

Integrated carbon capture, utilization and storage in the Louisiana chemical corridor.

National Energy Technology Labs, CarbonSAFE kick-off meeting, Pittsburgh, PA, March 14, 2017.

David E. Dismukes, Ph.D.
Center for Energy Studies &
College of the Coast and Environment
Louisiana State University

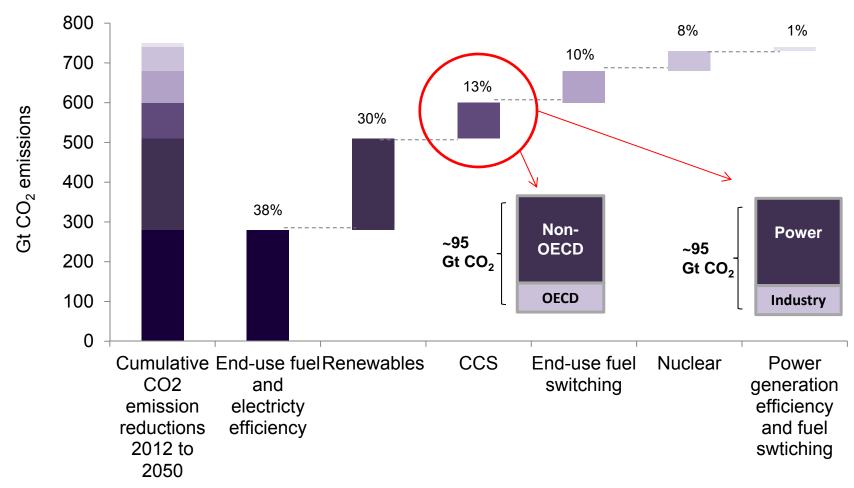
Presentation Outline

Introduction
 Project overview and tasks
 Team members & organization chart
 Deliverables, milestones & schedule
 Conclusions & anticipated benefits

Project motivations

The **goals of this project are consistent** with those articulated in the mission of the Office of Fossil Energy ("FE:") which is to help the United States meet is continual need for secure, affordable and environmentally-sound fossil energy supplies.

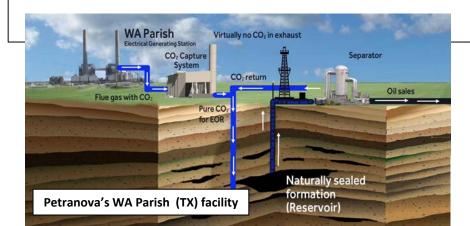
The motivation for funding this, and other similar research projects, is based upon the recognition that several current and proposed federal and state regulations will severely limit the ability of current and future fossil energy sources to emit carbon to the atmosphere.


Further, **public demand for energy from low-carbon sources** is growing and will continue to grow in the foreseeable future.

Concurrently, many major energy-intensive industries, that span various aspects of the energy value chain, already recognize these constraints and public pressures, particularly those energy companies that have an international footprint. Many are also looking at international solutions to this challenge, irrespective, in some instances, of domestic requirements.

Technical potentials for carbon emissions reductions (global).

CCUS is often recognized as an important and considerable means of addressing the carbon emissions problems from fossil fuels.


Source: IEA, Energy Technology Perspectives (2015).

Current challenges

One of the key gaps in the critical path towards the development of commercialscale CCS applications in the U.S. has been in identifying the commercial opportunities and challenges associated with a commercial application (50 plus million metric ton of storage).

As a result, industrial/commercial applications will bear a considerable amount of project development risk.

