed of the ship as a function of
time v(t) is as follows

v, = W) = (knots)

6r+1

. From here, there are two alternatives for resolving the second question



Rectilinear Kinematics: Accel. a function of velocity — a(v)

(B) METHOD 1: Now, knowing the velocity as a function of time

(?) 8 ds 8 knots  a Z
V — — — v, = 8 knots =--V

6t +1 dt — <
the boat’s position can be found by integration W

hhhhhhhhhhhhhhhh

dt

f B f 6t +1
4
0= 5 In(6r +1)| ) = 3 (In(67 +1) - In(1))
and the resulting expression for position of the ship as a function of time s(t)

4
sp=5(t) = EY In(6¢+1)

can now be used to find the particular displacement/distance at t=1/6 hr !

s(1/6)= % In(6(1/6)+1) = —g— In(2) (nautical miles)




Rectilinear Kinematics: Accel. a function of velocity — a(v)
(B) METHOD 2: With a, v & s parameters given/requested, use ads=vdv form

3
v. = 8 knots a=--v
0 -t

)+O —1 s

vd

v vdy V
_3/4v*

Sf:S(v)=fv,. %+Si=>s(4)=j;4(

AAAAAAAAAAAAAAAA

and the boat’s displacement (position?) can again be found by integration

s(4) = -—?4E49§= _—34/nv| : = l;(ln4— n8) - glng

and as was seen before

4
s(t=1/6)=s(v=4)= T In(2) (nautical miles)

Q.E.D.



2D Curvilinear Kinematics Summary:

» Position v(t)
r(r) = x(1)i+y(1)] p
=r(t)e,
? path?
* Velocity
V(1) =£(t) = xi+y)

=ve, =se,

—re +rfe,
Acceleratlon
a(?) = v(t) r(t) x1+yJ

(1] 2 L 2
=se, +p0O e =ve +—e

=(r—r6 )gr+(r6+2r6)ge




2D Curvilinear Motion: Coordinates & Conversions

e Cartesian <-> Polar <-> Path €

r(f)=xi+yj=re,
e, = COS6i+sinbj = xl Xj
.

eo=kxe =C050j- SIn01

i = COSBe, — SinBe,
j=Kkxi=Ccos6e, + Sinbe,

. S . W | _ 1 ref line
V() =r(t) = xi+yj=ve, = se, o
e i =cosWe, —sinWe,
e =L=£i+x 1
STV . j=kxi=cosWe, +sin We,



Curvilinear Motion: Cartesian Coordinates

* Projectile Motion Ay
— Scale w.r.t. earth such that gravity
g 1S ~constant

r=(x,y

lgl =32.2 ft/s?> = 9.81 m/s? a=g
— Neglect any air resistance 0 >
— Motion is PARABOLIC thus PLANAR!  *
— Typically align

* y-axis along gravity vector

e x-axis horizontal in direction of motion
a(r)=0i-gj=[0,-g]

* z component drops out!
— Integrate rectilinear relations

* Two (2) scalar relations
 One VECTOR relationship

15



Curvilinear Motion: Projectile Motion

— Typical P.M. queries
« Max Height
 Max Range
» Time (@ some place along trajectory

 Later w/ Path & Polar Coord
— Velocity (speed,direction/tangent)

— Curvature, rate of speed change ....

a(r)=0i-gj=[0,-¢]

a 2
=>yf=a_|(tf—ti)+}1,- :gf=§(tf—ti) +g,-(tf—tl.)+l_’,-
fo=0(tf"ti)+"x,.="x,. xf=vxi(tf_ti)+xi
v, = -g(tf —tl.)+vyi y; = '—f(tf —tl.)z +v}’i(tf —t,.)+ Y,

— Reconsider problems w/ different axes placement/orientation

16



Given:  launch at 3600 m altitude v, = 180 m/s angle 30°

180 m/s “

x=0 y =-9.81
x =180 (cos 30) = 156 y = 180 (sin 30)-9.81 t =90-9.81 t
x=1561 y =90t - 4.905 t2 +3600

forhset y=0 —> t=9.17 => h=y=4013m
fortrset y=0 —> t=37.8

17




Curvilinear Kinematics: Projectile Motion example .. sibier 210

Given: Ay o
— Figure shown w/ ground y = —kx’ i 0-2)
— 1,=0, (X,,Y,)=0, V,=v, @ 6 above horizon '
Find: Intermsof v,, 0 & k

— (A) The location at impact (x;,y;)
— (B) Velocity & Speed @ impact, v,, v,
— (C) Elapsed time (@ impact, ¢,

o

Solution:
— 2D projectile motion
— Get expressions for v,(t),v,(t) then x(t), y(t)
a. 2
=v,()=a(t,-1)+Y, =r, = —Z—(tf —1,) +¥,(t,-1,)+r,

— Substitute into ground constraint expression
* Solve for time of impact ()

— With ¢, known, substitute & solve for (x;,y;)

18



Curvilinear Kinematics: Projectile Motion
° lC’ S => t0=0, (Xo,y0)=Q, !O=VO @ 9 A¥
., , =g=(0,-9)
a(r)=0i-gj=[0,-g]

=(B) y,;=al,-0)+y,

v, =v,cos0

X

v, =-gt;+V,sIn0

— Speed

I A 2
S=v=Jv, +v,

— J(VO cos¢9)2 +(-gt, + v,sin 9)2

_ ‘/voz ~2gv,sin6f, + (gz‘l,)2

19



Curvilinear Kinematics: Projectile Motion

e ¢ =g=(0,-g)
/

=>(B) Y= -a(tl B O)+XO =[Vx1 ’V)’l]

—(A) r, = %(t, _0) +v,(t,-0)+0

Cx, = 9
X; =Vv,cos0 t,

y, —fr > +y,sinf t,

-g /

St > +vsind 1, = —k(v,cos@ t,)2

—

y=—kx”

