Short Term Issues....Long Term Issues The Outlook for Natural Gas

Energy Summit 2005 Baton Rouge, LA October 19, 2005

> Terry Boss INGAA

How Did the Market Get Here?

Lower-48 Grast Brock uctions Mersels Deliveryability (Bcfd) (\$ per M M B tu)

Source: Platts Gas Daily & Energy and Environmental Analysis, Inc.

Demand Increased Because of Hot Summer

- Hotter than normal summer temperatures have kept upward pressure on gas prices.
- An early summer heat wave covered the Midwestern and Central states in June.
- July provided extreme heat to the Western United States.
- Late summer included more heat, with South Atlantic and Gulf Coast states seeing the hottest summer in ten years.

U.S.	2005 CDD	Normal	% Different
June	260	213	22%
July	367	321	14%
August	348	290	20%
MATL			
June	205	117	75%
July	309	247	25%
August	306	205	49%
SATL			
June	335	319	5%
July	462	425	9%
August	451	393	15%
ENC			
June	249	147	69%
July	294	245	20%
August	258	197	31%
ESC			
June	335	296	13%
July	433	412	5%
August	457	376	22%
WSC			
June	482	431	12%
July	558	545	2%
August	575	527	9%
PAC			
June	92	100	-8%
July	239	188	27%
August	223	193	16%

One - Two Punch

Supply disruptions due to recent hurricanes will persist throughout the upcoming winter ... Cumulative production offline from September through March = 680 Bcf? (about 6% of Total US Production)

Average production offline during the upcoming winter = 2.0 Bcfd? (about 4% of Total US Production)

54 -3.6 -2.6 -1.9 -1.3 -1.0 52 50 -6.1 -6.0 **EEA's Assumed** Bcfd 48 **Recovery Scenario** Cindy 46 Dennis Rita 44 **Katrina** 42 JUN'OS May, Inue, MAD, Cest, OC, MON, Dec, Par, Les, March, Will, Projected Before Hurricanes Current Projection

U.S. Natural Gas

Model Used to Analyze Hurricane Impacts

Weather Plays a Big Factor in Demand.... Northeast U.S.

Northeast U.S. Gas Demand for January 1/

■ Residential □ Commercial □ Industrial ■ Power Generation □ Pipeline Fuel

Courtesy of EEA

/1 Includes New England, NYC, New Jersey, Eastern Pennsylvania and the Baltimore/Washington corridor.

2/ Weather percentile based on ranking of Mid Atlantic weather from Nov-Jan over the past 70 years. For example, the 50th percentile case represents average Nov-Jan weather over the period. The 75th percentile case would represent the 20th coldest Nov-Jan, and a 25th percentile case would represent the 20th warmest Nov-Jan.

Gas Prices

Expect Significant Price Volatility

The Effect of Weather on Storage (Working Storage Gas March 31, 2006 Level, Bcf)

Getting the Gas to the Right Place....

Individual Market Sustainability during Daily Peak Load Swings Depends on Infrastructure

Daily Demand for January

Will the Gas Market Work?

Gas Equipment Manufacturers

Linepack vs. Imbalance

Gas Processing Also an Issue.....

Hydrocarbon Liquid Dewpoint

Temperature below which some components in a gas begin to condense and drop out as liquids

Atmosphere

When the air temperature falls below the air dewpoint it begins to rain

Pipeline

When the gas temperature falls below the hydrocarbon dewpoint it begins to "rain" hydrocarbons in the pipeline. Highly dependant on C6+ concentration

Impact of Pressure Reduction on Flowing Pipeline Gas

Hydrocarbon Liquid Control Measures

Blending

- Incidental Open Access Nominations
- Contractual Within the Control of Shippers

Heating

- Heat of Compression
- Installation of Heaters
- Gas Shut-in

Long Term Issues.....

