

Green FreedomTM(Patent Pending)</sup> Synthetic Fuels and Chemicals Production

Presentation to: LSU Alternative Energy Conference: 2008 4/23/08 Dr. F. Jeffrey Martin Dr. William L. Kubic Los Alamos National Laboratory Los Alamos, New Mexico

Green Freedom[™]

- A concept for large-scale production of sulfur-free, carbon-neutral synthetic fuels and chemicals from air and water using power assist

Green Freedom™ Recycles Carbon Dioxide

LA-UR-08-1805

Carbon-Neutral Power Assist

Synthetic Fuels and Chemicals Production

Unclassified

LOS Alamos

Common Paths for Converting Synthesis Gas into Useful Products

Green Freedom™ Approach

- Base the design primarily on proven technology. For example:
 - Pressurized water reactors
 - Water electrolysis
 - ICI low pressure methanol process
 - Mobil's methanol-to-gasoline (MTG) process
- Enabling Features
 - Practical CO₂ capture
 - Green Freedom CO₂ recovery technology
 - Co-location of power assist and chemical plants
 - Integrated system and energy management of all major processes

Evaluation Case for REEDOM Green Freedom™ Gasoline Production (17,000 bbl/day)

Unclassified

88

ONAL LABORATORY

99

Carbon Dioxide Capture from the Atmosphere

A field of switch grass removes CO_2 from the air at a net rate of ~15 ton per acre per yr An alkaline lake absorbs CO₂ at an estimated rate of ~450 ton per acre per yr

GREEN

Process Flow for CO₂ Capture and Recovery Process

Counter-Current, Assisted-Draft Cooling Tower/Absorber

New Capture and Recovery Process Drastically Reduces Energy Consumption

Carbon Dioxide Capture

- Cooling towers modified to capture Carbon Dioxide - serving double duty
 - Cooling for the power and chemical plants
 - Capturing carbon dioxide from the atmosphere
- Cooling requirements
 - 4 cooling towers for two power plants
 - 2 cooling towers for the chemical plant
- Absorption requirements
 - 6 cooling towers for CO₂ capture
 - Potassium carbonate solution to enhance absorption

Green Freedom™ CO₂ Recovery Cells

- The CO₂ recovery cells are similar to chloralkali cells
- Typical cell capacity as estimated from <u>chloralkali cell</u> data
 - Commercial chloralkali cell produces 29 - 82 ton NaOH/day
 - Corresponds to a carbon dioxide recovery of 30 - 86 ton CO₂/day
 - A 5000 tonne/day methanol plant requires 7800 tonne CO₂/day
 - Requires 90 260 cells
 - Installation would be three times larger than the chloralkali plant shown on the right

Kruppe-Uhde BM-2.7 Electrolyze

Chloralkali Plant with 36 Kruppe-Uhde BM-2.7 Electrolyzes

Supplemental Hydrogen Production

- amounts of H_2 with very high purity
- Current commercial units are smaller than chloralkali cells
- Largest are produced by Norsk Hydro and produce 485 Nm³/hr of H₂
- Process requires 45,000 Nm³/hr of H₂
 - 15,000 Nm³/hr is produced by the Green Freedom™recovery cells
 - Additional 30,000 Nm³/hr needed
 - Requires 620 Norsk Hydro electrolyzers

Norsk Hydro Electrolyzer

Older Norsk Hydro Hydrogen Plant

1**5**5

Methanol Production and Methanol-to-Gasoline Process

Established processes for producing methanol technology

- Single-train plants with a capacity of 7500 tonne/day are possible
- Evaluation case is based on a 5000tonne/day plant
- Proven <u>MTG technology</u> is well suited for smaller scale gasoline production
 - 14,500-bbl/day operated successfully in New Zealand
 - A large plant is being planned in China
 - Baseline process requires a 17,000 bbl/day plant

5,000 tonne/day Methanol Plant

New Zealand MTG Unit

Power Assist

- 2000 MW of electricity
- 470 MW of steam
- Base Case uses two Westinghouse AP1000 pressurized water reactors (PWR)
 - Two AP1000 reactors generate
 6800 MW thermal power
 - PWRs are proven technology
 - The AP-1000 reactor is a NRC certified design