2vesingd
g — 2k(v,cos 6)2

=3((:) Zt[ =

Av

— Substitute value for t; into
position, velocity & speed
relations for solution

20



Path Coord. Example ref: Meriam&Kraige 2-8

Given:
— A rocket at high altitude with
— a,=6i-9j (m/s?)
— V=20 (km/hr) @ 15 below horizontal

Find: Atinstant given
(A) The normal & tangential
accelerations
(B) Rate at which speed is increasing
(C) Radius of curvature of the path
(D) Angular rotation rate of the radial from CG to center of curvature

Solution:
— “High altitude” means negligible air resistance
— Interested only at this instant (NO Integration required)

— Cartesian specified, asking for Path coord parameters

— Vgivenis TANGENT TO THE PATH
« Use this to relate path to cartesian coordinates

o




Path Coord. Example ref: Meriam&Kraige 2-8

Solution (cont’'d):

Kyf-.
e, = Y _X_ cos15° - sinl5°j
¥ v ]
e, == (kxe,) (2D shortcut!)
= —c0815°j—sin15° oe
(A) an & ay =?

(@)

la|=a e, = (6i-9j)* (cos15% - sin15%) =8.12 (m/s") = 4

a

—n

=ase, =(6i-9j)*(-cos15°j—sin15°) = 7.14 (m/s’) = q,

(B) p=77 v= la,| = 8.12 (m/s*)

v (20 km/hr)z( lhr  10°m

= = — = =
©) p=2 4, =P 36005 kom

2
. = 4.32(10Ym
P a, 71.14(m/ s")



Path Coord. Example ref: Meriam&Kraige 2-8

Solution (cont’d):
D) 0="77
— Look either at g, or velocity a
Oe / >X
2 /
C
+

a = po
. 2
S A (més ) _129%10~ 1
o Y4.32%10°(m) S
v =00

=>é=

§
o 432%10%m)

3
20 km/ hr( 1hr  10°m _12.0%104 ¢!
3600s  km



RELATIVE MOTION

I =Tp T I
V= VA T Vp/a
ag =a, tag/,

Special Case: Rigid Bodies

When A & B are two points on the same rigid body:
 the relative motion is circular
* vgls perpendicular (L) to rg/a

& |¥pal=|®sg AB | A

Vg = ¥5 T Wap K X ABug,,

_ 2
ap = a, T g K x ABug/y — (0,5 )" ABug,,




Relative MOtion » ref ~Meriam & Kraige 2/13

| AT ‘-
Given: -',
- Two cars A & B at the instant shown Yy .
V,= 72 i km/hr a,=1.2im/s? 0° \
vg= 54 e, km/hr, constant speed i50m o J
=n a
Find: A N ﬁ
(A) ypiu =7 (B) ag,=? o ’, B
Solution:
« Convert to consistent units 5
1 v, =T72(km/hr)=20(m/s) T

(km/hr)* §= (ml/s) =

 Motion RELATIVE TO A of interest
 Two coordinate axes are used

—  Simplifies v & a definitions

— lllustrates “coordinate conversion” for

expressing answers “in terms of” a
unified set.

€,
€

vg = S4(km/hr) = 15(m/ s)

= c0s30°% - sin30°j

= k x ¢, = c0s30°j + sin 30°i

25



Relative MOtion . ref ~Meriam & Kraige 2/13 A

(A) Relative Velocity < SR
—A ' N
VpAa =Yg —Y¥Ya '
v} )
E 15§t = 20 ! (m/ S) 0° ¥

=15(sin30°i + c0s30°j)-20 i (m/s)
Vpa = —12.51+13.0j (m/s)=18 (m/s) @-46°

*  Velocity Polygon Approach (Graphical)

Vg =Y¥A +¥p/a

= VYA =¥ — ¥4

26



Relative MOtion: ref ~Meriam & Kraige 2/13 \
X . \

L] * Ak o e N A ¥ o S o _ . " % e ey N\

B Re]atlveAcceleratlon ‘3.“@\\“\\\“\"\"\\\‘:\\
(B) a,= 1.2 m/s?

a,=121i (m/s)

VV \

. v o (15 m/s)’ 0°
§B=v§t+_ gn (m/S)= Qn <
P 3

150 m
=1.5¢_ (m/s*)
Ap/y, =Aap — Ay

=1.5e —1.2i (m/s?)

=1.5(cos30° - sin30°§) - 1.2i (m/s*) L o
B _ e, = cos30°% - sin30°j

Agp = 0.1 ! -0.75 ! (m/sz) = O.76(m /52)@_ R2° e, = k x e, = cos30°j + sin 30
a;= 1.5 m/s’

QB/A = 0.76 m/s2 ‘|

g2} 30°
bz
dp = A +dp/a a,= 1.2 m/s?

= dp/a = dp —AaAxp ¢
27

*  Acceleration Polygon (Graphical)




Given:

A balloon at an altitude of 60 m is rising at steady rate of

4.5 m/s. A car passes below at constant speed of 72 kph.

Find:

ag=0 (m/s?)

vg =4.5]1 (m/s)
g5 = (60 + 4.5t)j (m)

ac=0

ve =201

r-=20t1

Tsic = l!chl = \/ Ipic®Lpic
r2c = (=20t)% +(60 +4.5¢)°

Evaluate @ t =1 & divide through by 2 rg
reic =690.25/67.52=1022(m/s)

Alternative Method (Vectors!)

Relative rate of separation 1 second later:

Voo

. LA
AN
A ATTTr g
v oo

vAr g
Yidiy
3 ]

4.5 m/sT

W

\[/

T

60 m

Ve
Veic VB - ¥Yc

d|rpcl/dt # drgo/dt

r =In-T
=B/IC =B =C npot true $c

d
4
7’
4

L ]
rg,c- not true scale!