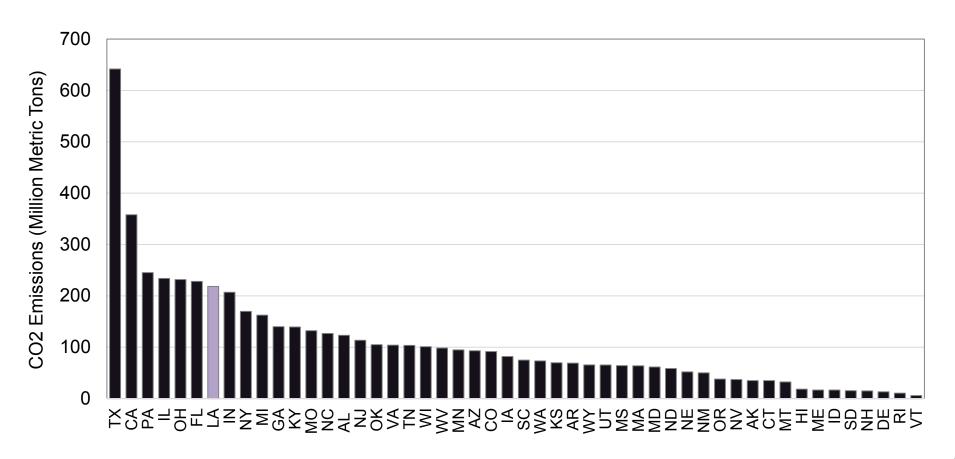
While there have been some limited investigations associated with CCUS applications, they have been restricted primarily to power applications and not **completely with industrial applications** – this is particularly true along the GOM where the two leading applications are based upon the capture of carbon from solid fuel power generation.

Introduction

L5U Center for Energy Studies

CarbonSAFE goals

Phase 1 CarbonSAFE goals are to provide funding to research groups capable of (1) formulating a team to address the technical and non-technical challenges specific to commercial-scale deployment of the CO₂ industrial storage project; (2) development of a plan encompassing technical requirements as well as both economic feasibility and public acceptance of an eventual storage project; and (3) high-level technical evaluations of the sub-basin and potential CO₂source(s).

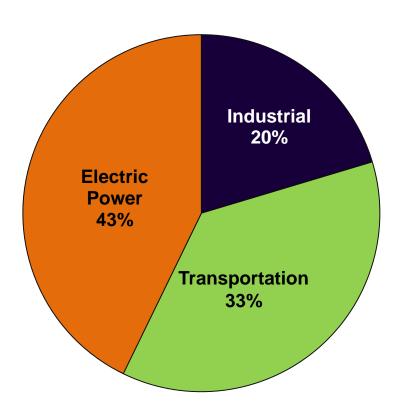

From a business development perspective, having a **geographically-concentrated** physical location with **diversified sources** will be critical in developing positive feasibility outcomes.

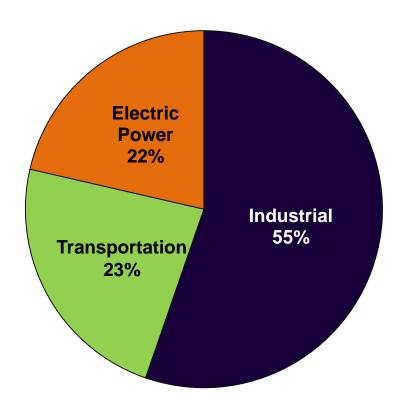
Our group believes that the **Louisiana industrial corridor is a well-suited location** to focus these feasibility study efforts, and generate positive results, since:

- 1) There are a **large number of** geographically-concentrated and diversified **sources** of CO2.
- 2) There are a large number of geographically-concentrated and diverse storage locations (or "sinks").
- 3) There are sufficient number of opportunities to develop **transportation infrastructure linking supply to storage** in these areas.
- 4) This is a region with a **long history and commercial experience in moving and storing a number of different hydrocarbons**, as well as other hydrocarbon wastes, into underground geological formations.

Energy-Related Emissions by State, 2014

At just under 220 million metric tons of CO2 emissions, Louisiana ranks seventh in the U.S.