Artistic Rendering of an AP1000 Reactor

Feeds

• Primary Feeds

- Process Water 130,000 L/hr
- Potassium Carbonate Make-up 3,000 kg/hr

• Utilities for Chemical Plant

- Electricity 2,000 MW
- High-Pressure Steam 260 MW
- Low-Pressure Steam 210 MW
- Uranium Fuel 60 tonne/yr
- Cooling Water Make-up 7,400,000 L/hr

• Other chemicals and consumables

- Gasoline additives
- Catalysts
- Membranes and diaphragms

Yields

	Intermediate Products
•	Intermediate Froducts
	 Carbon Dioxide
	– Hydrogen 11,000,000 Nm ³ /day
	 Methanol
•	Primary Products
	 Gasoline 17,000 bbl/day
	OR
	 Diesel 10,000 bbl/day
	 Jet Fuel 4,500 bbl/day
•	Byproducts
	 Fuel Gas 5,500 GJ/day
	 Liquid Petroleum Gas (LPG) 510,000 L/day
	 Pure Oxygen 5,500,000 Nm³/day

LOS Alamos

- EST. 1943

Foot Print Needed to Capture Equivalent CO₂ per Year

200

221

Approximate Solid Waste Generation by a Green Freedom™ Plant

•	Non-ra	dioactive	waste
---	--------	-----------	-------

- Membranes, diaphragms, etc. 500 tonne/yr
- Construction / maintenance waste<u>1000 tonne/yr</u>
- Total 2500 tonne/yr
- Radioactive waste

GREEN

222

Solid Waste Generation by Plants Producing Equivalent Gasoline

Initial Estimate of Economics

- Capital Cost (overnight)..... \$5.2 billion
- Operating Costs
 - Variable \$0.42 / gal
 - Fixed \$1.12 / gal
- Estimated cost to the consumer \$5.00 / gal +/- 30%

Capital Cost Distribution

Implications of Selected Developing Technologies

- Evaluation Case \$5.00 per gallon

- Larger process with steam electrolysis .. \$4.10 per gallon
- Larger process with steam electrolysis and improved stripping cell materials ... \$3.90 per gallon

US Production of Refined Products

•	Current	US	production	leve	S
---	---------	----	------------	------	---

- Gasoline 9,010,000 bbl/day
- Jet Fuel
 - Civilian 1,290,000 bbl/day
 - Military 140,000 bbl/day
- Number of baseline Green Freedom[™] plants needed to meet current production levels
 - Gasoline 530
 - Jet Fuel + Distillates 350
 - Military Jet Fuel 30

277

Offset Deployment Goals

- Since the mid 1980s
 - Domestic production has declined at a rate of 62 million bbl/yr
 - Domestic consumption has consumption has increased at a rate of 74 million bbl//year
 - Green Freedom could offset declining production and increasing consumption
 - Building 9 plants per year would compensate for decreasing production
 - Building an additional 11 plants per year would keep imports at current levels

Green Freedom[™] is a "Multi-issue" Solution

- 1. Replaces dependence on fossil fuel
- 2. Provides fuel and material security
- 3. Has zero or less net carbon emissions
- 4. Fuels are compatible with existing transportation vehicles
- 5. Relies on abundant, free, and non-hazardous feed material
- 6. Is compatible with existing energy-delivery infrastructure
- 7. Ends intrusive exploration for and extraction of fossil fuels
- 8. Limits the environmental impact to the production facility footprint and a small waste stream volume
- 9. Relieves potential pressure on agriculture capacity and forests
- 10. Stabilizes energy prices
- 11. Has predictable costs

2**9**9

Status

- Concept Development 2005 2007
- Integrated system performance and economic evaluations 2006 2007
- Academic and industrial reviews 2006 2007
- Planned demonstration of new technology and design optimization studies 2008 - 2009
- Prototype development and testing of key subsystems unscheduled
- **Consortium**

LA-UR-08-1805

Questions?

