Diagnostic Environmental Parameters for Differentiating Sources of Water and Gases Gulf States Energy Retreat Baton Rouge, Louisiana June 21, 2012

> Presented by John Oneacre Ground Water Solutions Houston, Texas

"Truth is so obscure in these times, and falsehood so established, that, unless we love the truth, we cannot know it."

-- Blaise Pascal, 1623-1662, French Mathematician

"Truth is so obscure in these times, and falsehood so established, that, unless we love the truth, we cannot know it." -- Blaise Pascal, 1623-1662, French Mathematician

"I never give them hell. I just tell the truth and they think it's hell."

-- Harry S. Truman, 33rd President

Dimock, Pennsylvania- It's Not Just Methane

"Inorganic hazardous substances are present in four home wells at levels that present a public health concern"

"...this action is *predominantly* based upon *inorganic* data at the four homes"

USEPA, 1-19-12, Action Memorandum

Arsenic Barium Manganese Sodium

NEWSFLASH!!!

•3-15-12 EPA releases data for 11 wells
•4-6-12 EPA releases data for 20 more wells
•4-20-12 EPA releases data for 16 more wells
•5-11-12 EPA releases data for 12 wells

Comments on Results

•"...did not show levels of contaminants that would give EPA reason to take immediate action," EPA spokesman Roy Seneca

•"The affected families want the *truth*, not more smoke and mirrors: why is Region 3 implying that water full of toxic chemicals and methane poses no health threat?" - Water Defense Director

Pavillion, Wyoming- Methane? What Methane?

• EPA relied heavily on two parameters

•Extremely high pH- values between 11.2 and 12.0

•Potassium

EPA Phase IV Results & Issues

•EPA's claim that pH values above 11 S.U. are too high for cement is simply not true

•Oneacre & Figueras (1996)- pH values of 12+ in wells

•Cherry, et al (1983)- pH values as high as 11 or 12

•EPA's own document from 1991 (EPA/600/4-89/034) lists the pH of neat cement between 10 and 12 (p. 100)

•USGS publication from 1997 (Water –Resources Investigation Report 96-1233) states that cement has a pH range from 10 to 12

Vagarious Vermont

•Vagarious- marked by erratic, irresponsible, impetuous behavior

"We don't want to be shooting chemicals into our groundwater in pursuit of gas that does not exist," - Vt. Governor Shumlin
"There have been over 1,000 instances of ... water contamination at

sites in close proximity to fracking wells between 2008 and 2012 in the United States..." – Vt. State Senator Ginny Lyon

"Fracking has caused enormous problems with underground water contamination and aboveground waste disposal, entire streams have been destroyed," -author and climate change activist Bill McKibben

High Chloride Case

Quaternary alluvial aquifer
High concentrations of chloride in ground water
Large MSW landfill adjacent to aquifer
State agency orders study at landfill to determine leachate migration pathway to aquifer
State requires landfill company to install a ground water interceptor trench and treatment plant
Oil companies have producing field on opposite side of aquifer
Oil companies are not under investigation as a responsible party for the chloride impact to ground water

Differentiating Source of High Chlorides in Alluvial Aquifer

Differentiating Source of High Chlorides in Alluvial Aquifer

Brine movement from Pico Formation along Santa Susanna Fault Splay to Alluvium

Gas Leak on Residential Gas Line

•Note the gray, discolored soil in front of the backhoe

Minor leak on 2-inch residential gas line caused discoloration
Production gas line was not the source of the leak

Hydrogen Stable Isotopes

- Deuterium
- 1 Proton
- 1 Neutron
- Atomic Mass = 2
- 00.015% of H isotopes

- Protium
- 1 Proton
- o Neutron
- Atomic Mass = 1
- 99.985% of H isotopes

Stable Isotope Calculation

 $\delta^{13}C_{o} = \left[\left({^{13}C} / {^{12}C_{sample}} - {^{13}C} / {^{12}C_{standard}} \right) / \left({^{13}C} / {^{12}C_{standard}} \right) \right] *1000$

Types of Methane Biogenic Thermogenic Abiogenic and mantle

Biogenic Methane

- •Most common form in shallow ground water systems
- Formed from bacterial reduction of organic matter
 Requires fully saturated environment without atmospheric oxygen
 Absence of free-energy electron-acceptors such as NO3 and SO4

Biogenic Sources

Lignite to bituminous coal
Wetlands
Peat bogs/fens
Rice Fields
Landfills
Marshes
Glacial Deposits
Lake Deposits

Biogenic Characteristics

δ ²H values range from -300 °/₀₀ to -150 °/₀₀
δ ¹³C values range from -80 °/₀₀ to -40 °/₀₀
δ ¹³C_{CH4} depleted 50 °/₀₀ to 80 °/₀₀ from coexisting δ ¹³C_{CO2}
Distinguishes biogenic from thermogenic
Low temperature and pressure
C2 + hydrocarbons at trace levels or non-detect
CO2 reduction
Methyl fermentation