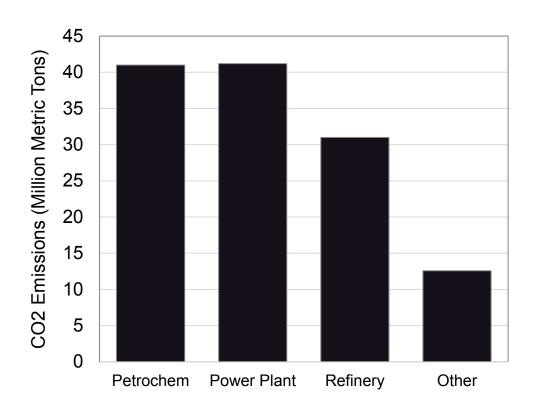

Introduction

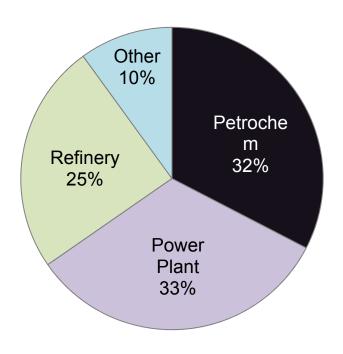

L5U Center for Energy Studies

U.S. and Louisiana CO₂ Emissions per Sector, 2013

In the U.S., power generation comprises over 40 percent of overall national emissions.

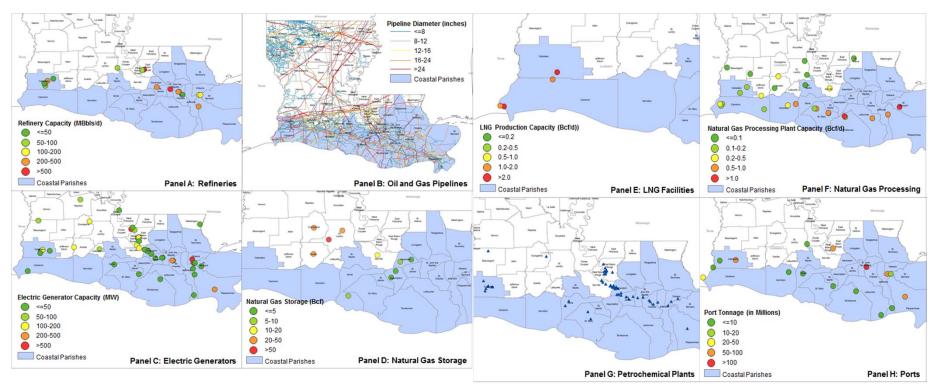
In Louisiana, power generation comprises about 22 percent of overall state emissions. Louisiana's primary source of CO₂ emissions comes from industry.




Introduction

L5U Center for Energy Studies

Louisiana Stationary CO2 Emissions, 2014


Petrochem facilities are the larger Louisiana carbon emission sources, followed by power plants and then refineries.

Louisiana's critical energy infrastructure.

Louisiana has a plethora of critical energy infrastructure. Refineries, certain petrochemical facilities, and gas processing facilities can serve as important carbon sources. The existing pipeline and storage infrastructure underscores opportunities for linking potential sources and sinks.

Louisiana industrial emission sources.

Project overview & tasks

The project is comprised of **six key topical areas** – each with their own set of subtasks.

Task 1: Project management.

Task 4: Geological capacity estimation.

Task 2: Economic feasibility and public acceptance.

Task 5: Baseline seismicity monitoring.

Task 3: Geological and engineering analysis.

Task 6: Legal issues.

Task 1.0: Project management

Project management will include the necessary activities to ensure coordination and planning of the project with DOE/NETL and other project participants. These activities include, but are not limited to, the monitoring and controlling of project scope, cost, schedule, and risk, and the submission and approval of required National Environmental Policy Act (NEPA) documentation.

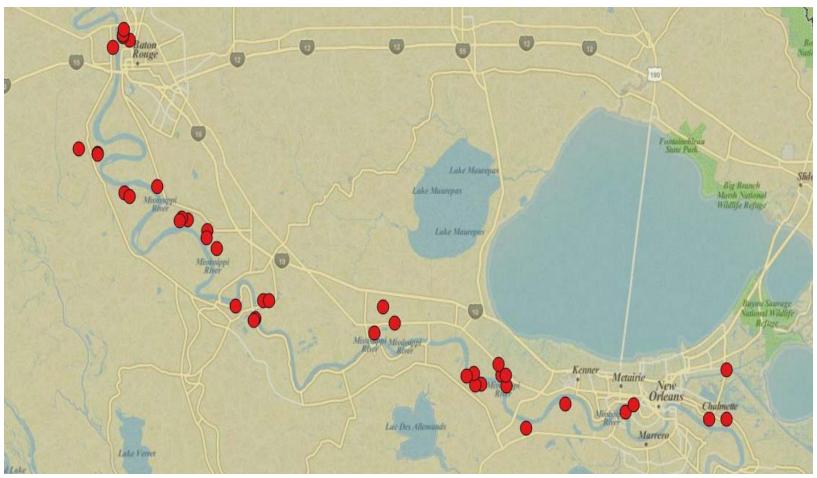
The project management phase includes all work elements required to maintain and revise the **Project Management Plan**, and to manage and report of activities in accordance with the plan and to maintain and revise the **Data Management Plan**.