72 km/hr = 20

=> Find the radial component of Vg/c = F5/c = ¥8/c€rg/c + T8/c0€0,

I
reic =V *=2K5 = (

BC 1. 1
IIB/Cl |£ch|

v, -zc)-—-—(zB L) ~(-20,45) (

-20,64.5)  690.3

67.5]

=102 (m/s)
28

675



RELATIVE MOTION

g =X\ T Ip/a
Vg =¥A T Vp/a
ag = a, Tag/s

Special Case: Rigid Bodies

When A & B are two points on the same rigid body:
 the relative motion is circular
* vp/x 18 perpendicular (L) to rg/a

& |¥Ypa|=|0Ap AB | A

Vg = V5 T 05 K x ABug,,

ag = a, + apg k X ABug/, — (0,5)? ABug),




Two points on a rigid body:

Ug/,=-cosO i +sinb j

VB = YA T ¥p/a
Vpi=Valt g KX ABug/,
Vg1=Val
- AB 0w 5(sinB i + cos0 j)
Equating i & j components:
i >vy,-ABw,gsin0=0
1= vg =AB g c0s0

vy, _AB ®,psind

vy AB 0,5 cosO

VvV, _ sinf

vg  cosf



Instant Centers (velocity)

On every rigid body in general plane motion there
exists a point P where V,=0! It is known as

instantaneous center (IC) of zero velocity or Rl ld
instantaneous center of rotation (ICR) g \
Body |

How to Locate IC? Extended
1. Every point’s velocity vector is perpendicular toh

its relative position vector from the instant center

2. Its speed (velocity magnitude) is proportional to its
distance from IC

At any instant, @ point of contact =>V /P,

If p2 on the ground = _p2 =0 = !Pl =0

= 0!

| vB—_p1+a)x pB—O+a)xrpB Vg|=r,p0
o, Yo =Y+ OX1 0=0+0X1 o [Vo|=F,c0

Rolling disk/tire (no slip!!)




Knowing location of IC => Very useful tool!

The direction of velocity for all points on the rigid body are
known to be perpendicular to the line from IC to that point

- IfIC located and velocity of any one point is known:

W=t vl CW et €EW. 2
IKPAl

- IfIC located and magnitude of @ is known,
the velocity of any point D is:

Vp=WXTI,p =0Wrr€, ,p

Special cases:

Construction lines are parallel, not collinear

Mathematically the IC is at infinity!

Pure Translation!
V,=Vp D 0=1

o0

|¥A| _

0

The construction lines are collinear!
Speed is proportional to distance from IC.



Using Instant Centers (IC):

Vo= ACo,p [1]
Vp=BCow,g [-1]

AC = AB sin0
BC = AB cos6

vy, _AB ®,gsIn0

vy AB ®,p cosO

vV, _ sin0

vg  cosO




Slider Crank Velocities Using
Graphical & Instant Centers (IC):

AN\

Be sure to account for direction!

V,=(OB/CB) CA o,




Example: Planar Kinematics of Rigid Bodies ieimesge s

Given:

e  Crank CB oscillates about C through a -y
limited arc causing rocker OA to oscillate
about O. When crank CB reaches 100mmg T
horizontal, OA is vertical and the angular 50lmm )
velocity of CB i1s 2 radians per second *
counterclockwise (CCW). For this instant, ) 250 mm

Find:
A. The angular velocity of link AB
B. The angular velocity of link QA

Solution:

e Three rigid bodies (links) need kinematics (velocities) to be established
— OA & CB pure rotation (1DOF each => wgp & ®¢p)
— AB exhibits general plane motion (3 DOF)

* Pin joints relate the kinematics (motion) of coincident points on the separate
RB’s.

3



Example: Planar Kinematics of Rigid Bodies cieriamaxraie &5

Solution (cont’d):
e Relative velocity relationships for pairs of
points on the three links
(D¥g=Yc+Vgc=0+0c X
= (2 r/s)kx (=75 mm)ji .
=-150mm/s j
(2)¥,=Yp+ Y40 =_Q T Wosa X Lyo
= (W, r/5)kx (100mm)j

=-100w,, mm/s i

(B)¥a=Vp+Vyp= Yp+ WXLy
=-150mm/sj +(w,y r/s)kx {(75 =250 mm)i +(100 - 50 mm)j}
=(-175w,;-150)j -50w ;i (mm/s)
 From (2) & (3), equating i & j components
j= 0=(-175w,,-150) = @, =-150/175==6/7 (r/s), i.e.CW
i=-10w,, =-50w,, = w, =50/100w,,=-3/7(r/s), i.e.CW

)



Alternate: Graphical Solution (cont’d):

Example: Planar Kinematics of Rigid Bodies ienesge e ss

Construct velocity polygon for the
relative velocity constraint

VNi=Vp + V¥ 5

RM= RN RM

As before, vy easily computed
(1) V5 = Ocply;cL Tpc
= Q2 r/s)(75mm)j=-150mm/s

v, g is perpendicular (L) tor, g & Ov Ya { diry, 10a
IXA/B| =W, /pTa/B
v, 1s horizontal (L to x4 o) VAB
[Va| = @047 0 Y8
. : . diry,; L AB
Intersection of lines of action for v, & v, g sets actual
sizes for each vector

Now measure (&/or compute) size of each vector based
on scale used for vy

1w



Example: Planar Kinematics of Rigid Bodies inexvaiee z55

Graphical Solution (cont’d):

e From the velocity polygon geometry v, and
vap thus ©y, and o, can be found

[V|=|v,|tan6 = ISOTS%=3OO/7 (mm/ s) 5
=@, = * v _300/7(mm/s) =3/7 (r/s)CW - 20mn
|!AO| 100 (mm) 50 g........._fg{. .....
' - 175.«
v, 5| =[v|/c0s6 = 150* 22 _1826/7 (mm / 5) veloeity Polygon
175 Ov Ya { diry,10a

e g Ty dinw LoA

. Yas| _182%6/7(mm/s) _ - (+15)CIV

el 182 (mm)