Thermogenic Gas

Wet Gas

Thermogenic Methane

- •Forms by the breaking down of higher mass hydrocarbons
- •Elevated temperatures required
- Elevated pressures required
- •Represented by natural gas in sedimentary basins
- Enriched in δ^2 H and δ^{13} C compared to biogenic methane
- •Can have C1 through C₆ components

Thermogenic Methane

Isotope fractionation is suppressed
δ ¹³C seldom below -50 °/₀₀
δ ²D typically between -250 °/₀₀ and -110 °/₀₀
Ratio of methane to ethane and propane < than biogenic
C₁/(C₂ + C₃) can be less than 10 for thermogenic

Thermogenic Gas

Shallow gas does not necessarily mean biogenic gas
The first gas well drilled (c. 1825) in Fredonia, NY was in Upper/Middle Devonian Shale at a depth of 27 feet.

 Devonian Catskill and Lock Haven Formations can have shallow thermogenic gas within a few hundred feet of surface

Carbon Isotope Ranges of Methane

_

Various Sources

Carbon Isotope Ranges of Methane

Biogenic vs Thermogenic

_

Naturally Occurring Methane

Examples of Naturally Occurring Methane in Ground Water in Different Sedimentary Basins

Naturally Occurring Methane Studies

Alberta, Canada - ~ 60% of water wells had NOM
West Virginia- ~ 77% of water wells tested had NOM
San Juan Basin- ~ 33% of wells had NOM
Pennsylvania- ~40% of wells estimated to have some gas; Cabot found that 80% of wells in 60 mi² area had measurable NOM
Illinois- State found NOM in glacial moraines
Louisiana- State found NOM from CBM in water wells
Texas- NOM associated with major aquifer

Various Potential Sources of Methane in Glaciated Ares of

Ohio

- •Terminal Moraine
- •Ground Moraine

•Till

- •Outwash Deposits
- •Bogs/Peat Bogs/Fens
- Marshes/Wetlands
- •Kettle Lakes
- •Coal Beds
- •Abandoned Underground Mines
- •Strip Mines
- •Old Oil and Gas Plays
- Landfills
- •Gas Lines
- Sewer Systems

Methods to differentiate methane

Methane/ethane + ratio
Thermogenic can have a ratio of 10 or lower
Mole fractions of numerous gases
CO2, N, O, CH4, C2H6, C3-C6, Ar, He, H2S
Isotopes of C and H
Ratios such as Ar/O, N2/C1, C1/C2, C2/C3
Other isotopes
Gas Wetness Fraction (C1/C1-C5)
Possible other noble gases- Ne, Xe, Kr

Noble Gases as Markers

Helium-formed by radioactive decay of thorium & uranium
Helium may be present or absent in natural gas deposits
Argon is formed by radioactive decay of Potassium 40
Thus, Argon concentration is function of original amount of Potassium 40 in formation

•Argon/Oxygen can help distinguish different sources of methane

Field Indicators of Potential Presence of CH₄

Low Dissolved Oxygen
Low Oxidation-Reduction Potential (ORP)
Presence of H₂S
SO4²⁻ + CH₄ → HS⁻ + HCO₃⁻ + H₂O + energy
H₂S (aq) = HS⁻ + H⁻
Above indicate reduced (anaerobic) ground water conditions
Hem (1985)- <u>"Methane is commonly present in ground water in reduced geochemical systems."</u>

Ground Water and Brine Parameters
Sample Parameters Containers and Holdi

Parameter	Suggested	Units	Container	Preservative	Holding
	Method				Time
Groundwater Depth	Field	0.01 feet	Field	n/a	n/a
Temperature	Field	۴	Field	n/a	n/a
Specific Conductance	Field	μmhos/cm	Field	n/a	n/a
рН	Field	pH units	Field	n/a	n/a
Dissolved Oxygen	Field	mg/L	Field	n/a	n/a
Oxidation-Reduction Potential	Field	mV	Field	n/a	n/a
Turbidity	Field	NTU	Field	n/a	n/a
Total Dissolved Solids	2540C	mg/L	1-L plastic	None	7 days
Chloride	300.0	mg/L	1-L plastic	None	28 days
Bicarbonate	300.0	mg/L	1-L plastic	None	14 days
Sulfate	300.0	mg/L	1-L plastic	None	28 days
Sulfide	4500SD	mg/L	1-L plastic	ZnAC + NaOH to pH >9	7 days
Calcium	6010	mg/L	1-L plastic	HNO₃ to pH <2	6 months
Magnesium	6010	mg/L	1-L plastic	HNO₃ to pH <2	6 months
Potassium	6010	mg/L	1-L plastic	HNO₃ to pH <2	6 months
Sodium	6010	mg/L	1-L plastic	HNO₃ to pH <2	6 months
Metals	6010	mg/L	500 mL	HNO₃ to pH <2	6 months
VOCs (Subtitle D Appendix I)	8260B	μg/L	Three 40-mL glass vials	HCI to pH <2	14 days
Oxygen Isotopes (δ18Ο/16Ο)	Mass Spec	per mil	1-500 ml plastic	None	None
Hydrogen Isotopes (δ2Η/1Η)	Mass Spec	per mil	1-500 ml plastic	None	None
Boron	212.3	mg/l	1-L plastic	None	6 months
Bromide	300.0	mg/l	1-L plastic	None	28 days
ТРН	8015	mg/l	Three 40-mil glass vials	HCL to pH <2	14 days

ng Times

µg/L denotes micrograms per liter.