Task 2.0: Economic feasibility and public acceptance

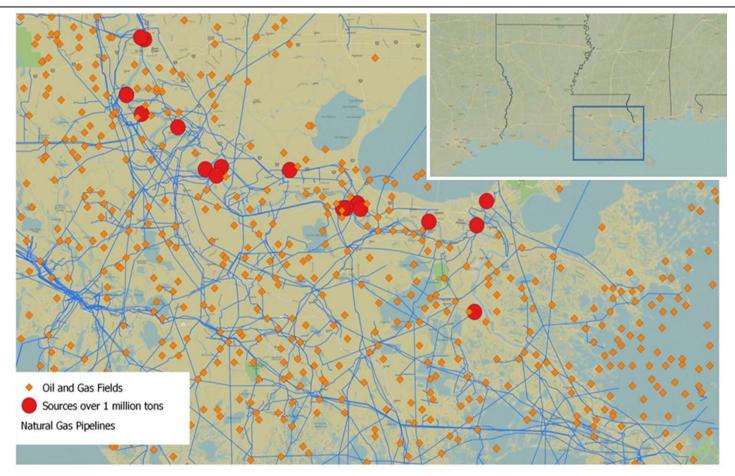
This section of the project will be decomposed into several tasks associated with estimated the economic feasibility of the project in addition to attempting to ascertain what the public acceptance regarding a project of this nature.

2.2: Estimating carbon mitigation costs.

2.3: Developing a CCS project advisory group


2.4: Public outreach and acceptance analysis

Public acceptance analysis


2.1 Identifying carbon sources and emissions levels

Preliminary analysis shows there are considerable potential industrial sources (250,000 metric tons or greater) in a geographically-concentrated area.

Potential sinks and transportation alternatives

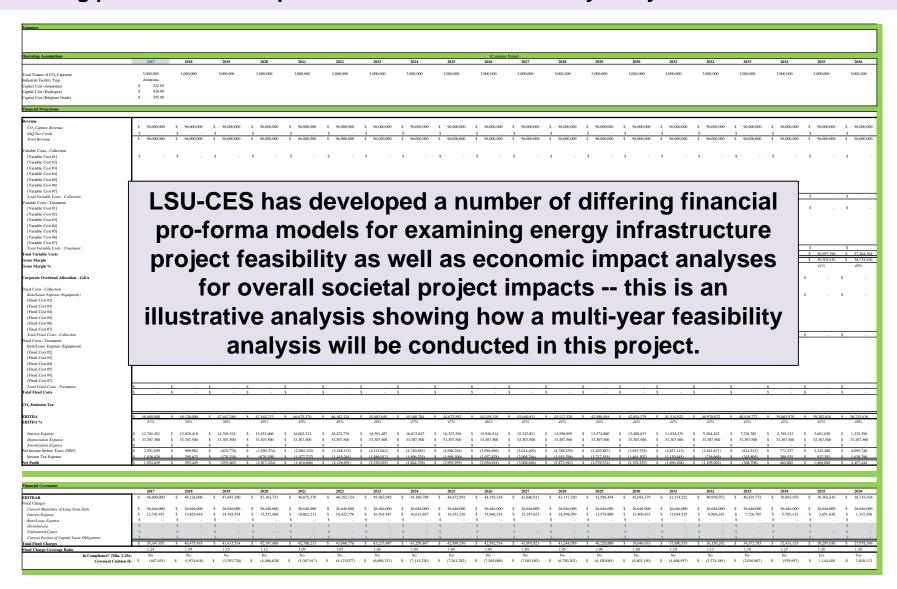
There are a number of oil and gas production reservoirs, some of which are depleted, that could be used as sources with considerable co-located transport infrastructure.