AY:}

» Velocity polygon can be used to quickly
validate your answers and/or determine
rotation directions

dirv,; L AB

)



Kinetics Summary

« Three general solution approaches for establishing the governing
equations of motion (EOM) => Which one to use?

i) Newton’s Laws

YF=mac Y M= Iy a+r,mac
ii) Work- Energy & Conservation of Energy

> B V B 1
U,z =LAma,ds=ﬁA mvdy = (vé —vi) =AT,_,
Upe = AT +AV, + AV, = AE,,;

iii) Impulse - Momentum & Conservation of Momentum
— Typical forces

1=f£Rdt=de=AL » Springs F = k (s-s,)
» Fricion F, = u,, N

» Gravitaton K =mg



Particle Kinetics: Free Body Diagrams

- Free Body Diagrams:
— Isolate the particle/system of interest (i.e. boundaries)

— For noting action-reaction between particles/bodies it is
important to identify the common normal-tangent @ the
point of contact (often one or the other is easily identified)

¥

[
— Include ALL forces (& later => moments)

- Field forces (gravity, electro-magnetic fields etc)
- Viscous forces (aerodynamic drag, fluid flows, etc)
- Contact forces (touching elements) -- Most common

— For motion over an interval --- draw in a general position!




Kinetics of Rigid Bodies — Newtons Law (2D)

ZEext =ma,; —> 2Kineticconstraints: (x,y), (n6), (n1) SF.=F,+F=mac.

EMCGZ = ICGZa - +1Rot. Kinetic constraint F,

» 3 Kinetic Constraints per Rigid Body!

- Alternate Form: for XM where P = CG 7
2 M, =1 0+(rgpxmac;),
=1.;o+ma,. (:deﬁ)
OR

EMP =la+(rgpxmap),
- |IFF P is fixed, ap=0!

EMP =1,

I = mk? => krad of gyration

I, =1, +md® || axis Xfer

k=I/m =>k, =\kisd’

EMp_ = Ieg @ + (rgpXmacg),




Rigid Body Kinetics — Planar Motion (2D)

Given:

fR A AT

i 3

5% T R ST R T T T T

A 1@

» A sliding warehouse door rides on f
ideal rollers & weighs 100#

» Assume the door weight is o

uniformly distributed

Find: <

« The reactions at the roller supports
e The acceleration of the door.

Solution: AR,

10 ft

FBD

« Rectilinear motion: horizontal, no rotation
« |DEAL Rollers: Frictionless, massless

e Construct FBD with reactions
properly AT POINT OF CONTACT!

T100#




Rigid Body Kinetics — Planar Motion (2D

AR, FBD Re 4
Solution (continued):
* Newton’s Law (3 kinetic constraints/RB) __20#
XF,: 20 #= (100 #/g) acg, ot tc‘i o
acg, = g/5 fils® (g=32.2 fi/s®) y

10 ft
x

Mg (COW4): 5 (Rg—R,) =2 (20) (f-#) =I,c 0.=0!

SF,: Ry+Rg- 100 (#) =mac; =0

* Use last two equations to resolve the two unknown reactions R, & Rg

R,=46# Ry = 54 (#)




Rigid Body Kinetics — Planar Motion (2D)

AR, Re |
Alternate Solution (continued): @ ~T——>x
 Newton’s Law (3 kinetic constraints/RB)

ZFX => aCGX: g/Sﬁ/S2 6 ft. ;

2F, => R,+Ryz = 100 (#)

« Sum moments about a point other than CG

XMp =l o+ (Xcgpx Macg), & a=0!

M, 10 Ry + 1*20 - 100*5 (f-#) = (100/2)(g/5)(3) (slg-ft2/s?)
=> Ry =54 (#)

2Mp:-10 R+ 1*20 + 100*5 (/+-#) = (100/g)(g/5)(3) (slg-ft?/s?)
=>R,=46#

-_—




Rigid Body Kinetics — Planar Motion (2D)

Given:

« Athin ring of mass m is free to rotate in the
vertical plane about the frictionless pin
joint at O.

« Its angular velocity is w, (CW) when 6=0°
Find: (for any arbitrary angle 6)

 The reactions forces at O
» The angular velocity of the ring FBD

Solution:
* Fixed axis rotation about O

 Frictionless pin joint

« Construct FBD using »n-t axes
(+z into page — CW +)




Rigid Body Kinetics — Planar Motion (2D)

Solution (continued):

 Newton’s Law (3 kinetic constraints/RB) ’

FBD

2F,. Ry —mgsmb=mac_

2F: Rp, +mgcosd=mac,

EM¢ (CW+): Ry r=1;a I~-=mr?

« 3 kinetic constraints & 5 unknowns: R, , R ,a: ,ac,
_ n t n t
* Look to kinematics to provide necessary constraints!

o Fixed axis rotation =>  ac =0’ & ac=or

* Now 3 kinetic + 2 kinematic constraints & 6 unknowns (w)!

o <= derivative ® 6 equations < 6 unknowns C.B.S.!




