Future Opportunities for Coal Power

Science, Regulations, & Technology

Energy Crisis!

Comparing U.S. Energy Reserves

Abundant Resources Relate to Stable Prices

Delivered Fuel Cost – U.S.

Coal's Stable Pricing Makes it Ideal for Generation

Source: EIA Electric Power Monthly, February 2003

Louisiana Costs - 2003

Fuel Cost

- Coal
- Natural Gas
- Oil

\$1.34 mmbtu\$5.50 mmbtu\$5.84 mmbtu

Average electric cost in the state is 0.069/kwh - 6% below the national average.

Louisiana Electric Generation Mix

Natural Gas	45%
Coal-based	26%
Nuclear	18%
Renewable	4%
Oil	3%

Environmental Progress

Increasingly Clean Power

2003 Average State Coal Fired SO2 Emission Rates

CEED Center for Energy and Economic Development

Source: EPA 2003 CEMS Data

2003 Average State Coal Fired NOx Emission Rates

Source: EPA 2003 CEMS Data

Regional Transport Rule

Proposed Federal Clean Air Interstate Rule

Further Reductions Required by Texas by 2015: $SO_2 - 70\%$ reduction $NO_x - 65\%$ reduction

 \lesssim

Clean Air Interstate Rule

NOx

- 68,498 tons 2003
- 39,444 tons 2015

SO2

- 119,930 tons 2003
- 41,976 tons 2015

Proposed Utility Mercury Reduction Rule

MACT - Up to 90% reduction by 2008

Facility specific control

Cap & Trade - 70% reduction by 2018

- Market-based approach
- Reduce from current 48 tons to 15 tons
- Estimated to save consumers \$8 Billion 2020

Foreign Contribution

Fact: Wildfires, prescribed burns, and crop burning alone emit some 800 tons of mercury each year globally – National Center for Atmospheric Research

Fact: 50% of the mercury found in the U.S. is from foreign sources – U.S. EPA

Fact: The world's oceans contains millions of tons of mercury which impacts the mercury in the atmosphere – National Center for Atmospheric Research

Sources of Mercury

Global Mercury Deposition in the U.S.

Percent of mercury deposition that originates outside of the U.S.

Source: EPRI

Mercury Facts – local deposition

"Given the current scientific understanding of the environmental fate and transport of this element, it is not possible to quantify how much of the methylmercury in fish consumed by the U.S. population is contributed by U.S. emissions relative to other sources of Hg (such as natural sources and reemissions from the global pool)." – EPA proposed rule

Local Deposition

- Facts: Only 4 7% of mercury is deposited locally, according to research by the Brookhaven National Laboratory
- *"Only a small percentage of the mercury would be deposited nearby as particles fall to earth, while the vast majority drifts to greater distances in the atmosphere."* Hans Friedli, National Center for Atmospheric Research

Louisiana's Mercury Emissions

- Fact: Coal-based power plants in Louisiana emit less than half a ton of mercury – U.S. EPA
- Fact: This equates to less than 0.01 of 1% of the total global mercury emissions U.S. EPA
- Fact: Louisiana coal-fueled power plants emit 265 lbs. of oxidized mercury, with the remaining 740 lbs. in an elemental form – U.S. EPA

Health Concerns

- Fact: The national Health and Nutrition Survey, which measured actual mercury levels in women and children did not find anyone approaching the lowest level that would have been associated with any measurable health effect due to mercury – U.S. Center for Disease Control
- People consume far higher levels of PCBs and other persistent environmental chemicals in other foods, including beef, poultry, and dairy products." National Academy of Science

Benefits of Fish

The American Heart Association predicts about 250,000 people die from sudden heart attacks each year. If 40 percent of these people ate more fish, which contains the beneficial omega fatty acids, 100,000 people would increase their odds of avoiding sudden death. Scaring the public away from eating fish can in itself be a health concern.

Capturing Mercury is Difficult

Hypothetical Example

- Houston Astrodome filled with 30 billion ping-pong balls
- 30 green "mercury" balls
- Find and remove 27 green balls for 90% Hg capture

EPA has said "So, is technology capable of getting a 90-percent reduction of mercury from coal-fired power plants in the near future?" EPA's answer is NO!

Houston Astrodome

Cost to Control

Fact: The estimated cost of removing mercury from a power plant is \$70,000 per pound – U.S. EPA

Fact: A Tennessee Valley Authority study compared the cost of removing mercury versus other emissions:

- Sulfur Dioxide \$200 a ton
- Nitrogen Oxide \$2,000 a ton
- Mercury \$200,000,000 a ton

FutureGen – Energy Renaissance

One billion dollar, 10-year demonstration project to create world's first coal-based, zero-emission electricity and hydrogen plant

President Bush, February 27, 2003

IGCC Technology in Early Commercialization

U.S. Plants in CCT Program

- Wabash River
 - 1996 Powerplant of Year Award*
 - Achieved 95% availability
- Tampa Electric
 - 1997 Powerplant of Year Award
 - First-dispatch power generator

Nation's First Commercial-Scale IGCC Plants, Each Achieving > 95% Sulfur Removal ≥ 90% NO_x Reductions

FutureGen Project Concept

Sequestration: A Key Objective

FutureGen will:

- Test new technologies to capture CO₂ at power plant
- Inject CO₂ into geologic formations
- Measure and monitor to verify permanence of storage

Example: Weyburn CO₂ EOR Project

- Approximately 650 production and water injection wells on a 70-square mile oil field operated by EnCana Resources.
- A 20-year enhanced oil recovery (EOR) project begun in 2000 using CO₂ from a 200-mile CO₂ pipeline from Dakota Gasification Plant — \$20.5 million cooperative agreement with Canadian Federal and Saskatchewan Provincial Governments. Provides for 130 million barrels of oil and storage of about 20 million metric tons of CO₂ over 20-year lifetime.
- U.S. (DOE), EU, Japan, Alberta Government, private companies (e.g., BP, Chevron-Texaco, etc.) have joined, providing another \$20 million. IEA CO₂ Monitoring and Storage Project coordinated by 20 research organizations in the U.S., UK, Canada, France, and Italy.

Economic Development

FutureGen . . .

Produce electricity and hydrogen from coal using advanced technology
Emit virtually no air pollutants
Capture and permanently sequester CO₂

Addresses three Presidential initiatives:

- Hydrogen
- Clear Skies
- Climate Change

The Future is Bright

Randy Eminger Vice President – South Region Center for Energy and Economic Development (806) 359-5520 reminger@ceednet.org