L5U Center for Energy Studies

2.2 Estimating carbon system costs and feasibility

Surveying literature on likely system configurations, technologies, and costs.

Groundtruthing cost estimates with industry Developing financial drivers to fund mitigation investments using typical financial pro-forma tools


Ground-truthing cost estimates with financial sector and industry.

Sensitivity
analysis on
"break-even" and
project "internal
rates of return"
("IRR")

Subjecting results (or range) to economic impact analysis for broader regional implications

L5U Center for Energy Studies

Utilizing prior cost-benefit/pro-forma models for feasibility analysis

L5U Center for Energy Studies

Illustrative feasibility analysis pro-forma model drivers

Economic and operating assumptions for capture investments

Operating Assumptions

Tonnes of Ammonia / Hydrogen Produced

CO₂ Emissions Per Ton

CO₂ Capture Efficiency

Tonnes of CO₂ Captured

Price of CO_2 (\$) / tonne

45Q Tax Credit (\$) / tonne

Carbon Tax (%) / tonne

Operating Costs / tonne (Ammonia)

Operating Costs / tonne (Hydrogen)

Operating Costs / tonne (Ethylene Oxide)

Variable Cost #1 [Collection]

Variable Cost #1 [Treatment]

Variable Cost #2

Variable Cost #2

Income Tax Rate

Inflation (CPI)

Economic and operating assumptions for transport investments

Operating Assumptions

CO₂ Transported per year / tonnes

System Capacity (Million Metric Tons / year)

Pipeline Distance (Miles)

Debt and equity finance assumptions for all project components

Loan Summary

Loan Amount:	\$ 532,920,000.00	='
Loan Pricing	Variable	
Annual Interest Rate:	4.00%	
Credit Spread	1.75%	
Start Date:	12/31/2016	
Loan Periods:	240	months
Maturity:	60	months
Total Monthly Pmt:	\$ -	
Total Loan Cost:	\$ -	
Total Interest:		

Capital Expenditure

eupitur Emperiorere				
Total Capex:	\$	666,150,000.00		
Debt (%):		80%		
Equity (%):		20%		
Useful Life:		240	months	
Loan Fees (%):		0.0%		
Loan Fees (\$):	\$	-		
Libor Increment		0.030%		
1-month Libor		0.52528%		

2.3. Developing a CCS project advisory panel

Table 1. Potential members of the LCCCT.				
Collaborator	Role			
Center for Energy Studies, LSU	Lead Agency	X		
Shell	Industrial Partner	X		
Louisiana Landowners Association	Sink Partner			
Louisiana Chemical Association	Industrial Partner	X		
Air Products	Industrial Partner			
Praxair	Industrial Partner			
CF Industries	Industrial Partner			
PCS Nitrogen	Industrial Partner			
Occidental Petroleum	Industrial Partner			
Cornerstone Chemical	Industrial Partner			
Mosaic	Industrial Partner			
BASF	Industrial Partner			
NRG Energy	Electricity Industry Partner	X		
Jones Walker	Legal Partner			
Williams Company	Transportation Partner			
Enterprise Product Partners	Transportation Partner	X		
Louisiana Office of Conservation	Government Agency	X		
Louisiana Geological Survey	Academic	X		
Environmental Sciences, LSU	Academic	X		
Petroleum Engineering, LSU	Academic	X		
Geology, LSU	Academic	X		
Law School, LSU	Academic	X		

Other State Agencies

Dept. of Natural Resources (State Lands)

Dept. of Natural Resources (SEO)

Dept. of Economic Development

Center for Energy Studies

2.3 Public outreach and acceptance

Project team members will work with **federal**, **state and local community groups to** ascertain issues associated with the public acceptance of carbon capture and storage in the Louisiana industrial corridor. We will also work at disseminating the results of this research, and its importance, on an ongoing basis.

Current CCUS Initiatives/Partnerships

Transcending Boundaries

Center for Energy Studies

Task 3.0: Geological and engineering analysis

The geological and engineering analysis will focus on defining candidates sites for carbon storage, the characteristics of those sites and their suitability for large-scale commercial storage. Technical information about the storage location will feed into the economic feasibility analysis as well.