Rigid Body Kinetics — Planar Motion (2D)
Solution (continued):
« Combine XM & I-

-Ro, 7 =1c a=>a=—Rq, r/(mr’)
a=-R, /(mr)
» Combine ZF, & ac=a r

FBD

Rp, * mgcosO=mar I.=
* Sub for a & resolve R,
Ro, + mg cost = M[R /(W => Rg, =-mgcosb /2

* Now a can be determined
o =-(-mgcosO/2)/(mr) => o.=gcos0 /(2r)

« Remaining unknowns: R_, a- , ® => Now what?
n n




Rigid Body Kinetics — Planar Motion (2D)

Solution (continued):

FBD

« Knowinga =gcosB/2r Ro
o Integrate to get ® = £,(0)
o Use ® togetac =w’r

o Useac &ZF,togetRg
 Variables (o, ®, 6), no f => use ad0=wdwm form

6 g
f £C080d3= wdw
0 2r o « Note XM=/, a &

o 2
I-=mr

. 1 Wy . imi I !
— 8 singl =12" = 0 = +84in0 eliminates reactions!
2r 0 o r I,= mr?+mr?
2 . . —
ac =Wer= (w, + 8 sin O)r = rw; + gsin6 mgr cosO = 2mr? a.
r
R, —mgsind =m(rw; +gsin6) a=g cos6/(2r)

2 .
R, =mrag +2mgsin IE




Particle Kinetics: Path Coord Example ref ~Meriam & Kraige 3/74

Given: .!#2
 The slider (m=2 kg) fits loosely in the smooth slot of 0/ &

the disk which lies in a horizontal plane and rotates
about a vertical axis through point O.

- The slider is free to move only slightly along the slot in  _
either direction before one (but not both) of the two
wires #1 or #2 becomes taut.

« The disk starts from rest at time t= 0 and has a
constant clockwise angular acceleration of a=0.5 r/s2.

Find:

(A) Determine the TENSION (T,) in wire #2 at t =1 second e,

(B) Determine the REACTION FORCE (N) between the ' e
slot and the block, again at t =1 second. e;e

(C) Determine the TIME (t) at which the tension in wire #2 e,

goes slack and wire #1 becomes taut.

Solution:
- Asks for FORCES (T,N) so we must first establish kinematics (accelerations!)
«  “Move only slightly” means it is effectively fixed relative to the slot/disk, thus
« The slider travels a circle about O & path (e, -e,) axes
or polar (e-e,) axes are convenient >




Particle Kinetics: Path Coord Example ref ~Meriam & Kraige 3/74

Solution (continued):
- Construct FBD

- Use disk kinematics (a=0.5 r/s® CW constant) to
determine slider’s total acceleration

p=0.100m=r = constant

beper=r=0

- Not instantaneous - integrate angular acceleration /

N
[ldw=[ ad=[ 05d O'g,g@

w= 0.5




Particle Kinetics: Path Coord Example ref ~Meriam & Kraige 3/74

Solution (continued):

* Newton’s Law can be applied along ANY two
independent directions to resolve unknown reactions

— Sum force components along (n-¢, r-6)
T, cos45+Nsin45 = mar

T, sin45-Ncos45 = - mw’r

— OR to simplify algebra of unknowns, choose the
directions along the unknown reactions and sum
both forces and acceleration components

T=m (arcos45—a)2r sin45) = mrﬁ(a—a)z)
2

N=m (arcos45+a)2r sin45) = mrﬁ(aﬂoz)
2

— ASIDE: This IS the geometric equivalent to simultaneously solving the first
set of constraints to yield expressions for the unknowns

— Noting the similarity of the expressions (% : + for N, - for T)

NT, = mr;/z (a + a)z)




Particle Kinetics: Path Coord Example ref ~Meriam & Kraige 3/74

Solution (continued): |
-« Substituting the known expressions for o & o @ '

mr2 (a + a)z)

2
2kg*0.1m*ﬁ{

N,T, =

05+ (0.51)}(r/s")

V2 )
N,T, =E{ 1£057H(N)

(A) So for =1, the TENSION T, is
\2 \2

2 N2
T, = 56{ 1-0.5(1)°} (V)= 1o (V)= 0035(N)

(B) At =1, the NORMAL REACTION N is

V2 ) 34/2
N = E{ 1+0.5(1) } (N)-—Zb—(N)— 0.106(N)

(C) The time when TENSION T, goes to zero is

T =—@ 1-0.57 (N)=O=>1—O.5t2=0=>t=\/§=>t=1.414(s)
> 20




Particle Kinetics: Path Coord Example ref ~Meriam & Kraige 3/74
Langiappe:
- The acceleration vector starts off completely in the lateral (6 or #) direction here

(0=0). Since cables/wires/ropes cannot PUSH, only T, can be engaged in
balancing the (r or n) component of the side wall reaction N

« The tangential acceleration component remains constant
« As the disk speeds up (o >0), the normal component increases

- When the total acceleration vector aligns with the normal reaction force
between the block & slot, the cord/wire tensions are both zero momentarily,
and as T, goes slack, T,will become taut.

T, or -T,

N

a_ =a, or a,

increasing




Kinetics of Rigid Bodies (2D): Impulse-Momentum

Motion studies: Forces/Moments, Velocities (linear/angular), Time
(Vector constraint 2D)

Iext = f.Eext dt = Am!CG = ALCG

o Linear Momentum

Anqular Momentum

Al = [M,ds

(+1 constraint)
Add RB ROTATION to Moment of L4

= gAw+(rgpxmAvs),

=L,Aw+(rg,xmAy,),

9

If P is CG or a fixed point in space

Al = [Mqg di=1q Aw=AH,

Al = [M, di=1,Aw=AH,

Impact: Coefficent of Restitution

Complicated phenomenon
with limited applicability

e =

rel-Sep )

v
(

Vrel—App )

Common Normal

/ Z_Eext_

ZMCGGX

F,+F,

FBD:
Top View

Hp=Icgm + rgp X m ¥eg

HF’:ICGO‘) + mVCGdeff




Example: Conservation of Momentum

Given:
 An artillery gun (mg) resting on the ground,

fires a shell (mp) with a speed v,
Find.