µmhos/cm denotes micromhos per centimeter

L denotes liter

mg/L denotes milligrams per liter

mL denotes milliliter

n/a denotes not applicable

NTU denotes Nephelometric Turbidity Units
Gas Parameters

Parameter	Unit	Container
Methane	Mol %	Summa canister or equiv.
Ethane	Mol %	Summa canister or equiv.
Propane	Mol %	Summa canister or equiv.
I, N-Butane	Mol %	Summa canister or equiv.
I, N-Pentane	Mol %	Summa canister or equiv.
Hexane	Mol %	Summa canister or equiv.
Oxygen	Mol %	Summa canister or equiv.
Nitrogen	Mol %	Summa canister or equiv.
Hydrogen	Mol %	Summa canister or equiv.
Ethylene	Mol %	Summa canister or equiv.
Carbon Dioxide	Mol %	Summa canister or equiv.
Carbon Monoxide	Mol %	Summa canister or equiv.
Acetylene	Mol %	Summa canister or equiv.
Argon/Oxygen	Mol %	Summa canister or equiv.
Hydrogen Sulfide	ppm	Summa canister or equiv.
Helium	Mol % or ppm	Summa canister or equiv.
Hydrogen Isotopes (δ ² H _{C1} / ¹ H _{C1})	per mil	Summa canister or equiv.
Hydrogen Isotopes (δ ² H _{C2} / ¹ H _{C2})	per mil	Summa canister or equiv.
Carbon Isotopes (δ ¹³ C _{C1} / ¹² C _{C1})	per mil	Summa canister or equiv.
Carbon Isotopes (δ ¹³ C _{C2} / ¹² C _{C2})	per mil	Summa canister or equiv.
VOC by Method TO-15	ppbv	Summa canister or equiv.
Specific Gravity		
BTU/cu. ft.		

Helium vs Methane/Ethane +

Thermogenic and Biogenic Gas

-

 C_1/C_2 vs Ar/O

Stable Isotope Signatures/Maturity of Trenton Natural Gases Appalachian Basin

Stable Isotope Signatures of Natural Gases Appalachian Basin -100 Post -120 -140 $\delta^2 H_1$ (per mil) -160 Early -180 -200 -220 -40 -60 -50 -55 -45 -35 -30 -25 -20 $\delta^{13}C_1$ (per mil)

Caution with Isotopes

Microbial oxidation may change signature
Signature of source may vary over distance
Mixing of gases can create interpretation problems
Isotope "reversal"
Production signature may change over time
Failure to identify all potential sources of methane
Comingling of natural gas from different formations

Mixing of Different Gas Sources

•Note Black Dots

•These represent mixing of natural gas of Marcellus and other gas source in gas wells

•This mixing of different gases could complicate differentiating sources of methane

Marcellus Shale Gas Play, Appalachian Basin

Source: US Energy Information Administration based on data from WVGES, PA DCNR, OH DGS, NY DEC, VA DMME, USGS, Wrightstone (2009). Only wells completed after 1-1-2003 are shown. Updated June 1, 2011

Different Gas Windows

•Gas windows can change over short distances.

•In the Eagle Ford, three windows can occur in the same county.

•Gas associated with oil.

•Gas associated with condensate.

•Unassociated dry gas.

•These windows would be expected to exhibit differences in:

- Mole fractions
- Various ratios
- Noble Gases
- Thermal Maturity
- Isotopic Signatures
- Gas Wetness Fraction

Isotope Reversals

•Isotope reversals are typically noted for C1 and C2 isotopes

•Reversals suggest:

In-situ cracking

Overpressure

Little, if any, seepage of deeper gas to shallow layers

Marcellus Example (with Isotopic Reversal)

Baldassare, 2011

Conclusions

- •CH4 occurs *naturally* in many geological environments •CH4 occurrence can be natural or anthropogenic related
- •Need to thoroughly understand all possible sources of CH4
- Potential sources can be pipelines, old wells, landfills, swamp gas, glacial material high in organic content, mines, gas storage reservoirs, etc.
- •Baseline study is imperative to determine existence of gas
- Baseline study needs to determine the signature of the gas
- •Forensic tools include mole fractions, isotopes, and various ratios and relationships
- •Without baseline data, it may not be possible to conclusively determine source of gas, especially if mixing of different gases may occur