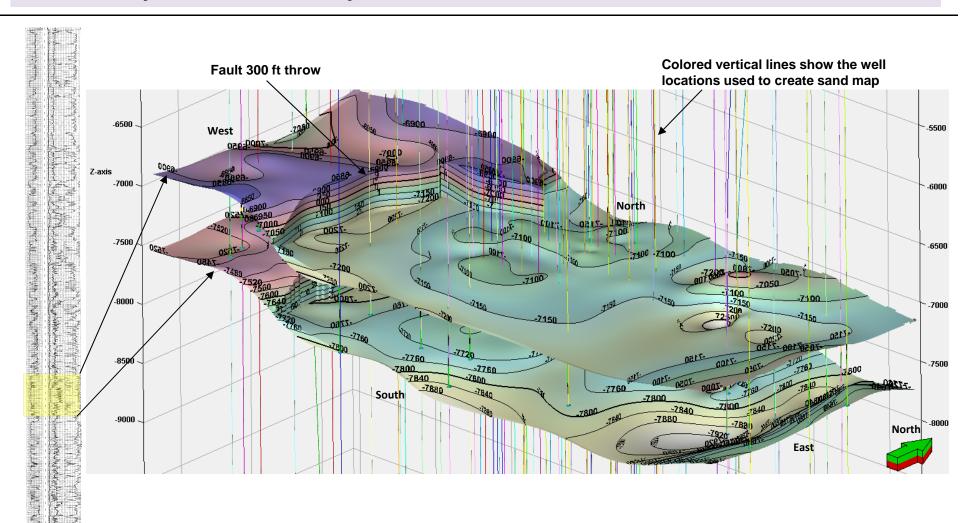
- 2.1: Site identification
- 3.2: Data collection and literature review
- 3.3: Data evaluation relative to engineering requirements
- 3.4: Candidate site mapping
- 3.5: Sands evaluation
- 3.6: Geological storage reporting for candidate sites.

Site Selection

- Site selection criteria:
 - Proximity to CO₂ sources
 - Potential for CO₂ containment
 - Potential for large storage capacity
- Initial site screening by LGS (Louisiana Geological Survey)*
- Site specific data collection from public source (SONRIS)
 - Field production history (initial site potential)
 - Well data (active and abandoned)
 - Well logs (to estimate pore space)
 - Well history data:- cement tops, plugged data etc (to estimate leakage risk)

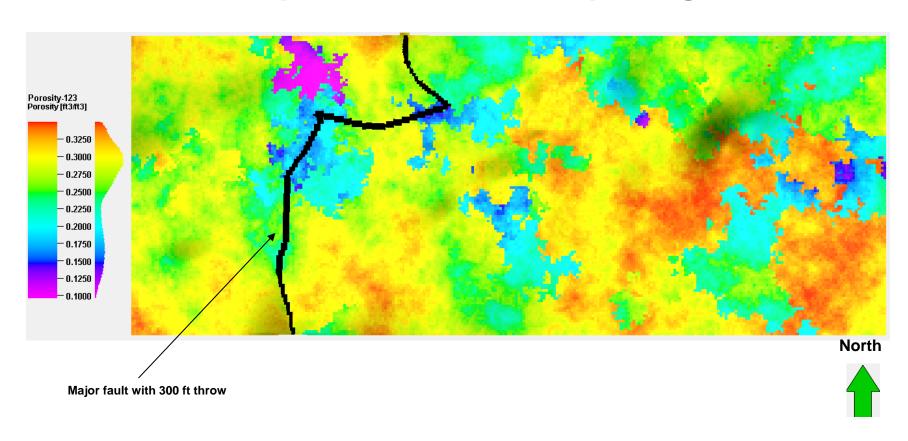
Site Specific Information

Bayou Sorrel


- Total number of drilled wells is 159 out of which 2 are water disposal wells and 3 are producing wells from oil reservoir at depth ≥12,000 ft
- Total areal extent of the field is ~8 mile²
- A thick sand is identified at a depth of 7100 ft with 500-700 ft thickness
- The sand is overlain by a thick shale layer with 200-600 ft thickness
- The bottom shale is 40-100 ft thick