(A) The recoil speed (vg) of the gun

Solution: FBD m.g meg
« Rectilinear motion (i.e. only horizontal motion | | ¢ Npg
of interest here)
- FBD of system components, up through the l E
shell leaving the gun barrel propellant 1
* Propellant firing is internal to the system "
— System momentum is conserved in the
horizontal direction
N
AL, . =0
AL, =m;(vs=0)+m,(v,-0)=0
m
Ve = =V = —V,
(e




Example: Conservation of Momentum

Given:

- More often, a “muzzle velocity” (Vp,g)or
speed of the shell relative to the gun barrel
is specified

Find:
(A) The recoil speed (Vg) of the gun

Solution:
-  FBD (same), rectilinear motion (same) &
propellant firing is internal (same)

ALSys =0
AL =m . (v;=-0)+m,(v,-0)=0

Sys—x

Vp =Vs +Vp 6

MmeVe +mMp(Vg+Vp,5)=0

mp
Vg = = Vg = Ve

mg + mp

— 3

Fo

ropellant

|

y

Mpg

ap




Example: continued

Asking for more:

If resultant muzzle blast occurs over a short
time ., What resultant “kick” is felt by the
cannon?

Solution:

- An average F can be computed to

. prop-avg
approximate the kick.
- FBD m e
AI‘s s 0 AI‘gun—x =0 | a9 Nog
gun x I = f propellant l
Lblast F, propellant
=—F prop—-avg dt =-F prop-avg blast Nop
-1 —-m Vg
Fprop—avg = Al‘gun x = (_vR - O) = mG N
tblast tblast ZLblasz‘
_ mp | Vo _ Ve mp VriG MmgMp | Vpig
FProp-avg = Mg (_) / = mp ; or Fprop—avg =mg; =
Me ) Lotast blast Mg+Mp )ty \Mg+mp )l

57-



Example: Conservation of Momentum

Given:

- Numerous examples with similar
circumstances, rephrasing the wording

— Kid(s) on a boat in still water, one

jumps off A N 5
i = O g
— Car lands on a barge & skids to rest S 4-':'/ o T,

relative to barge
— Rail cars collide & stay attached
Find:
(A) The resulting speeds of each element
(B) Atime it takes to “skid to rest”

Solution:
- Similar conservation of momentum relations

AL, ., =0 => Resolve velocities
ALC(')mponm_x «(0 => Velocities known -> Resolve Net Impulse
L= [Epdi = [dL=AL =1=F;,Ar=AL




Particle Kinetics: Impulse-Momentum

 Impact Problems:
— Reformulation of one type of Impulse-Momentum [ = AL = mAv

— Impact Forces (F) characterized by MF |
- LARGE MAGNITUDE |
« SHORT TIME DURATION

« Ex: explosions, collisions, ball-bat,
club-golf ball

— Neglect other conventional forces of lesser |
effect for the short time interval considered
as their total effect is negligible

- Springs
-« Gravity
« Many Reaction forces (BUT NOT ALL!)

— Good opportunity to look at the SYSTEM of
particles in simplifying the problem (reactions
are internal!)




Particle Kinetics: Impulse-Momentum/ Impact

 Impact

— Locate Common Normal/Tangent

* Line of contact/impact - the NORMAL!

— Forces (F) of interaction

- Equal, Opposite, Co-linear

— Very complex internal phenomena,
captured by Coefficient of Restitution

_ (VRelative—Separation )

e =
V :
Relative- Approach

Common Normal

(good derivation in text --- READ IT!)

— Central & Oblique Impacts

 Central: Velocities COLINEAR with the
line of impact (i.e. the common normal)

« Oblique™ Velocities are NOT co-linear

Oblique* Impact

T~




Particle Kinetics: Impulse-Momentum/ Impact |,

» Solving Impact Problems ! \

(1) Tangential direction: individual particles
have no net external impulsive forces! u=0

*

*
MV =MV, & MpVp =mpVp /
VB

(2) Normal direction: system of particles
has no net external impulsive forces!

AL =0=>m,v,, +mgv, = mAv:,1 + va;n
(3) Coefficient of Restitution: Rel. Velocities along Common NORMAL!

vRelative Separation

€ =

vRelative Approach

Normal

(Perfectly Plastic) 0 <e <1 (Perfectly Elastic)




Particle Kinetics: Impulse-Momentum/ Impact

 Solving constraint relations !

D v, = VAz & vy, = VBt

s m,
(2) VBn = an +— (VAn
Mp
) /
(3) VBn = e(vAn Bn + VAn
* From which the unknown rebound (normal)
component of velocities become

(2)=(3)= (@) v,, =(mA'mBe)vAn+( s )(1+e)v3n

m,+mg

(4)—>(3)=>(5)V2n=( i )(“e)vAﬁ(mB—mAe)VBn

{




Particle Kinetics: Impulse-Momentum/ Impact ,

VA

* What if mg>>>my, ? \

%k S
(D v, =v, & vg =V

(2) Vg, =V, ““\%&’f; Vi)

X

K

(3) Vi = €(Van = Vo) * Van

component of velocities become

F
* From which the unknown rebound (normal) %

(2) = (4) vp, =V,

m

(4)=(3)=(5)v,, =—ev,, +(1+e)v,,

Vi=(vyova) & ¥V, =V,




Particle Kinetics: WORK-ENERGY for Rigid Bodies (Scalar!)
Uy =AT +AV, + AV, =AE,,;

* Need to incorporate the ROTATION elements
— Kinetic Energy of Rigid Bodies:

1 1
T==mv, +—I 0
2 2
o For fixed axis of rotation P other than CG.
_ 2
Ve = Tg10W
1 » 1 5
T — Em(rG/OCU) + EIGCU
1 2 2 1 2
= E(IG+er/0)w = Elpa)

o Use either CG or fixed axis of rotation P!!!!




Particle Kinetics: WORK-ENERGY for Rigid Bodies (Scalar!)
Uy =AT + AVg + AV, =AE_ .