Gas Demand Outlook

U.S. and Canada Gas Consumption

(Trillion Cubic Feet, Tcf)

- Gas consumption in the power sector will grow substantially.
 - Over 200 GW's of new gas-based generating capacity in the U.S. will be used to satisfy increasing electric load.
- Modest growth in R/C gas consumption.
- Industrial gas consumption will fluctuate around current levels.
 - Well below pre-2000 levels.
- When necessary, priceinduced demand reductions will balance the market.

The North American gas market may be best characterized as a "demand leads supply market" for the foreseeable future.

Historical Background: Natural Gas

- 1950s to early 1980's: interstate gas markets highly regulated, long-term contracts predominated
 - long-term contracts for wellhead supplies between pipelines and producers lasted for "life of reserves" or a long, fixed period
 - contracts between pipeline and LDCs often had 20-year terms
 - existence of contracts needed for approval of new pipeline capacity
- Through 1980's and 1990's: gas restructuring period
 - NGPA, Natural Gas Wellhead Decontrol Act
 - FERC Orders 380, 436 and 636
 - State-level customer choice programs for large industrials and then others
 - Resulted in take-or-pay, stranded cost problems
 - Led to many more contracts of shorter duration

Where is the Natural Gas Supply?

Relying On New Frontiers

 Production from mature producing areas will decline by about 1% per year.

 New frontier supplies will account for 38% and 45% of total U.S. and Canada gas supply in 2015 and 2025, respectively, versus only 18% today.

U.S. & Canada Gas Supply

Obstacles For Supply Growth

- Large Capital Requirements
- Recent Liquidity Crunch
- Investor Recognition of Opportunities
- Price Volatility Creates Uncertainty

- Uncertainty About Future Gas Demand
- Access Restrictions
- Cumbersome Approvals Process
- Environmental and Siting Issues
- Contracting Issues

There is much uncertainty about future gas supply development.

New Long Haul Pipeline Capacity Needed

Pipeline Capital Expenditures Needed

Role of Long-term Contracts

- Contracts assign rights and obligations and allocate risks to pipelines, equity holders, debt holders, insurers, suppliers, buyers, etc.
- Long-term contracts are an important way of managing risks to all participants in new and existing gas supply, transportation and storage facilities
 - mitigate "volume risk" by assuring that a minimum amount of sales or throughput
 - mitigate "price risk" by setting a fixed price or by specifying a pricing formula

Holders of U.S. Gas Pipeline Capacity

	Percent of Pipeline Capacity Held		Approx. Share of Enduse Consumption		
-	1998	2002	2005	2020	
LDC	46%	42%	39%	33%	
Power	12%	15%	25%	39%	
Industrial	4%	3%	36%	27%	
Marketer	13%	24%			
Producer	9%	10%			
Pipeline	9%	5%			
Other	7%	1%			
Total	100%	100%	100%	100%	

Sources: NPC, Balancing Natural Gas Policy, Volume V, page T-15 EEA July Base Case

Current Views and Perceptions: LDCs

- LDCs see "asymmetric risk" in longterm gas commodity, transportation and storage contracts
- Little prospect for full cost recovery by LDCs
- "Regulatory risk" from prudence reviews
- Fear of stranded costs from market loss caused by state regulatory actions, e.g., customer choice programs

Current Views and Perceptions: Power Generators

- Reluctant to sign or retain long-term firm contracts for anything but capacity on service laterals
- Recovery of costs for firm pipeline capacity generally not available through electricity sales contracts or operation of competitive markets (e.g. electric generation capacity payments)
- Willing to shut down or pay high spot gas prices in gas-constrained days - because electricity prices also go up (i.e., don't feel consumers' pain caused by price volatility)

Current Views and Perceptions: Gas Suppliers

- Domestic producers generally prefer to sell at the wellhead or use interruptible pipeline service to avoid firm charges
- However, producers need outlets for supplies and have been willing to sign supply area pipeline contracts to reach liquid trading points
 - Eastern Canada Offshore (M&N)
 - Rockies
 - Deepwater GOM
 - East Texas
- New LNG terminal builders want pipeline capacity to interconnect to grid