Paradis

- Total number of wells is 387 out of which 7 are injection wells and 16 are producing wells from reservoir at depth ≥ 8,000 ft
- Total areal extent of the field is ~ 23 mile²
- A thick sand interval is identified at a depth of 4100 ft with 400-700 ft thickness
- The sand is overlain by a thick shale layer with 100-200 ft thickness
- The bottom shale is 30-100 ft thick


L5U | Center for Energy Studies

Preliminary Assessment, Bayou Sorrel

Preliminary Assessment, Porosity Distribution

Top view of 7100 sand package

Center for Energy Studies

Task 4.0: Geological capacity estimation

Distribution, potential volume, and cost to develop CO₂ geological storage have received increased emphasis in recent years. Accurate and clearly understandable capacity assessment is crucial in order to help government and industry make informed decisions about CO₂ geological storage. Only a fraction of the existing pore space is available for CO₂ storage and accessible to injected CO₂. This fraction is referred to as storage efficiency (coefficient). The project team anticipates utilizing a number of different methods at estimating these storage potentials and the sensitivities influencing the robustness of the storage estimates.

- 4.1: Static capacity estimation.
- 4.2: Dynamic capacity estimation.
- 4.3: Storage efficiency sensitivity.
- 4.4: NRAP tools

Storage Capacity Estimation

Two techniques for CO₂ storage capacity estimation:

- 1. Static
- 2. Dynamic
- 1. Static CO₂ storage capacity
 - Pore volume estimates (mainly based on well log data)
 - Initial temperature and pressure
 - Supercritical CO₂ volume estimates as discounted pore volume (using storage efficiency factor)
 - Capacity estimation for multiple geological model realizations

Storage Capacity Estimation (continued)

- 2. Dynamic CO₂ storage capacity estimate
 - Reservoir numerical simulations (CMG software, 2016)
 - Boundary conditions sensitivity
 - Injection scheme sensitivity
 - Monitorability of injected CO₂
 - NRAP tools will be used wherever they could provide additional information
- Well leakage risk assessment
 - From available well data (completion date, cement tops)
 - Leakage model using NRAP well leakage analysis tools

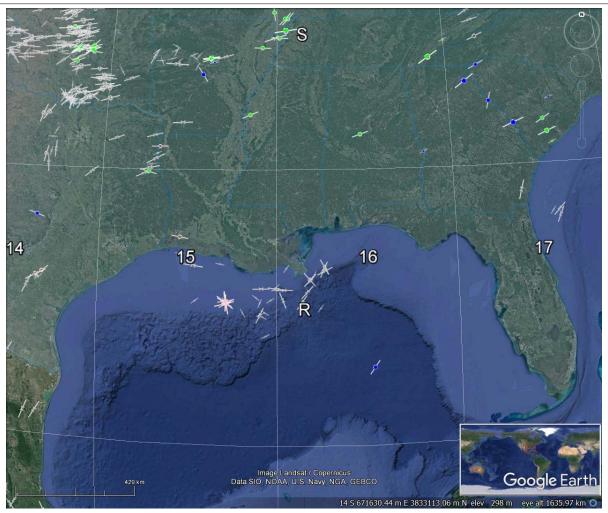
Expected Outcomes – Subsurface Modeling

- Site specific static and dynamic CO₂ storage capacity estimates
- Quantitative Risk Assessment (QRA) of leakage potential
- The comparison of results from static and dynamic storage capacity estimates will provide representative storage efficiency factors for this region
- The QRA framework developed for leakage risk assessment may be adopted for other sites

Center for Energy Studies

Task 5.0: Baseline seismicity monitoring

In the US, recent increases in the numbers of induced seismic events accompanying the subsurface storage of fluid waste has created public concern and cast a shadow over the use of CO₂ storage technology. We propose to apply a key lesson learned from public perceptions to hydraulic fracturing, to provide open information on the potential seismic risk and occurrence of natural seismic activity.


Our proposed CO₂ sequestration site(s) in **Louisiana have a great natural advantage** because of their low chance of natural earthquake damage and activity. Reviews of natural and induced seismicity across Louisiana for the period April 2010 and July 2012 confirm the low level of natural seismicity but also highlight nearby sources of induced seismic activity possibly associated with wastewater injection.