* Need to incorporate the ROTATION elements
— Conservative Forces (now Moments):

o Springs (linear & torsional)

FS L ks ( 1-] 0) k. — stiffness (Force/Length) [, — unstretched length

M. ¢= - k‘9 ( O - 90) ko — torsional stiffness (torque/radian) 0, — unstretched angle

o Potential Functions

AV,=AV, +AV, = %ks(Al]% - Ali2)+%k0(AHJ§ -A6;)

o Constant Torques can also be treated as Potential functions

AV, = MA@ AV, =WAh=mgAh




Particle Kinetics: WORK-ENERGY for Rigid Bodies (Scalar!)
Uy =AT+AV, +AV,=AE,,;

* Need to incorporate the ROTATION elements

— Work:
FORCE/MOMENT applied thru a CURVILINEAR/ANGULAR DISPLACEMENT

o No displacement -- NO WORK!

U1_2 - f: E ) d!. * f:z M ° dQ = f: Ft ds + f:z M d6 ,,'”///

o Units ENERGY:  Sl: Joules (1 N-m) FPS: (Ib;-ft)

— Power : work/time

P=d%t=F'Y+M'Q

o Units SI: Watt (Joules/sec) FPS: 1 Horsepower = 550 ft-#/sec




Rigid Body Kinetics — Planar Motion (2D)

Revisit from last class:

« Athin ring of mass m is free to rotate in the
vertical plane about the frictionless pin
joint at 0.

* Its angular velocity is @, (CW) when 6=0°

Find: (for any arbitrary angle 6)
« The angular velocity of the ring

Solution:
* Fixed axis rotation at frictionless pin joint O

« FBD constructed using n-t axes
(+z into page — CW +)

* Forces, displacements, velocities => W-E!
o Last time Integrated M to get w=f(6)

UNC =AT + AVg + AVe = AETOT => AETOTZO 1111

FBD




Rigid Body Kinetics — Planar Motion (2D)

W-E Solution (continued):

AE; ., =AT +AV, =0

FBD

AT = -;—Io(a)g - w,)
AV, = WAh = mgAh = mg(-rsinf)
1 i | 1= mr?
AE. . = i —I (w; —w.)-mgrsin€ =0 I,=2mr
02 = + 2mgrsin6 P 2mgrsi2n0

I, 2mr

w, = \/a)g +&sin6

r

* Reaction forces? See earlier example using Newton’s Laws




Conservation-Energy Example ret Bedtord & Fowier 15.85

Given:

- A small pellet of mass m and neglible g M
diameter, sits atop a smooth circular cylinder et
of radius R.

« The pellet is given a slight nudge

Find:
(A) Draw a correct FBD for the pellet in
general position 0

(B) The value of 6 where pellet loses
contact with the cylinder

(C) The pellet’s speed at the point where
it loses contact

Solution:

- FBD of pellet in general position
(working over a motion interval here)

|[dentify
— Conservative Forces mg (Weight/Gravity)

— Non-working Constraint Forces N (Cylinder reaction force)
=

A4 —4




Conservation-Energy Example ref Bediord & Fowler 15.85

Solution:
« ALL Forces are either Conservative or
Non-working constraints, therefore

Cons. Of Energy applies!
AE  =AT+AV, =0

- It starts from rest, vi=0 @ 6,=0
- Set the datum for potential @ base of
the cylinder (y=Rcosb)

AE,, =0=AT +AV,

sys

v; =2gR(1-cosh)

« Just as the pellet loses contact (N=0)
2 Fn = man

2
mgcos9=mv—"
R

vy = Rgcosf

0= 1/2m(v,§ —O)+mg(Rcost9—R)

Equating expressions for v4? yields
v, = RgcosO = 2gR(1 - cosf)
3cosf =2
6 =cos™'(2/3) =48

70
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Rigid Body Kinetics — Planar Motion (2D)

Given:

« Arotating sheave (m;,) carries a high strength,
electromagnet (m,,,)

r=0.4m k,=0.3m ms=50kg m;;,,=100 kg

« Released from rest with the spring initially
stretched 0.1 m  k  =1.5 kN/m

Find:
« Velocity of O after it has dropped Ay,=0.5 m

Solution:
« 2 RB, CG’s motion rectilinear + sheave rotation
« Set coordinate x-y axes horiz/vert with CCW+

 BC’s loads, displacements, velocities => W-E!

U.e =AT+AVg +AV, =AE .

« Finish FBD & see if system is conservative!




Rigid Body Kinetics — Planar Motion (2D) T

W-E Solution (continued):
Conservative loads: Mse8, M;po8

Forces DO NO WORK: T => displacement = 0!
Roy Internal reaction not requested — System?

F

spp

spr

AE  =AT +AV,+AV,=0 !
1 1 l
AT, = —mloo(Vé —O)+‘2‘m50("(2) —O)+510(a)2 -0)
= %(mwo + My, )ch) + %mSOkéa)2
AV, = W AR = (ms, +m,q,)gAy, : ;
1 V=0! ! i
_ 1 Voi
AV, = 2k, {(AS+S 0) =So} N Ay,=rA0
. B . \ ‘:E"Y_ 1
Vo=Vtokxri => v,=wr P AS=2Ay
AS=?

=> vg=w(2r) =2v,




Rigid Body Kinetics — Planar Motion (2D) T, Fopr

. - Mso€
W-E Solution (continued):
» Assemblingtheterms AF =AT +AV +AV =0 /
Sys g e
O

| o)
yz{mmor2 +myg, (r2 + ké)}a)2 \

AEpor =0 = 1 s o Ro
L+(m50 +my,, )8AY, + Ekspr{(ZAyO +S,) =Sy}

T \/2(m50 Moo )gAyO + kspr{(ZAyO + SO )2 - Sg}

2 2 2
Myt +mg(r” +k;)

M 008
r=04m k=15 kN/m myp9=100 kg A -
Ay=-0.Im ky=03m S;=0.1m my=50kg \oO)"

w=35rls CW =4

¥

’_,..-‘_\
1© ™
Vam ‘|
\ | / ';
S

Uj}\
Z

=> Vv, =rw=04m*35r/s=14 m/s (—1’)




Conservation-Energy Exam ple ref ~Meriam & Kraige 3/17

Given:

- m =3 kg slider on circular track shown
- Starting from A with v,=0

e [ =0.6 m (unstretched), k=350 N/m

« u=0 (i.e friction is negligible)

Find:
(A) Velocity of slider as it passes B

Solution: FBD

- FBD of crate in general position
(working over a motion interval here)

+ Identify
— Conservative Forces

mg (Weight/Gravity) & F. (Spring)
— Non-working Constraint Forces

N (Track reaction force)




Conservation-Energy Exam ple ref ~Meriam & Kraige 3/17
Solution:

7,
ALL Forces are either Conservative or A-f l—0.6m
Non-working constraints, therefore +j. R=0. 6m—t
Cons. Of Energy applies!