Current Views and Perceptions: Gas Pipelines

- Incentives and regulatory policies do not encourage "speculative" or "at risk" pipeline or storage construction
- Shippers' preferences for contract lengths of 5 years or less, do not match 20- to 30-year cost recovery period for new projects - financing more difficult and expensive
- Fewer and shorter-term firm contracts also undermine pipelines' ability to maintain existing capacity

Consumer Price Impact of Infrastructure Delays

EEA July Base Case

- 12-month delays lead to average price increase of \$0.67 or 11%
- 36-month delays lead to average price increase of \$2.35 or 37%
- Increased costs to gas consumers ranges from \$179 to \$653 billion over 2006 to 2020 period
- Consumers would also experience substantial electricity price increases, economic dislocation (lost jobs, multiplier effects)

\$12.00 \$10.00 2004\$'s per MMBtu \$8.00 \$6.00 \$4.00 \$2.00 \$0.00 2003 2005 2014 2015 2016 2018 2019 2004 2013 2002 2006 2007 2008 2009 2010 2012 2011 2017 2020

12-Month Delay

Real Henry Hub Average Annual Natural Gas Price

36-Month Delav

Long Term Contract Options: State Natural Gas Regulations

 States Could Grant Pre-approval of LDC Contracting Practices for Cost Recovery
State Could Review Customer Choice Programs

Long Term Contract Options: Electricity Markets

- Incorporate firmness of fuel supplies and transportation into power generation capacity payments
- Incorporate firmness of fuel supplies and transportation into electric reliability rules
- Allowing ISO/RTO's or states to contract gas pipeline and storage capacity for reliability benefits

Other Options: Federal and State Aid to Financing

- Offer flexible loan guarantees to large, highrisk projects
- Provide tax certainty and incentives
- Contract directly for capacity for royalty gas or for reliability benefits
- Continue loans and loan guarantees for LNG development projects through Ex-Im Bank, OPIC, MIGA and similar agencies

LNG, an International Solution....

LNG Production to Market

Natural Gas Varies Throughout the United States

Average Wobbe +-4% using 2002-2003 Partial LDC Data

Gas Interchangeability Concerns

Equipment

- Efficiency
- Environmental Performance
- Maintenance
- Longevity
- Natural Gas Supply Cost
- Fungibility of Natural Gas Transportation Market

New high efficiency, low emission natural gas uses are sensitive to gas composition

Pictures and Diagrams courtesy John Zink Co. LLC & Sempra

Gas Supply Investment: LNG

- Approximately 14 additional terminals will need to be constructed: 1 more East Coast terminal, 9 Gulf Coast terminals, 1 terminal on the West Coast and 3 Canadian terminals
- Full LNG value chain for new terminals and expansions will cost over \$100 billion, including shipping, liquefaction and upstream

	Million Dollars			
	Lower		Upper	Approx.
	End		End	Percent
Upstream	1,400	-	2,900	38%
Liquefaction Plant	1,400	-	2,500	35%
Ships	500	-	1,800	20%
Receipt Terminal & Storage	150	-	600	7%
Total	3,450		7,800	100%

Example Capital Costs for a 1 Bcfd LNG Project

LNG Imports - A Wildcard

- LNG imports will likely become the most important determinant of market conditions in the next 10 years.
- Many different scenarios are possible:
 - LNG Supply to U.S. is limited by demand growth elsewhere.
 - Base Case Approximately 16 Bcfd of imports by 2015.
 - 10 Bcfd of LNG added to the Base Case by 2015.

Key Conclusions

- Prices will be high this winter, but there will be delivered gas.... if repair work is on schedule, it is a reasonable winter and the market and government acts rationally
- U.S. and Canadian gas infrastructure investments for pipeline, storage and LNG terminals will cost \$60 billion by 2020 are needed
 - To provide outlet for new supply sources
 - To ensure continued service on traditional corridors
 - To integrate new gas consumers to grid
- Long-term contracts are one important way of managing risks to all participants in pipeline and storage facilities and LNG terminals
- LNG is needed to satisfy demand, diversify supply, reduce prices and dampen volatility