Without baseline monitoring, if seismic events become more noticeable during the sequestration phase, the exact cause of these seismic events is harder to evaluate. A baseline evaluation of natural seismicity is required to facilitate later analysis of potentially induced events during sequestration phase.

- 5.1: Collection and characterization of relevant data and storage methods.
- 5.2: Model development.
- 5.3: Ongoing on-line seismic catalogue and mapping

World Stress Map

Map shows Class A and B stress orientations (classes C and D omitted)

Source: Heidbach et al., 2016 © LSU Center for Energy Studies 34

Center for Energy Studies

Task 6.0: Legal analysis

The use of the subsurface to permanently store captured carbon emissions is replete with a number of legal and public policy issues. Liability is one issue that often comes to mind. This phase of the project will examine a wide range of issues associated with underground carbon storage as well as transport (eminent domain) that will have to be addressed clearly before any commercial application can be determined as being feasible.

- 6.1: Subsurface ownership analysis
- 6.2: Subsurface eminent domain analysis.
- 6.3: Surface eminent domain analysis.
- 6.4: Production/CCS conflicts analysis
- 6.5: Permitting issues and requirements
- 6.6: Liability claims analysis.

Project team & organization

Organization

Project Team

David E. Dismukes, Economist Professor & Exe. Director, Center for Energy Studies & Department of Environmental Sciences

Brian Synder, Ecologist Asst. Professor Department of Environmental Sciences

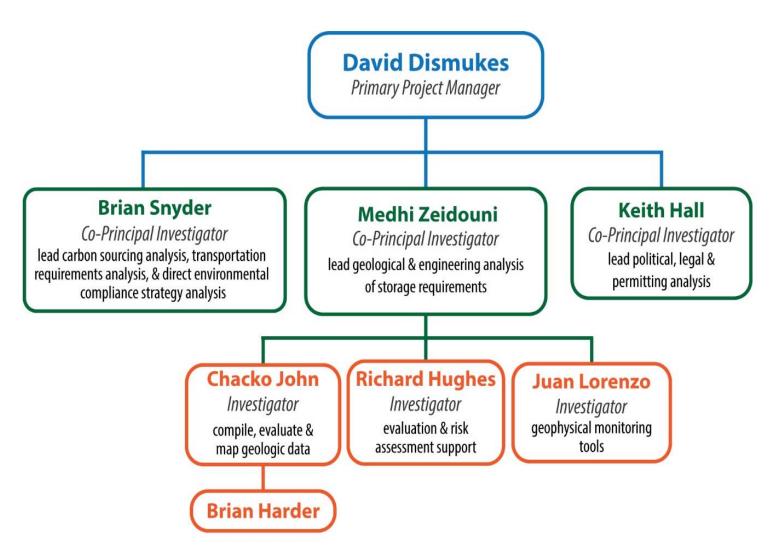
Juan Lorenzo, Geologist Assc. Professor Department of Geology

Keith Hall, Attorney Assc. Professor & Director Laborde Energy Law Institute

Chacko John, State Geologist Director and Professor Louisiana Geological Survey (CES)

Mehdi Zeidouni, Petroleum Engineer Asst. Professor Department of Petroleum Engineering

Brian Harder, Petroleum Engineer Research Associate Louisiana Geological Survey (CES) (estimated recent photo)



Richard Hughes, Petroleum Engineer Professional-in-Residence Department of Petroleum Engineering

Organization

L5U | Center for Energy Studies

Project Organizational Chart

Project schedule

Schedule

L5U Center for Energy Studies

Project Schedule

Conclusions

Conclusions

Louisiana has a confluence of factors that should lead to a successful development of a CCS feasibility analysis.

The state has several large emission sources and sinks and is a great test location.

These sources and sinks are geographically concentrated, yet diversified across a number of different industrial facilities.

The feasibility study arises from this work, therefore, will likely have broad applicability in the industrial corridor between Baton Rouge and New Orleans as well as from Lake Charles to Cameron Parish.

The project team is already making progress on our initial near term barriers to successfully tasks and see **no** completing this project.

Questions, comments and discussion

dismukes@lsu.edu

www.enrg.lsu.edu