AE,; =AT+AV,+AV, =0

k=350 N/m

1 1 B. sy,
AT,, = Em(vz —v5) = Em(vi, -0) ~m—————
AVABg =mg(yz —y,)=mg(0 - R)
1 FB
AV, =S k{(05=1)" = 4, ~ 1)’} mg
Pulling together all components & isolating v, N Fs

k
= JZgR + —{R2 - 2R - R)Z}
m
Incorporating numerical values of all terms

_ \/2*9.81(m/s2)(0.6m)+ 350N/ m{
3kg

(0.6m)? = (2 ¥0.6m — 0.6m)2} =6.82 m/s

75
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WOfk'Energy Example ref ~Meriam & Kraige 3/11

Given:

« A crate of mass m slides down an incline
- m=50 kg, 6=15°, n,=0.3,

« Reaches A with speed 4 m/s

Find:
(A) Speed of crate vg as it reaches a
point B 10 m down the incline from A

Solution:
- Rectilinear motion, align axes
accordingly -i.e. Il & 1L to incline

- FBD of crate in general position
(working over a motion interval here)

- No movement L to incline so Newtons Law says -?

EFy=mgcost9—N=O = N =mgcosf




Work-Energy Exam ple ref ~Meriam & Kraige 3/11

Solution (cont’d):

Work done is due to the resultant forces in
direction of displacement (i.e. down incline)
& includes Friction & component of Weight

U,p =(mgsinb - Ny, )Ax 5
= (mg sinb — mg cosOu, )Ax ,

Principle of Work-Energy then says
UA—B = ATA-B =1;-T,

= Ty=U,;+T, .
1 | T N

> Vg = mg(sin 0 — cosOu, )Ax ,, + > Vs

vy = y28(sin 0 — cosOu, )Ax 5, + V',

v, =~/2%9.81(m/s%)* (sinl5° — cos15°*0.3)* 10m + (4m/ s)’
vp=3.15 m/s

7




Work-Energy: Example ref ~Meriam & Kraige 3/13 | S »\

Given:
- Block (m =50 kg) mounted on rollers
« Massless spring w/ k=80 N/m

- Released from rest at A where spring
has initial stretch of 0.233 m

« Cord w/ constant tension P=300 N
attaches to block & routed over
frictionless/massless (ideal) pulley @ C

Find:
(A) Speed of block vz as it reaches a
point B directly under the pulley.

Solution:

- Again, rectilinear motion, align axes
accordingly

- FBD of block in general position
(working over a motion interval here)

- Look at alternative - include the rope in
as part of the SYSTEM - reduce FDB to
an ACTIVE Force Diagram!




Work-Energy: Example ref ~Meriam & Kraige 3/13 s
y )

Solution (cont’d):
ACTIVE Force Diagram!

« Eliminate Normal Forces | to

displacement @ their point of contact
{THEY DO NO WORK!}

—  Weight (mg) & Roller reactions (N)
— Pulley force on rope (R) N

Active forces DO work on the system -\~
—  Spring Force (F.) = opposes motion |:<_.L o
F = =-kx e gl

S mg P
Xp Xp e N
Us,, = |, Fodx=["~kxdx L
1, ops 1, 52 F " Active
= —Ekx . == Ek(xB - Xy) ‘5(_-\ ______ ! Force
: Diagram
— Assuming block can actually reach B

1
Ussy, == 80N/ m){(1.2+ 0.233)" - 0.233"}(m") = —80Joules

79



Work-Energy: Example ref ~Meriam & Kraige 3/13 | S _\

Solution (cont’d):

Calculate Work done on system by P

— Cord Tension (P) => constant
— Displacement of P

L

cord

=S, +1 = constant

As,=-Al =1, -1,
=\12°40.9°-09=0.6Im

U,z = PAs=300(N)*0.61(m)

=180Joules
Work-Energy
UTOT = ATA-B = TB - TA

1 ~ Active
~80 +180(Joules) = —m(v, - 0) FE<— ' Force
2 - T Diagram
100(Joules) * 2
= Vp = ( ou eS) =20m/s
S50Kg

80




Given: ®, =2r/s )
o, = 6 r/s? )

Find: vy, a

|6”| 6"| 899 |




= 6" rp=12" r1c=8"

=2r/s) occ=6r/52)
Vg, =1c00 =82 =161in/s |
Vi, = 16 | = rh05= 12 0g
SO: coB=4/3'> =W, [1/s]

Vp=Vp=w,r,=4/3(6)= 81[1n/s

ap, = Oclol + Ore—
=6(8) [+4(8)—= 48] +32 — [in/s?]

agy; = agy = 43 I= aply = 0p(12) ag = 4‘) — Oy

ap, =0, =46)=241=ay [in/s?]



Given: r,=3' no slip

R A G e B R s o i
CEa e
O L DO A Z

Find: Vg
v, =10 ft/s ==
v.=v,tor = 10-2m0=0
a)=5: or -5 k

Vp= Yo+ 0 XIgo= 10§ +-5k x-3j=-5i [fvs] <=

or Vg= V.t o xrg,.= 0+5kx-1j=-5i [ft/s]—







